Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.969
Filtrar
1.
Food Chem ; 368: 130784, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411864

RESUMO

Biodegradable and antimicrobial films without antibiotics are of great significance for the application associated with food packaging meanwhile minimizing the negative impact on environments. In this work, cellulose-based films with the surface tailor-constructed with ZnO nanopillars (ZnO NPs@Zn2+/Cel films) were prepared via chemical crosslinking in conjunction with a hydrothermal process for in-situ growth of ZnO NPs. As a packaging material, ZnO NPs@Zn2+/Cel films possess excellent mechanical properties, oxygen and water vapor barrier, food preservation, biodegradability and low Zn2+ migration. Moreover, ZnO NPs@Zn2+/Cel films show remarkable antimicrobial activity, especially for Staphylococcus aureus (gram-positive bacteria) and Escherichia coli (gram-negative bacteria). The antimicrobial mechanism of ZnO NPs@Zn2+/Cel films is studied using the controlled variable method, and results showed that the film without UV pretreatment killed bacterial cells mainly by mechanical rupture, while the film with UV pretreatment killed bacterial cells mainly via the synergistic effect of photocatalytic oxidation and mechanical rupture.


Assuntos
Anti-Infecciosos , Nanocompostos , Óxido de Zinco , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Celulose , Embalagem de Alimentos , Óxido de Zinco/farmacologia
2.
Sci Total Environ ; 802: 149852, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461471

RESUMO

Cellulose contributes approximately one third of the influent suspended solids to wastewater treatment plants and is a key target for resource recovery. This study investigated the temperature impact on biological aerobic degradation of cellulose in laboratory-scale sequencing batch reactors (SBR) at four different temperatures (10-33 °C) and two different solids retention times (SRT) of 15 days and 3 days. The degradation efficiency of cellulose was observed to increase with temperature and was slightly dependent on SRT (80%-90% at an SRT of 15 days, and 78%-85% at an SRT of 3 days). Hydrolysis followed 1st order kinetics, rather than the biomass dependent Contois kinetics (default in the activated sludge models), with a hydrolysis coefficient at 20 °C of 1.14 ± 0.01 day-1.


Assuntos
Reatores Biológicos , Águas Residuárias , Celulose , Cinética , Esgotos , Eliminação de Resíduos Líquidos
3.
Sci Total Environ ; 802: 149759, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464793

RESUMO

Numerous studies have explored the transport mechanism of biochar colloids in porous medium. However, the effect of feedstock biopolymer compositions and pyrolytic temperature on carbon stability and mobility of biochar colloids is limited. This study prepared four ball milled biochar colloids pyrolyzed from lignin-rich pinewoods and cellulose-rich corn stalks under 300 °C and 500 °C (termed as PW300, PW500, CS300, CS500) and analyzed their differences in the chemical stability and transport behaviors. The results indicated that high contents of lignin in biomass and pyrolytic temperature could enhance the compact aromatic structures of biochar colloids characterized by the elemental composition, FTIR, 13C NMR and XRD analyses. Therefore, PW500 with the strongest chemical stabilities (least C loss of 13%), electronegativity (-44.9 mV vs. -41.6-28.3 mV) and smallest hydrodynamic diameter (608.7 nm vs. 622-997.2 nm) was obtained under ball milling. Moreover, both the critical coagulation concentrations (CCC) and the maximum relative effluent concentration (C/C0) with the NaCl ionic strength of 1 mM were demonstrated to be in the increase order of CS300 (76.1 mM, 70%) < PW300 (183.1 mM, 78%) < CS500 (363.9 mM, 89%) < PW500 (563.1 mM, 95%), which suggested stronger colloidal stability and mobility of PW biochar colloids than those of CS biochar colloids. In addition, the C/C0 for CS300, PW300 and CS500 were about 7.3%-36% lower than that for PW500 with the NaCl ionic strength increasing to 50 mM indicated the notable superiority in the mobility of PW500. These findings can provide new insights toward understanding the transformation and migration, and evaluating the environmental risk of biochar colloids.


