Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.242
Filtrar
1.
Food Chem ; 366: 130563, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289441

RESUMO

Herein, a simple, low-cost, environment-friendly strategy was proposed to prepare the composite of three-dimensional hierarchical porous carbon and chitosan, which was applied to modify the glass carbon electrode to fabricate an electrochemical sensor for the determination of niclosamide. The three-dimensional porous carbon with interconnected conductive network, high surface area, and self-generated oxygen-containing functional groups was prepared by salt-templating method with glucose as carbon source and eutectic mixture of LiBr/KBr as both activating and pore-forming agent. During the subsequent ultrasonic process, chitosan with excellent filming property, strong adsorption ability, and good dispersibility was successfully decorated on the obtained porous carbon to further enhance the determination performance of niclosamide. Benefitting from the multi-functional integration of three-dimensional hierarchical porous carbon and chitosan, the fabricated sensor presented a low limit of detection (6.7 nM) in the linear concentration range from 0.01 to 10 µM. Moreover, the fabricated sensor could show good repeatability, reproducibility, stability, and selectivity. Most important, the decent practicability for the detection of niclosamide was obtained in different food samples with low relative standard deviation and satisfactory recoveries. This work provides a very valuable reference for the sensitive determination of niclosamide in food samples.


Assuntos
Quitosana , Carbono , Técnicas Eletroquímicas , Eletrodos , Niclosamida , Porosidade , Reprodutibilidade dos Testes
2.
Talanta ; 236: 122862, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635244

RESUMO

A novel fluorometric assay for selective and sensitive determination of formalin (FA) was developed based on nitrogen-doped carbon dots (N-CDs) coupled with silver mirror reaction. N-CDs was synthesized using the hydrothermal method with the ethylene glycol and ammonia solution as carbon and nitrogen precursors, respectively. The detection principle was based on "off-on" fluorescence switching. Specifically, the fluorescence signal of N-CDs was first turned off after incorporating the Ag+ and Tollens' reagents. Then, in the presence of FA, the Ag+ species on the N-CDs surface were reduced to Ag0 species and the fluorescence signal of N-CDs was switched back on. The fluorescence intensity due to the N-CDs signal linearly increased with the increasing FA concentrations in the range of 5-100 mg L-1, with the detection limit of 1.5 mg L-1. The proposed approach provides rapid, simple, sensitive, and selective detection of FA in various food samples.


Assuntos
Carbono , Pontos Quânticos , Corantes Fluorescentes , Formaldeído , Nitrogênio , Prata
3.
J Colloid Interface Sci ; 605: 129-137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311307

RESUMO

Lithium-sulfur (Li-S) batteries are greatly expected to be the favored alternatives in the next-generation energy-storage technologies due to their exceptional advantages. However, the shuttle effect and sluggish reaction kinetics of polysulfides largely hamper the practical success of Li-S batteries. Herein, a unique iron carbide (Fe3C) nanoparticles-embedded porous biomass-derived carbon (Fe3C-PBC) is reported as the excellent immobilizer and promoter for polysulfides regulation. Such a distinctive composite strongly couples the vast active sites of Fe3C nanoparticles and the conductive network of porous biomass-derived carbon. Therefore, Fe3C-PBC is endowed with outstanding adsorptivity and catalytic effect toward inhibiting the shuttle effect and facilitating the redox kinetics of polysulfides, demonstrated by the detailed experimental demonstrations and theoretical calculation. With these synergistic effects, the Fe3C-PBC/S electrode embraces a superb capacity retention of 82.7% at 2C over 500 cycles and an excellent areal capacity of 4.81 mAh cm-2 under the high-sulfur loading of 5.2 mg cm-2. This work will inspire the design of advanced hosts based on biomass materials for polysulfides regulation in pursuing the superior Li-S batteries.


