Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.708
Filtrar
1.
Braz. j. biol ; 84: e258275, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364498

RESUMO

Variety assortment enhancement is a normal task that involves enhancing the assortment's quality and upgrading varieties. The findings of a research of imported grape varieties in the southeast of Kazakhstan, namely in the Almaty region's bottom-mountain zone, are presented in this article. The onset and conclusion of the main phenological phases of a grape plant throughout the vegetative period were directly influenced by the climatic and meteorological conditions of this district. In comparison to the recognized variety Almaty early-maturing, it has been proven that types Priusadebny, Iyulsky, and Kuibyshevsk early-maturing have a high degree of eyes wintering buds and may provide a high-quality crop in this location.


O aprimoramento da variedade é uma tarefa normal que envolve o aprimoramento da qualidade da variedade e o aprimoramento das variedades. As descobertas de uma pesquisa de variedades de uvas importadas no sudeste do Cazaquistão, ou seja, na zona de base da montanha da região de Almaty, são apresentadas neste artigo. O início e a conclusão das principais fases fenológicas de uma videira ao longo do período vegetativo foram diretamente influenciados pelas condições climáticas e meteorológicas deste distrito. Em comparação com a variedade reconhecida Almaty de maturação precoce, foi comprovado que os tipos Priusadebny, Iyulsky e Kuibyshevsk de maturação precoce têm um alto grau de gomos de inverno de olhos e podem fornecer uma safra de alta qualidade neste local.


Assuntos
Mudança Climática , Cultivos Agrícolas , Vitis , Cazaquistão
2.
Braz. j. biol ; 84: e253106, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345544

RESUMO

Abstract This study aimed to develop and evaluate data driven models for prediction of forest yield under different climate change scenarios in the Gallies forest division of district Abbottabad, Pakistan. The Random Forest (RF) and Kernel Ridge Regression (KRR) models were developed and evaluated using yield data of two species (Blue pine and Silver fir) as an objective variable and climate data (temperature, humidity, rainfall and wind speed) as predictive variables. Prediction accuracy of both the models were assessed by means of root mean squared error (RMSE), mean absolute error (MAE), correlation coefficient (r), relative root mean squared error (RRMSE), Legates-McCabe's (LM), Willmott's index (WI) and Nash-Sutcliffe (NSE) metrics. Overall, the RF model outperformed the KRR model due to its higher accuracy in forecasting of forest yield. The study strongly recommends that RF model should be applied in other regions of the country for prediction of forest growth and yield, which may help in the management and future planning of forest productivity in Pakistan.


Resumo Este estudo teve como objetivo desenvolver e avaliar modelos baseados em dados para previsão da produção florestal em diferentes cenários de mudanças climáticas na divisão florestal Gallies do distrito de Abbottabad, Paquistão. Os modelos Random Forest (RF) e Kernel Ridge Regression (KRR) foram desenvolvidos e avaliados usando dados de produção de duas espécies (pinheiro-azul e abeto-prateado) como uma variável objetiva e dados climáticos (temperatura, umidade, precipitação e velocidade do vento) como preditivos variáveis. A precisão da previsão de ambos os modelos foi avaliada por meio de erro quadrático médio (RMSE), erro absoluto médio (MAE), coeficiente de correlação (r), erro quadrático médio relativo (RRMSE), Legates-McCabe's (LM), índice de Willmott (WI) e métricas Nash-Sutcliffe (NSE). No geral, o modelo RF superou o modelo KRR devido à sua maior precisão na previsão do rendimento florestal. O estudo recomenda fortemente que o modelo RF seja aplicado em outras regiões do país para previsão do crescimento e produtividade florestal, o que pode ajudar no manejo e planejamento futuro da produtividade florestal no Paquistão.


Assuntos
Mudança Climática , Paquistão
3.
Acad Med ; 98(2): 171-174, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696296

RESUMO

The looming threat of climate change urgently calls for reimagining unsustainable systems and practices, including academia's culture of emissions-intensive travel. Given that medical educators are uniquely invested in the future of the trainees they represent, this reimagination can and should begin with medical education. Making significant reforms to the application process has historically been challenging, but the COVID-19 pandemic catalyzed an abrupt shift from in-person to virtual interviews for medical school, residency, and fellowship. Programs and applicants alike demonstrated resilience, innovation, and satisfaction in adapting to virtual interviews during 2 full application cycles. This restructuring has prompted consideration of the necessity of environmentally costly, expensive, and time-consuming cross-country travel for single-day interviews. However, evolving conversations about the future of medical training interviews have not prioritized environmental impact, despite the sizeable historical emissions generated by interview-related travel and the incompatibility between ecological damage and population health. Beyond environmental impact, virtual interviews are more equitable, with significantly fewer financial costs, and they are more efficient, requiring less time off from school or work. Many concerns associated with virtual interviews, including interview inflation and limited applicant exposure to programs and their surrounding areas, can be addressed via creative and structural solutions, such as interview caps and in-person second-look programs. The medical training interview process underwent a forced restructuring due to the unprecedented disruption caused by COVID-19. This moment presents a strategic inflection point for medical education leadership to build on the momentum and permanently transform the process by focusing on sustainability and equity.