Assuntos
Carbono , Lignina , Celulose , Carvão Vegetal , Coloides
4.
Chemosphere ; 286(Pt 1): 131635, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346339

RESUMO

Composting is a biodegradation and transformation process that converts lignocellulosic biomass into value-added products, such as humic substances (HSs). However, the recalcitrant nature of lignocellulose hinders the utilization of cellulose and hemicellulose, decreasing the bioconversion efficiency of lignocellulose. Pretreatment is an essential step to disrupt the structure of lignocellulosic biomass. Many pretreatment methods for composting may cause microbial inactivation and death. Thus, the pretreatment methods suitable for composting can promote the degradation and transformation of lignocellulosic biomass. Therefore, this review summarizes the pretreatment methods suitable for composting. Microbial consortium pretreatment, Fenton pretreatment and surfactant-assisted pretreatment for composting may improve the bioconversion process. Microbial consortium pretreatment is a cost-effective pretreatment method to enhance HSs yields during composting. On the other hand, the efficiency of enzyme production during composting is very important for the degradation of lignocellulose, whose action mechanism is unknown. Therefore, this review describes the mechanism of action of lignocellulase, the predominant microbes producing lignocellulase and their related genes. Finally, optimizing pretreatment conditions and increasing enzymatic hydrolysis to improve the quality of composts by controlling suitable microenvironmental factors and core target microbial activities as a research focus in the bioconversion of lignocellulose during composting in the future.


Assuntos
Compostagem , Biomassa , Celulose , Lignina
5.
J Colloid Interface Sci ; 606(Pt 2): 1457-1468, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492480

RESUMO

Multifunctional hydrogels with transparency, ultraviolet (UV)-blocking, stretchable, self-healing, adhesive, antioxidant and antibacterial properties are promising materials for biomedical and relevant applications. However, preparation of these hydrogels at ambient environment without stimuli is still a challenge. Here, a series of hydrogels possessing ultrashort gelation time (~30 s) at room or cold temperature were fabricated based on self-catalytic Fe3+/Tannic acid-cellulose nanofiber (Fe3+/TA-CNF). Fe3+/TA-CNF formed stable redox pairs to activate ammonium persulfate (initiator), generating abundant free radicals to trigger the ultrafast polymerization of acrylic acid (AA). To improve the antibacterial ability of hydrogel, a bilayer hydrogel composite (NF@HG) composed of tetracycline hydrochloride (TH)-loaded electrospun nanofibers and hydrogel layer was fabricated via a mild casting method. The NF@HG exhibited enhanced antibacterial ability and the sustained release of TH can provide long-term antibacterial activity. Besides, cell viability results demonstrated that NF@HG was non-cytotoxic. Taken together, this strategy based on self-catalytic Fe3+/TA-CNF system may inspire new aspects on fast and economical preparation of multifunctional hydrogels or composites, which have attractive industrial applications for biomedical materials.


Assuntos
Hidrogéis , Nanofibras , Antibacterianos/farmacologia , Catálise , Celulose , Taninos
6.
Chemosphere ; 287(Pt 4): 132436, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34610375

RESUMO

Green composite processing technology of wood fibers is an inevitable choice for global sustainable development. In this research, waste poplar powder with different particle sizes was used to prepare glue-free biocomposites with good mechanical and waterproof properties by hot-molding. The biocomposites made of larger size wood powder had better tensile strength (40.3 MPa) and the biocomposites made of smaller size wood powder had the greater bending strength (50.5 MPa). The thickness swelling rate of the biocomposites was only 4.26% after soaking in water for 24 h. The cross-section morphology of the biocomposites showed that the cell wall collapses enhanced the interfacial bonding. Chemical analysis showed that lignin repolymerized with cellulose and hemicellulose for the vitrification transition. In addition, the biocomposites with excellent mechanical properties had no formaldehyde release, which can replace the traditional density boards made of adhesives and applied as furniture materials and in line with the concept of cleaner production.


Assuntos
Celulose , Madeira , Lignina , Tecnologia , Resistência à Tração
7.
Acta Trop ; 225: 106192, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34662548

RESUMO

The treatment of cutaneous leishmaniasis (CL) in Brazil using pentavalent antimony (Sbv) is associated with a high failure rate and long time to heal. Moreover, standard Sbv treatment cures only 50-60% of the cases. In this pilot clinical trial, we evaluated the topical use of bacterial cellulose (BC) bio-curatives + Sbv in the treatment of CL caused by L. braziliensis, in Bahia, Brazil. A total of 20 patients were randomized in two groups assigned to receive either parenteral Sbv alone or parenteral Sbv plus topically applied BC bio-curatives. CL patients treated with Sbv + topical BC bio-curatives had a significantly higher cure rate at 60 days post initiation of treatment compared to CL patients treated with Sbv alone (P=0.01). At day 90 post initiation of treatment, cure rate was similar in the two groups as was overall healing time. Adverse effects or local reactions to topical BC application were not observed. This pilot trial shows that the potential use of a combined therapy consisting of topical BC bio-curatives and parenteral Sbv in favoring healing of CL lesions caused by L. braziliensis, at an early time point.