Assuntos
Lítio , Nanopartículas , Biomassa , Carbono , Compostos Inorgânicos de Carbono , Compostos de Ferro , Porosidade , Sulfetos , Enxofre
4.
J Colloid Interface Sci ; 605: 82-90, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311315

RESUMO

A highly stable Pd-loaded N-doped carbon catalyst (ACNpd) for phenol hydrogenation was prepared from chitosan by hydrothermal carbonization. ACNpd does not require a reduction step before catalytic use due to the Pd in the as-prepared catalyst mainly exists in the form of Pd0 (80%). The carbon support involves N-containing groups such as pyridinic nitrogen and pyrrolic nitrogen, which could provide basic sites to adsorb phenol effectively. The as-fabricated ACNpd shows high catalytic performance with turnover frequency (TOF) of 29.34 h-1. Accordingly, a phenol conversion of 100% and a cyclohexanone selectivity of 99.1% are achieved in 5 h at 100 °C and 1 MPa H2. This outstanding performance is attributed to the synergetic effects of the Pd particles, the N-functional groups, and the Lewis acid sites on the support. The carbon support presents intrinsic Lewis acid sites due to its electrophilicity, and Pd doping further increases the strength of such acid sites as it causes electron-deficient structural features. Moreover, the Lewis acid sites inhibit the over-hydrogenation from cyclohexanone to cyclohexanol. This study provides new insights into the application of functional biomass-based carbon materials as catalyst supports.


Assuntos
Carbono , Quitosana , Cicloexanonas , Hidrogenação , Fenol , Fenóis
5.
J Hazard Mater ; 421: 126536, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34332484

RESUMO

To realize the thermal detoxification of municipal solid waste incineration (MSWI) fly ash in a relatively mild environment, molten salts thermal treatment technology was proposed in our previous research, which showed good effects. To investigate the properties of molten salts (NaCl-CaCl2) during cycling reusing, the change of the main components and the physical properties of the used molten salts were estimated. Results showed that the salts in fly ash would dissolve into molten salts. During this process, the concentration of K+, SO42- kept increasing while Cl- was decreased. The changing trend of Na+ and Ca2+ was dependent on the ratio of Ca/Na in raw fly ash. Ca(OH)2 in fly ash would react with CaCl2 to form CaClOH. Moreover, the introduction of the salt components on the thermal properties of molten salts were also studied. The melting point hardly changed by NaCl, CaSO4, and SiO2. Nevertheless, it was lowered to 431 °C with 15% CaCO3 addition, while increased to 523 °C with 20% KCl. Besides, there were no significant influences on the viscosity, stability, and thermal diffusivity of molten salts. KCl had the greatest influence on the specific heat capacity of molten salt, with an increase of about 20%.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cloretos , Cinza de Carvão , Incineração , Metais Pesados/análise , Material Particulado , Sais , Dióxido de Silício , Resíduos Sólidos/análise
6.
Food Chem ; 369: 130854, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450515

RESUMO

The carbon stable isotopic composition, as indicated by the δ13C value, of wine ethanol is inherited from berry sugars, but little is known about the variation in sugar δ13C values of Japanese grapes relative to overseas grapes. This study found a large variation in sugar δ13C values of Chardonnay grapes grown in Japan (-27.2 ± 0.9‰, mean ± standard deviation, n = 33), with sugar δ13C values depending on the δ13C values and content of monosaccharides. After complete fermentation, the carbon isotope discrimination between berry sugars and wine ethanol was 1.5 ± 0.1‰. Ethanol δ13C values and carbon isotope discrimination enabled prediction of sugar δ13C values in the original must. Imported wines had higher sugar δ13C values than those of wines made from Japanese grapes, suggesting drier overseas viticulture conditions. The determination of sugar δ13C values in grape berries provides valuable information for viticulture and wine authentication.


Assuntos
Vitis , Vinho , Carbono , Isótopos de Carbono/análise , Frutas/química , Açúcares/análise , Vinho/análise
7.
J Colloid Interface Sci ; 605: 790-802, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371424