Assuntos
COVID-19 , Educação Médica , Internato e Residência , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Mudança Climática , Comunicação
4.
Artigo em Inglês | MEDLINE | ID: mdl-36673946

RESUMO

Climate Change (CC) imposes important global health risks, including on mental health (MH). They are related mostly to psychological suffering caused by climate-related events and to the heat-vulnerability caused by psychiatric disorders. This growing burden may press MH services worldwide, increasing demand on public and private systems in low-, middle-, and high-income countries. According to PRISMA, two independent reviewers searched four databases for papers published before May 2022 that associated climate-related events with healthcare demand for psychiatric conditions. Of the 7432 papers retrieved, we included 105. Only 29 were carried out in low- and middle-income countries. Twelve related the admission numbers to (i) extreme events, while 93 to (ii) meteorological factors-mostly heat. Emergency visits and hospitalizations were significantly higher during hot periods for MH disorders, especially until lag 5-7. Extreme events also caused more consultations. Suicide (completed or attempted), substance misuse, schizophrenia, mood, organic and neurotic disorders, and mortality were strongly affected by CC. This high healthcare demand is evidence of the burden patients may undergo. In addition, public and private services may face a shortage of financial and human resources. Finally, the increased use of healthcare facilities, in turn, intensifies greenhouse gas emissions, representing a self-enforcing cycle for CC. Further research is needed to better clarify how extreme events affect MH services and, in addition, if services in low- and middle-income countries are more intensely demanded by CC, as compared to richer countries.


Assuntos
Serviços de Saúde Mental , Esquizofrenia , Suicídio , Humanos , Mudança Climática , Hospitalização
5.
Water Res ; 230: 119504, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621275

RESUMO

The evolution of the climate in the future will probably lead to an increase in extreme rainfall events, particularly in the Mediterranean regions. This change in rainfall patterns will have impacts on combined sewer systems operation with a possible increase of spilled flows, leading to an increase of untreated water volumes released to the receiving water. Due to the impact of overflows on the water cycle, local authorities managing combined sewer systems are wondering about the extent of these changes and the possibility of taking it into account in stormwater management structure design. To do this, rainfall data with a fine time step are required to better master the shape of the hyetographs that are crucial to get a relevant rainfall/runoff relationship in an urban environment. However, there are currently no simulations of future rainfall series available at a time step compatible with the needs in urban drainage field. In this work, future rainfall time series with a fine time step are elaborated with the aim to be used in urban hydrology. The proposed approach is based on simulations results from five regional climate models in the framework of the Euro-Cordex program. It consists in a spatial downscaling step followed by a temporal disaggregation. The rainfall time series obtained are then used as input for a calibrated and validated hydrological model to investigate the evolution of annual CSO volumes and frequencies by 2100. The results show an increase of annual spilled volumes between 13% and 52% according to the considered climate model. This increase will most likely be a problem regarding compliance of sewer networks in line with the water framework directive, particularly the current French regulations. No clear trends were observed on the CSO frequencies. If there is a consensus for all the carried-out simulations to conclude that the CSO volumes will increase, we must remember that actual regional climate models suffer from limited spatial and temporal resolution and don't explicitly solve convection processes. Due to this point uncertainty concerning the evolution rate remains important particularly for intense rainfall episodes. New generations of climate models are needed to accurately predict intense episodes.


Assuntos
Mudança Climática , Ciclo Hidrológico , Água , Movimentos da Água , Fatores de Tempo , Chuva , Esgotos
7.
Sci Rep ; 13(1): 289, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609587

RESUMO

Recovery of depleted fish stocks is an important goal for fisheries management and crucial to sustain important ecosystem functions as well as global food security. Successful recovery requires adjusting fishing mortality to stock productivity but can be prevented or inhibited by additional anthropogenic impacts such as climate change. Despite management measures to recover fish stocks being in place in legislations such as the European Union´s Common Fisheries Policy (CFP), recovery can be hindered by the occurrence of regime shift dynamics. Such non-linear discontinuous dynamics imply tipping points and bear the characteristics of abrupt change, hysteresis and non-stationary functional relationships. We here used the recent reform of the CFP as a natural experiment to investigate the existence of regime shift dynamics and its potential effects on the recovery potential on six strongly fished or even depleted commercial fish stocks in the North Sea. Using a set of statistical approaches we show that regime shift dynamics exist in all six fish stocks as a response to changes in fishing pressure and temperature. Our results furthermore demonstrate the context-dependence of such dynamics and hence the ability of management measures to rebuild depleted fish stocks, leading to either failed recovery or positive tipping.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Pesqueiros , Mudança Climática , Mar do Norte , Dinâmica Populacional , Peixes
8.
Sci Rep ; 13(1): 208, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604463

RESUMO

Tundra plants are widely considered to be constrained by cool growing conditions and short growing seasons. Furthermore, phenological development is generally predicted by daily heat sums calculated as growing degree days. Analyzing over a decade of seasonal flower counts of 23 plant species distributed across four plant communities, together with hourly canopy-temperature records, we show that the timing of flowering of many tundra plants are best predicted by a modified growing degree day model with a maximum temperature threshold. Threshold maximums are commonly employed in agriculture, but until recently have not been considered for natural ecosystems and to our knowledge have not been used for tundra plants. Estimated maximum temperature thresholds were found to be within the range of daily temperatures commonly experienced for many species, particularly for plants at the colder, high Arctic study site. These findings provide an explanation for why passive experimental warming-where moderate changes in mean daily temperatures are accompanied by larger changes in daily maximum temperatures-generally shifts plant phenology less than ambient warming. Our results also suggest that many plants adapted to extreme cold environments may have limits to their thermal responsiveness.