Assuntos
Antiprotozoários , Leishmania braziliensis , Leishmaniose Cutânea , Administração Tópica , Antiprotozoários/uso terapêutico , Celulose/uso terapêutico , Quimioterapia Combinada , Humanos , Leishmaniose Cutânea/tratamento farmacológico
8.
Environ Pollut ; 292(Pt A): 118283, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619177

RESUMO

A passive sampler in the soil environment is a relatively novel technique and has had quite limited applications, especially for pesticides. Oleic acid-embedded cellulose acetate membranes (OECAMs) were developed to evaluate the bioavailability of epoxiconazole (EPO) to earthworms (Eisenia fetida). The uptake of EPO by OECAMs (R2 = 0.975) and earthworms (R2 = 0.938) was compared and found to follow a two-compartment kinetic model. EPO sampling by OECAMs reached equilibrium (94%) within 2 d. OECAM could be used to determine the concentration of EPO in soil porewater. Furthermore, a significant linear relationship (R2 = 0.990) was observed between the EPO concentrations in earthworms and the OECAMs. The EPO concentrations in the porewater and OECAMs were lower in soils with a higher organic matter (OM) content. The EPO concentrations in the porewater, earthworms, and OECAMs decreased by 64.4, 49.0, and 56.1%, respectively, in the presence of 0.5% biochar, compared with the control. Furthermore, the use of OECAMs versus earthworms for soil testing also allows you to avoid factors that increase variance in organisms, such as avoidance behaviors or feeding. Therefore, OECAMs show good potential for use as a passive sampler to evaluate the bioavailability of EPO.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Disponibilidade Biológica , Celulose/análogos & derivados , Compostos de Epóxi , Ácido Oleico , Solo , Poluentes do Solo/análise , Triazóis
9.
J Environ Manage ; 301: 113850, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619590

RESUMO

Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.


Assuntos
Quitosana , Nanocompostos , Purificação da Água , Materiais Biocompatíveis , Celulose , Quitina
10.
J Colloid Interface Sci ; 606(Pt 1): 748-757, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418755

RESUMO

Although solar energy is promising for water purification, there is still a room for further improving the solar steam generation efficiency. Herein, an environmental energy-enhanced solar steam evaporator is fabricated by immersing a cellulose acetate fiber-based cigarette filter (CF) in an aqueous solution of polyvinyl alcohol (PVA) followed by freeze-drying and decorating with MXene sheets. The presence of MXene is to absorb solar light and convert solar energy to thermal energy for efficient water evaporation, while the porous PVA network generated inside the pores of the filter during the freeze-drying process accommodates the dispersed MXene sheets and interconnects the CF and MXene. Because of the constructed PVA/MXene network inside the CF porous architecture and the hydrophilic feature of both MXene and PVA, the resultant MXene/PVA modified CF (MPCF) is highly hydrophilic and competent for rapid upward transfer of water. Interestingly, in addition to the normal energy input by the incident solar light, the large-area sidewall of MPCF gains thermal energy from the environment in the forms of heat convection and heat radiation to enhance the solar steam generation efficiency, resulting in an ultrahigh water evaporation rate of 3.38 kg m-2 h-1 with an outstanding evaporation efficiency of 132.9%.


Assuntos
Vapor , Produtos do Tabaco , Celulose/análogos & derivados , Luz Solar
11.
Chemosphere ; 286(Pt 3): 131891, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34416587

RESUMO

Nanocellulose based gas barrier materials have become an increasingly important subject, since it is a widespread environmentally friendly natural polymer. Previous studies have shown that super-high gas barrier can be achieved with pure and hierarchical nanocellulose films fabricated through simple suspension or layer-by-layer technique either by itself or incorporating with other polymers or nanoparticles. Improved gas barrier properties were observed for nanocellulose-reinforced composites, where nanocellulose partially impermeable nanoparticles decreased gas permeability effectively. However, for nanocellulose-based materials, the higher gas barrier performance is jeopardized by water absorption and shape deformation under high humidity conditions which is a challenge for maintaining properties in material applications. Thus, numerous investigations have been done to solve the problem of water absorption in nanocellulose-based materials. In this literature review, gas barrier properties of pure, layer-by-layer and composite nanocellulose films are investigated. The possible theoretical gas barrier mechanisms are described, and the prospects for nanocellulose-based materials are discussed.