RESUMO

Carbon aerogels are prepared by a thermal treating-freeze drying approach from chitosan, with glycine hydrochloride ionic liquid (IL) acting as solvent and nitrogen source. Different post-treatments such as ball milling and high temperature carbonization are employed to functionalize the obtained carbon aerogels with tuned properties, making it promising candidates as fluorescence material (NACs-Q), electrode material (FDC-800) and catalyst support (NACPd-C). NACs-Q is water-soluble quantum dot with average particle sizes of 3.8 nm, presenting excitation-/emission-independent and pH-sensitive properties, which could be used as sensor for testing acetone vapor or an "on-off-on" sensor for detections of Fe3+ and vitamin C in fruits. FDC-800 exhibits fluffy lamellar structure with developed micro-mesopores and nitrogen-containing groups on their surfaces, which is beneficial for building flexible solid-state supercapacitor with excellent performance, delivering a capacitance of 208F/g at 0.5 A/g, and achieving an energy density of 7.2 W h/kg at a power density of 50 W/kg. Moreover, NACPd-C can be used as catalyst for phenol hydrogenation, and phenol conversion of 100% with cyclohexanone selectivity of 98.3% is achieved, due to the synergetic effects of the Pd active-site, the N-containing groups, and the Lewis acid sites on the support.


Assuntos
Carbono , Quitosana , Capacitância Elétrica , Nitrogênio , Porosidade
8.
J Colloid Interface Sci ; 605: 906-915, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34375785

RESUMO

The search for ultrafast and simple methods to fabricate non-noble metal catalysts to boost electrocatalytic oxygen reduction reaction (ORR) is still ongoing. Herein, we demonstrate a one-step microwave-assisted heating method to prepare copper nitride/iron/iron carbide nanoparticle hybrids (CuNC/Fe/Fe3C/CNT). This ultrafast heating method induces plentiful carbon-wrapped metal and Fe3C nanoparticles that are attached to the surface of CNT and scattered nanosheets. The CuNC/Fe/Fe3C/CNT exhibit a half-wave potential (E1/2) of 0.886 V toward the ORR in alkaline solution, with 220 mV more positive E1/2 than that of CuNC/CNT and Fe/Fe3C/CNT respectively. The activity of as-prepared catalysts is discussed by investigating their structures and compositions and their relationship with the ORR performance. Detailed analysis results disclose that the high activity of the CuNC/Fe/Fe3C/CNT catalysts could be attributed to the interaction of CuNC and Fe/Fe3C species. To be specific, as the electron donor, Fe/Fe3C nanoparticles induce electron localization and promote the formation of Cu (δ + )-NC (0 < Î´ < 2), therefore leading to the improvement of the ORR performance. This work may offer an ultrafast way to construct efficient catalysts with enhanced ORR performance.


Assuntos
Carbono , Cobre , Catálise , Oxigênio
9.
J Hazard Mater ; 421: 126810, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34365231

RESUMO

The pollution of perfluorooctanoic acid (PFOA) in water bodies has been a serious threat to environment and human health. Ordered mesoporous carbons (OMCs) with different oxygen contents were prepared and first used for adsorbing PFOA from aqueous solutions. The OMC-900 with a lower oxygen content has a higher PFOA adsorption capacity than the oxygen-rich OMC-700. OMCs require a much shorter time to reach the adsorption equilibrium comparing with other adsorbents reported in literature. The mesopores play an important role in this rapid adsorption kinetics. The pseudo-second-order model better fitted the kinetic data. The multilayers adsorption was proposed for the adsorption of PFOA onto OMCs since the Freundlich isotherm model fits the experimental data well. The micelle or hemi-micelle structures may be formed during the adsorption. Various background salts showed a positive effect on PFOA adsorption due to the salting-out and divalent bridge effects. The humic acid can lead to a discernible reduction in PFOA adsorption by competing for adsorption sites on OMCs. The hydrophobic interaction and electrostatic interaction adsorption mechanisms were proposed and verified by the adsorption data. The high adsorption capacity and fast adsorption kinetics of the OMC make it a potential adsorbent for PFOA removal in engineering applications.


Assuntos
Carbono , Fluorcarbonetos , Adsorção , Caprilatos , Humanos , Cinética , Oxigênio
10.
J Hazard Mater ; 421: 126809, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388932

RESUMO

The germination index (GI) was widely applied to evaluate the phytotoxicity of compost. This study investigated the key phytotoxicity factors affecting seed germination in compost by using aqueous extracts in seed germination tests. The relationship between water-soluble substances in compost and seed germination, and their association with the microbial community were identified. In this study, sheep manure (SM) composted along or with three carbon additives (mushroom substrate, MS; cornstalks, CS; garden substrate, GS) for 49 days and, during this time, changes in multiple physical-chemical parameters, carbon and nitrogen matters, germination indexes (GI) and the compost microbiome were monitored. The results showed that all additives decreased water-soluble total nitrogen (TN), ammonium nitrogen (NH4+-N) and low molecular weight organic acids, and significantly improved the seed germination indexes (seed germination rate, radical length and GI). The GI was correlated with water-soluble carbon degradation products (TOC, butyric acid, humic acid) and certain bacteria (Planifilum, Oceanobacillus, Ruminococcaceae_UCG_005 and Saccharomonospora). A structural equation model revealed that the main factors affecting seed germination were TOC (SM compost), acetic acid (SM+MS compost), humic acid (SM+CS compost), and pH (SM+GS compost). Low TOC and low molecular weight organic acids contents and higher humic acid content promoted GI. The research results could provide theoretical basis and measures for directional regulation of compost maturity.


Assuntos
Compostagem , Esterco , Animais , Carbono , Germinação , Nitrogênio/análise , Ovinos , Solo
11.
J Hazard Mater ; 421: 126826, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396963

RESUMO

Plant roots can accumulate organic chemicals, including PCBs, and this could be relevant in spreading chemicals through the food chain. To estimate such uptake, several equations are available in the literature, mostly developed in lab conditions, to obtain the root concentration factor (RCF). Here, a long-term (18 months) greenhouse experiment, using an aged, contaminated soil, was performed to reproduce root uptake in field-like conditions and to account for the ecological variability of exposure during the entire life cycle. Specific growth strategies (i.e., annual vs. perennial), root development (e.g., timing of root production and decaying), and soil parameters (e.g., dissolved organic carbon (DOC), and the particulate organic carbon (POC)) may interfere with the uptake of contaminants into the roots of plants. In this study, we investigate the effects of these factors on the RCF, obtained for 79 PCBs. New predictive equations were calculated for 5 different plants species at four different growth times (from few months to 1.5 years) and stages (growing vs maturity). The relationships highlighted a species-specific and time-dependent accumulation of PCB in plants roots, with higher RCFs in summer than in fall for some species, and the relevant influence of DOC and POC in affecting root uptake.


Assuntos
Bifenilos Policlorados , Poluentes do Solo , Animais , Carbono , Estágios do Ciclo de Vida , Raízes de Plantas/química , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120295, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34450572

RESUMO

Cerium, an abundant lanthanide element, is widely used in human industry. The accumulation of Ce4+ ion, however, will damage the environment and biological organism. Therefore, its facile detection is highly needed. Herein, we design a hybrid sensing platform consisting of carbon dots (C-dots) and bathophenanthroline-disulfonate-Fe2+ complex (Bphen-Fe2+) for trace-level determination of Ce4+. Based on inner filter effect (IFE), the red-colored Bphen-Fe2+ complex severely quenches the fluorescence of C-dots. After addition of Ce4+, Fe2+ is oxidized to Fe3+, and the colorless Bphen-Fe3+ complex generates, which weakens the IFE efficiency and leads to the fluorescence recovery of C-dots. Meanwhile, due to the decreasing amount of Bphen-Fe2+ upon Ce4+ addition, the red color of the solution gradually fades, which enables visual detection of Ce4+ by the naked eyes. Under the optimized conditions, the C-dots/Bphen-Fe2+ system realizes the fluorometric and colorimetric sensing of Ce4+ in the range of 0.5-100 and 1.9-80 µM, with the limits of detection as low as 0.5 and 1.9 µM, respectively. This method also shows high selectivity over other common ions, and has an excellent applicability for monitoring of Ce4+ in real water samples.