Assuntos
Celulose , Nanopartículas , Permeabilidade , Polímeros
12.
J Colloid Interface Sci ; 607(Pt 1): 134-144, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34500414

RESUMO

HYPOTHESIS: The synthesis and characterization of aminated nanocrystalline cellulose (ANCC), a new member of the hairy nanocellulose family, is reported. Hairy nanocelluloses consist of a crystalline rod-like body with amorphous cellulose chains ("hairs") at both ends, on which various functional groups can be accommodated. In ANCC these groups are reactive primary amine groups, which are useful for bioconjugation- and Schiff base-centered modifications. We hypothesize that a two-step oxidation-reductive amination of cellulose fibers followed by hydrothermal treatment will result in the formation of rod-like hairy ANCC. EXPERIMENTS: ANCC was prepared by converting the aldehyde groups in cellulose, introduced by a periodate oxidation, to primary amines using ammonia and sodium borohydride, followed by a hot water treatment, during which diamine modified cellulose fibers were converted to ANCC. ANCC was characterized by AFM, TEM, DLS, ELS, FTIR, NMR, XPS and conductometric titration. Antibacterial activity of ANCC was assessed by the viable cell counting method. FINDINGS: ANCC, with an amine content of 5.5 mmol g-1 is a bare nanocolloid (i.e. non-coated, without adsorbed polyelectrolytes or surfactants) which, as far as we know, has a positive charge density larger than any other bare cationic nanocolloid. It was observed that ANCC particles have a needle-like morphology with a width of ~ 5 nm and a length ~ 120 nm. DLS results proof that ANCC is hairy. Spectroscopic analysis confirmed the introduction of surface primary amine groups. ANCC showed promising bactericidal activities, against Gram-negative species due to their thinner and penetrable cell wall.


Assuntos
Celulose , Tensoativos , Aminação , Cátions , Oxirredução
13.
J Colloid Interface Sci ; 607(Pt 2): 992-1004, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34571317

RESUMO

Enhancing the interfacial dispersion and suspension stability is crucial for magnesium hydroxide (Mg(OH)2) nanomaterials in the long-term deacidification of paper-based cultural relics. However, because of the low specific surface area and the poor solvent compatibility of as-prepared large-sized Mg(OH)2, it often tends to agglomerate and settle down during the usage and storage, that is harmful for paper protection due to its unevenly deacidification and nonuniformly distribution on paper cellulose. Herein, we propose a feasible preparation of colloidal Mg(OH)2 ultrathin nanoflakes with high dispersion stability via a simple one-step surfactant-assisted strategy. The surfactant acts as both a structure-direct agent to confine the growth of Mg(OH)2 with rich active sites and a surface modifier to enhance its solvent adaptability and dispersion stability, avoiding the common fussy procedure with additional steric stabilizer. Owing to the evenly interaction with free acid species therein and the uniformly distribution on the paper fiber as alkaline reserve, the as-obtained Mg(OH)2 presents the superior paper protection performance characterized by its safer pH of 7.29 for the original aged paper (pH = 5.03) and the excellent long-term anti-acidification effect with competitive pH of 5.47 after accelerated-aging at 105 °C for 5 months. Furthermore, Mg(OH)2 nanoflakes with surfactant-modified structure also endue them as an improved flame retardant for multifunctional paper protection. The protection with Mg(OH)2 has little effect on the paper surface properties and cellulose crystallinity, in line with the principle of least intervention. This work will put forward a feasible way toward colloidal Mg(OH)2 nanoflakes with excellent paper protection performance, shedding light on the development of emerging protection materials for paper-based cultural relics.


Assuntos
Retardadores de Chama , Nanoestruturas , Celulose , Hidróxido de Magnésio , Tensoativos
14.
Chemosphere ; 286(Pt 2): 131693, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34358886

RESUMO

Based on the sustainable development practice-zero growth in chemical fertilizer application, this article used bagasse organic fertilizer and rice husk derived biochar to investigate the response of soil bacterial community in apple orchard. Aimed at realize the soil quality improvement and biomass resource recovery to contribute agricultural and environmental sustainability. The co-trophic Proteobacteria was predominant in all the treatments (29-36 %) and enriched in non-nitrifying Alphaproteobacteria (9-11 %) and ammonia oxidant Betaproteobacteria (8-10 %), especially richest in bagasse fertilizer combine biochar treated soil. In addition, bacterial community variation was assessed by alpha and beta diversity, four treatments dispersed distribution and richer abundance observed in combined apply bagasse fertilizer and biochar treatment (3909.22 observed-species) than single application (3729.88 and 3646.58 observed-species). Biochar as microbial carrier combined organic fertilizer were established synergistic interaction and favorable to organic matter availability during sustainable agriculture. Finally, integrated biochar-bagasse fertilizer was richer than single organic or biochar fertilization in improving soil bacterial diversity, notably by promoting the metabolism of copiotrophic bacteria, nutrient cycling, plant growth and disease inhibit-related bacteria.