Assuntos
Cério , Pontos Quânticos , Carbono , Colorimetria , Humanos , Íons , Fenantrolinas
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120281, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34450575

RESUMO

In this paper, a simple and effective fluorescence turn-on approach for highly sensitive and selective monitoring Hg2+ ions was designed by using carbon dots (CDs) and silver nanoparticles (AgNPs). It reveals that the fluorescence of CDs solution can be quenched in the presence of AgNPs through inner filter effect (IFE) and the quenched CDs-AgNPs system is turned on after addition of Hg2+ ions, which is due to higher affinity of Hg2+ and AgNPs than that of CDs and AgNPs, thus resulting the disappearance of AgNPs from the CDs-AgNPs composites and leading to the fluorescence turn-on of CDs. The developed fluorescence turn-on approach exhibited high selectivity and sensitivity for detection of Hg2+. Under the optimum experimental conditions, good linearity was achieved over the range of 100-160 µM and the limit of detection (LOD) was estimated to be 2.22×10-8 M for Hg2+. The recoveries of Hg2+ spiked in real samples ranged from 98.4% to 101.6%. Results of this study suggest that the fluorescence turn-on approach can be used to the detection of Hg2+ in real water samples.


Assuntos
Mercúrio , Nanopartículas Metálicas , Pontos Quânticos , Carbono , Corantes Fluorescentes , Limite de Detecção , Prata , Espectrometria de Fluorescência
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120293, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34455374

RESUMO

A fluorescence probe based on carbon dots (CDs) coated with silica molecularly imprinted polymer (MIPs) was synthesized for selective and sensitive determination of cetirizine (CTZ). Green source carbon dots were firstly derived from orange peels through a microwave method, and had the merits of eco-friendly and low toxicity. Then a thin silica film was formed on the surface of CDs by reverse microemulsion technique, and molecularly imprinted polymer coated on silica-carbon dots. In this scene, CTZ, 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were employed as a template, a functional monomer and cross linker, respectively. The obtained CDs-MIPs can selectively bind CTZ through the specific interaction between recognition sites and template, and obey photoinduced electron transfer fluorescence quenching mechanism. Fluorescence dropped linearly in the range of 0.5-500 ng mL-1, under the optimal conditions, with a detection limit of 0.41 ng mL-1. Furthermore, the proposed method was successfully intended for the determination of trace CTZ in human saliva and urine samples without the interference of other molecules and ions. And recoveries ranged from 95.8% to 99.8% with relative standard deviation less than 3.0%.


Assuntos
Impressão Molecular , Pontos Quânticos , Carbono , Cetirizina , Corantes Fluorescentes , Humanos , Limite de Detecção , Polímeros Molecularmente Impressos , Saliva , Dióxido de Silício
15.
J Environ Manage ; 301: 113813, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607133

RESUMO

There is a growing interest in including blue carbon ecosystems (i.e., mangroves, tidal marshes and seagrasses) in climate mitigation programs in national and sub-national policies, with restoration and conservation of these ecosystems identified as potential activities to increase carbon accumulation through time. However, there is still a gap on the spatial scales needed to produce carbon offsets comparable with terrestrial or agricultural ecosystems. Here, we used the Coastal Blue Carbon InVEST 3.7.0 model to estimate future net carbon sequestration in blue carbon ecosystems along Australia's Great Barrier Reef (hereafter GBR) catchments, considering different management scenarios (i.e., reintroduction of tidal exchange through the removal of barriers, sea level rise, restoring low lying land) at three different spatial scales: whole GBR coastline, regional (14,000-16,300 ha), and local (335-370 ha) scales. The focus of the restoration (i.e., tidal marshes and/or mangroves) was dependent on data availability for each scenario. Furthermore, we also estimated the monetary value of carbon sequestration under each management scenario and spatial scale assessed in the study. We found that large scale restoration of tidal marshes could potentially sequester an additional ∼800,000 tonnes of CO2e by 2045 (potentially generating AU$12 million based on the average Australia carbon price), with greater opportunities when sea level rise is accounted for in the modelling. Also, we found that regional and local projects would generate up to 23 tonnes CO2e ha-1 by the end of the crediting period. Our results can guide future decisions in the blue carbon market and financing schemes, however, the return on investment is dependent on the carbon price and funding scheme available for project implementation.


Assuntos
Carbono , Ecossistema , Agricultura , Sequestro de Carbono , Áreas Alagadas
16.
J Environ Manage ; 301: 113886, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619594

RESUMO

The conversion of primary forests to cultivation brings a significant change in soil carbon (C) forms. In the foothills of the Eastern Himalayan Region of India (Manipur), such conversions are prevalent. However, little is known about the response of C forms, particularly in deep soil, to land use conversion in the region. We evaluated changes in soil C forms (total organic, inorganic, and pools) and microbiological properties (up to 1.0 m depth) mediated by C when the 45-year-old forest had been cultivated for 18-25 years. The cultivated land uses were tree-based agroforestry (LAF: legumes, NAF: non-legumes), horticultural fruits (WHF: woody, NHF: non-wood, mainly vegetables), and paddy agriculture system (AUS: upland, ALS: lowlands). Forest conversion significantly (p < 0.05) decreased the total carbon (TC) in the surface soil (0.0-0.15 m) from 4.88 % to 3.04-3.93 % in the tree-based land uses (LAF, NAF, and WHF). TC further declined to 2.05-2.81 % under seasonal crops (NHF, AUS, and ALS). Seasonal crop cultivation also caused a higher decline in microbial biomass carbon, soil enzymes, and carbon pools (active and passive) than the tree-based land use with the soil depth. The vertical distribution of C in the soil profile was inconsistent: organic C (including C pools) decreased, while inorganic C increased. The profile TC stock to a depth of 1.0 m in the forest was 358.8 Mg ha-1, of which 81 % were organic C, and 19 % were inorganic C. In comparison with forest soil, total soil C stocks (organic and inorganic) decreased more (-44.1 to -55.1 %) in seasonal crops than in tree-based (-15.4 to -36.3 %) land uses. The degradation index (DI) also confirmed that seasonal crop cultivation caused a larger decline in surface soil quality (DI: -423 % to -623 %) than tree-based land use (DI: -243 % to -317 %). The topsoil (up to 0.45 m) of seasonal crops was more degraded than that of the subsoil (>0.45 m-1.0 m). Forests converted to seasonal cultivation (upland rice and vegetables) caused higher degradation of soil C forms and overall soil health in the Himalayan foothills of northeastern India. We suggest the promotion of Agroforestry based on legumes (Parkia spp.) and woody fruits (mango/citrus/guava) in the uplands to minimize soil C degradation while ensuring nutritional security in the hill agro-ecosystems of the Indian Himalayas.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Ecossistema , Florestas , Índia
17.
J Environ Manage ; 301: 113803, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626944

RESUMO

Invasive species alter hydrologic processes at watershed scales, with impacts to biodiversity and the supporting ecosystem services. This effect is aggravated by climate change. Here, we integrated modelled hydrologic data, remote sensing products, climate data, and linear mixed integer optimization (MIP) to identify stewardship actions across space and time that can reduce the impact of invasive species. The study area is the windward coast of Hawai'i Island (USA) across which non-native strawberry guava occurrence varies from extremely dense stands in lower watershed reaches, to low densities in upper watershed forests. We focused on the removal of strawberry guava, an invader that exerts significant impacts on watershed condition. MIP analyses spatially optimized the assignment of effective management actions to increase water yield, generate revenue from enhanced freshwater services, and income from removed biomass. The hydrological benefit of removing guava, often marginal when considered in isolation, was financially quantified, and single- and multiobjective MIP formulations were then developed over a 10-year planning horizon. Optimization resulted in $2.27 million USD benefit over the planning horizon using a payment-for-ecosystem-services scheme. That value jumped to $4.67 million when allowing work schedules with overnight camping to reduce costs. Pareto frontiers of weighted pairs of management goals showed the benefit of clustering treatments over space and time to improve financial efficiency. Values of improved land-water natural capital using payment-for-ecosystem-services schemes are provided for several combinations of spatial, temporal, economical, and ecosystem services flows.