Assuntos
Fertilizantes , Malus , Agricultura , Bactérias/genética , Celulose , Carvão Vegetal , Fertilizantes/análise , Solo , Microbiologia do Solo
15.
J Hazard Mater ; 421: 126657, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34315023

RESUMO

The study aims to prepare a novel low-cost and environmentally friendly adsorbent by using date pits (DP) impregnated with cellulose nanocrystals (CNCs) and ionic liquid (IL), named IL-CNC@DP. The batch adsorption of lithium onto IL-CNC@DP and DP were studied at different pH values, initial lithium concentrations, and temperatures. The thermodynamics constants of the adsorption process showed that the IL-CNC@DP was exothermic, did not favor a high level of disorder, and spontaneous in nature. At pH 6, there is a significant increase in the removal efficiency where it increased to 90%. This also could be explained by the fact that electrostatic attraction forces and hydrogen bonding existed between the protonated Li+ and the less protonated IL-CNC@DP adsorbent surface, which enhanced the percentage of Li+ removal. A strong inter- and intra-hydrogen bonding (O-H) stretching absorption is seen at 3311 cm-1 that occurs in cellulose components. In conclusion, the IL-CNC@DP in comparison to the DP confirmed exceptional results proving that the modification enhanced the remediation of the Li+ from water. Furthermore, the selectivity of IL-CNC@DP towards real groundwater samples isolated in Qatar depends upon the physicochemical characteristics of each element.


Assuntos
Água Subterrânea , Líquidos Iônicos , Nanopartículas , Adsorção , Celulose , Íons , Lítio
16.
J Hazard Mater ; 421: 126804, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388928

RESUMO

The simultaneous removal of organic and inorganic pollutants from water requires multifunctional adsorbents. Cryogels of carboxymethyl cellulose (CMC) and sugarcane bagasse (BG) were modified with cetyltrimethylammonium bromide (CTAB) micelles for the adsorption of methylene blue (MB), Cr(VI) ions and bisphenol A (BPA) separately, in binary or ternary aqueous mixtures. Batch adsorption studies of MB and Cr(VI) and BPA on the CMCBG-CTAB adsorbents indicated removal capacities of 100%, 70% and 95%, respectively. MB adsorbed as multilayers on the CMCBG walls by electrostatic interaction, whereas Cr(VI) and BPA adsorbed on the cationic CTAB micelles surface and hydrophobic core of CTAB micelles, respectively. The breakthrough curves obtained for pure adsorbates and their mixtures showed that the adsorption of Cr(VI) ions increased (i) ~ 3.5 times in binary mixture with BPA or in the ternary mixture, in comparison to pure Cr(VI) solution, and (ii) 1.4 times in binary mixture with MB molecules, due to synergistic effects. In the presence of Cr(VI) ions in binary or ternary mixtures, the adsorption of MB was dramatically reduced due to screening effects. The adsorption of BPA was not significantly affected by the presence of MB or Cr(VI). The adsorbents were recycled five times without significant efficiency loss.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Carboximetilcelulose Sódica , Celulose , Cetrimônio , Cromo/análise , Criogéis , Concentração de Íons de Hidrogênio , Cinética , Fenóis , Água , Poluentes Químicos da Água/análise
17.
J Hazard Mater ; 421: 126811, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388933

RESUMO

There is an urgent requirement to treat cellulose present in papermaking black liquor since it induces severe economic wastes and causes environmental pollution. We characterized cellulase activity at different temperatures and pH to seek thermo-alkali-stable cellulase-producing bacteria, a natural consortium of Serratia sp. AXJ-M and Arthrobacter sp. AXJ-M1 was used to improve the degradation of cellulose. Notably, the enzyme activities and the degradation rate of cellulose were increased by 30%-70% and 30% after co-culture, respectively. In addition, the addition of cosubstrates increased the degradation rate of cellulose beyond 30%. The thermo-alkali-stable endoglucanase (bcsZ) gene was derived from the strain AXJ-M and was cloned and expressed. The purified bcsZ displayed the maximum activity at 70 °C and pH 9. Mn2+, Ca2+, Mg2+ and Tween-20 had beneficial effects on the enzyme activity. Structurally, bcsZ potentially catalyzed the degradation of cellulose. The co-culture with ligninolytic activities significantly decreased target the parameters (cellulose 45% and COD 95%) while using the immobilized fluidized bed reactors (FBRs). Finally, toxicological tests and antioxidant enzyme activities indicated that the co-culture had a detoxifying effect on black liquor. Our study showed that Serratia sp. AXJ-M acts synergistically with Arthrobacter sp. AXJ-M1 may be potentially useful for bioremediation for black liquor.


Assuntos
Arthrobacter , Celulase , Álcalis , Arthrobacter/genética , Celulase/genética , Celulose , Serratia/genética
18.
Food Chem ; 369: 130963, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479005

RESUMO

Oleogels,gels in which the continuous liquid phase is oil, have been suggested as promising low-saturated alternatives to the conventional shortenings. In this study, we aimed to develop and optimize low saturated oleogel shortenings using ethylcellulose or ethylcellulose/hydroxypropyl methylcellulose biopolymers (as oleogelators), sunflower oil (as the base oil), and palm stearin (as the source of saturated fatty acids). Using the response surface-d-optimal method, oleogel formulations containing saturated fatty acids as low as 15.19 % could be developed. As compared to the commercial shortening samples, oleogel shortenings had much lower saturation levels (15.19-17.02 vs 47.87-58.65 %) but a comparable melting point, firmness, and rheological properties. However, oleogel samples had lower solid fat content and induction period of oxidation than commercial ones. Oleogel made using ethylcellulose/hydroxypropyl methylcellulose biopolymers contained lower saturation level, solid fat content, induction period of oxidation, and firmness but a higher melting point, as compared to that made using ethylcellulose.


Assuntos
Metilcelulose , Biopolímeros , Celulose/análogos & derivados , Derivados da Hipromelose , Compostos Orgânicos
19.
J Colloid Interface Sci ; 605: 193-203, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34325341

RESUMO

High-performance electromagnetic (EM) wave absorption and shielding materials integrating with flexibility, air permeability, and anti-fatigue characteristics are of great potential in portable and wearable electronics. These materials usually prepared by depositing metal or alloy coatings on fabrics. However, the shortcomings of heavy weight and easy corrosion hamper its application. In this work, the cellulose nanofiber (CF) fabric was prepared by electrospinning technology. Then, conductive polyaniline (PANI) was deposited on the CF surface via a facile in-situ polymerization process. The interweaving cellulose/polyaniline nanofiber (CPF) composite constructs a conductive network, and the electrical conductivity can be adjusted by polymerization time. Benefiting from optimal impedance matching, strong conductive loss, as well as interfacial polarization, the CPF possesses excellent EM absorption performance. The minimum reflection loss (RLmin) value is -49.24 dB, and the effective absorption bandwidth (RL < -10 dB, fe) reaches 6.90 GHz. Furthermore, the CPF also exhibits outstanding electromagnetic interference (EMI) shielding capability with shielding efficiency (SE) of 34.93 dB in the whole X band. Most importantly, the lightweight CPF fabrics have the merits of mechanical flexibility, breathability and wash resistance, which is highly applicable for wearable devices.


Assuntos
Celulose , Micro-Ondas , Compostos de Anilina , Têxteis
20.
Food Chem ; 372: 131346, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818748

RESUMO

The symbiotic community of bacteria and yeast (SCOBY) of Kombucha beverage produces a floating film composed of bacterial cellulose, a distinctive biobased material. In this work, Kombucha fermentation was carried out in six different herbal infusions, where SCOBY was able to synthesise cellulosic films. Infusions of black and green tea, yerba mate, lavender, oregano and fennel added with sucrose (100 g/l) were used as culture media. In all cultures, film production resulted in a maximum after 21 days. Yield conversion, process productivity and antioxidant activity were quantified. Macroscopic and microscopic features of films were determined based on electronic microscopy, calorimetric and mechanical properties and hydration behaviour. Native films from yerba mate had a remarkable antioxidant activity of 93 ± 4% of radical inhibition due to plant polyphenols, which could prevent food oxidation. Results revealed that films retained natural bioactive substances preserving important physicochemical properties, essential for developing active materials.


Assuntos
Chá de Kombucha , Bactérias , Celulose , Fermentação , Chá de Kombucha/análise , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...