Assuntos
Ecossistema , Espécies Introduzidas , Carbono , Conservação dos Recursos Naturais , Florestas , Água
18.
J Environ Manage ; 301: 113856, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626948

RESUMO

The conventional sintering process of municipal solid waste incineration (MSWI) fly ash is always energy intensive. The process forms a cracked structure because of the difficulty in forming the liquid phase to enhance the mass transfer process. Therefore, exploring a new disposal method to simultaneously decrease the sintering temperature and improve the mechanical and heavy metal leaching properties of sintered samples is necessary. In this study, a pressure-assisted sintering treatment was introduced to dispose fly ash by varying the chemical composition and mechanical pressure at relatively low temperatures (300-500 °C). The results revealed that the compressive strength of treated samples increased with the CaO/SiO2 molar ratio increasing from 0.5 to 1.0, and a maximum value of 238.28 ± 8.50 MPa was obtained. The heavy metal leaching concentration results demonstrated a low risk of contamination in the treated samples. Microstructure analyses suggested that the densification process was enhanced with increased mechanical pressure, and the formed calcium silicates and aluminosilicates positively affected the compressive strength. Moreover, smaller crystal lattices were observed during aggregation formation, suggesting the restraint of anomalous crystal growth, which accelerated the densification process and increased the compressive strength. Moreover, the mass transfer process during the pressure-assisted sintering process was enhanced compared with the conventional thermal process, which was reflected by the transformation of elements from homogeneous to heterogeneous distribution. Therefore, the improved mechanical properties and leaching behavior of heavy metals were attributed to the densified microstructure, formation of new minerals, and enhanced driving force during the pressure-assisted sintering process. These findings suggest that pressure-assisted sintering is a promising method for maximizing the reutilization and minimizing the energy consumption simultaneously to dispose fly ash.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão , Incineração , Metais Pesados/análise , Material Particulado , Dióxido de Silício , Resíduos Sólidos/análise
19.
J Environ Manage ; 301: 113916, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634723

RESUMO

The mineralization of soil organic matter (SOM) is closely related to the emission of greenhouse gas into atmosphere and the stability of organic carbon in soil. The influence of minerals on SOM mineralization in the specific soil received very few attentions. The influence characteristics and potential mechanisms of oxides on the mineralization of SOM in the paddy soil were observed in this study by incubating soil with the addition (dosage: 10 g kg-1) of prepared gibbsite, goethite, ferrihydrite or birnessite for 60 days. A sequence control treatment (753 mg CO2-C kg-1) > goethite treatment (656 mg CO2-C kg-1) ≈ gibbsite treatment (649 mg CO2-C kg-1) > birnessite treatment (529 mg CO2-C kg-1) > ferrihydrite treatment (441 mg CO2-C kg -1) was found in the cumulative amount of released CO2 in 60 days of incubation. Oxides especially ferrihydrite significantly decreased the content of dissolved organic matter (DOM) but tended to increase the content of microbial biomass carbon (MBC). The molecular structure of DOM in the paddy soil was simplified by gibbsite, ferrihydrite and birnessite after the incubation. Oxides especially birnessite and ferrihydrite reduced soil pH and the content of soil available N but increased soil redox potential (Eh). All examined oxides especially Fe oxides enhanced soil bacterial abundance but only birnessite significantly affected bacterial composition at phyla level. The stimulation on the immobilization and/or microbial assimilation of labile organic carbon, the modulation on soil basic properties (available N, pH, Eh), and the decrease of the relative abundance of some decomposing bacteria phyla such as Actinobacteria were the potential pathways of oxides in decreasing SOM mineralization.


Assuntos
Alumínio , Solo , Carbono , Ferro , Manganês , Óxidos , Microbiologia do Solo
20.
Food Chem ; 368: 130829, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411858

RESUMO

In this paper, an innovative method for the sensitive detection of new coccine using N, P-doped carbon quantum dots (N,P-CQDs) as fluorescent nanosensor is reported for the first time. The sensing mechanism is based on the fluorescence quenching of N,P-CQDs by new coccine through inner filter effect (IFE). N,P-CQDs were prepared by simple hydrothermal treatment of citric acid, phosphoric acid and ethylenediamine. Under the optimal conditions, the new coccine has two good linear responses in the concentration range of 0.2-100 and 100-200 µM, and the detection limits are as low as 24.8 and 9.4 nM, respectively. Our developed nanosensor has been successfully used for the determination of new coccine in food samples with good precision and high accuracy. This work highlights the economic, rapid, simple, selective and ultra-sensitive for new coccine detection, and opens up a new way for the monitoring of new coccine in actual food samples.


Assuntos
Pontos Quânticos , Compostos Azo , Carbono , Naftalenossulfonatos , Nitrogênio , Fósforo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...