Assuntos
Ecossistema , Temperatura Alta , Temperatura , Mudança Climática , Regiões Árticas , Estações do Ano , Tundra , Plantas
9.
Sci Rep ; 13(1): 258, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604530

RESUMO

For reef framework to persist, calcium carbonate production by corals and other calcifiers needs to outpace loss due to physical, chemical, and biological erosion. This balance is both delicate and dynamic and is currently threatened by the effects of ocean warming and acidification. Although the protection and recovery of ecosystem functions are at the center of most restoration and conservation programs, decision makers are limited by the lack of predictive tools to forecast habitat persistence under different emission scenarios. To address this, we developed a modelling approach, based on carbonate budgets, that ties species-specific responses to site-specific global change using the latest generation of climate models projections (CMIP6). We applied this model to Cheeca Rocks, an outlier in the Florida Keys in terms of high coral cover, and explored the outcomes of restoration targets scheduled in the coming 20 years at this site by the Mission: Iconic Reefs restoration initiative. Additionally, we examined the potential effects of coral thermal adaptation by increasing the bleaching threshold by 0.25, 0.5, 1 and 2˚C. Regardless of coral adaptative capacity or restoration, net carbonate production at Cheeca Rocks declines heavily once the threshold for the onset of annual severe bleaching is reached. The switch from net accretion to net erosion, however, is significantly delayed by mitigation and adaptation. The maintenance of framework accretion until 2100 and beyond is possible under a decreased emission scenario coupled with thermal adaptation above 0.5˚C. Although restoration initiatives increase reef accretion estimates, Cheeca Rocks will only be able to keep pace with future sea-level rise in a world where anthropogenic CO2 emissions are reduced. Present results, however, attest to the potential of restoration interventions combined with increases in coral thermal tolerance to delay the onset of mass bleaching mortalities, possibly in time for a low-carbon economy to be implemented and complementary mitigation measures to become effective.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema , Florida , Carbonatos , Mudança Climática
10.
Sci Rep ; 13(1): 230, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604582

RESUMO

Simulation of future climate changes, especially temperature and rainfall, is critical for water resource management, disaster mitigation, and agricultural development. Based on the category-wise indicator method, two preferred Global Climate Models (GCMs) for the Ishikari River basin (IRB), the socio-economic center of Hokkaido, Japan, were examined from the newly released Coupled Model Intercomparison Project Phase 6 (CMIP6). Climatic variables (maximum/minimum temperature and precipitation) were projected by the Statistical DownScaling Model (SDSM) under all shared socioeconomic pathway-representative concentration pathway (SSP-RCP) scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, SSP5-3.4OS, and SSP5-8.5) in two phases: 2040-2069 (2040s) and 2070-2099 (2070s), with the period of 1985-2014 as the baseline. Predictors of SDSM were derived from CMIP6 GCMs and the reanalysis dataset NOAA-CIRES-DOE 20th Century Reanalysis V3 (20CRv3). Results showed that CMIP6 GCMs had a significant correlation with temperature measurements, but could not represent precipitation features in the IRB. The constructed SDSM could capture the characteristics of temperature and precipitation during the calibration (1985-1999) and validation (2000-2014) phases, respectively. The selected GCMs (MIROC6 and MRI-ESM-2.0) generated higher temperature and less rainfall in the forthcoming phases. The SSP-RCP scenarios had an apparent influence on temperature and precipitation. High-emission scenarios (i.e., SSP5-8.5) would project a higher temperature and lower rainfall than the low-emission scenarios (e.g., SSP1-1.9). Spatial-temporal analysis indicated that the northern part of the IRB is more likely to become warmer with heavier precipitation than the southern part in the future. Higher temperature and lower rainfall were projected throughout the late twenty-first century (2070s) than the mid-century (2040s) in the IRB. The findings of this study could be further used to predict the hydrological cycle and assess the ecosystem's sustainability.


Assuntos
Modelos Climáticos , Ecossistema , Mudança Climática , Japão , Agricultura
11.
PeerJ ; 11: e14527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655044

RESUMO

The Montseny massif shelters the southernmost western populations of common frogs (Rana temporaria) that live in a Mediterranean climate, one which poses a challenge for the species' persistence in a scenario of rising temperatures. We evaluated the effect of climate change at three levels. First, we analysed if there has been an advancement in the onset of spawning period due to the increase in temperatures. Second, we analysed the impact of climatic variables on the onset of the spawning period and, third, how the distribution of this species could vary according to the predictions with regard to rising temperatures for the end of this century. From 2009 to 2021, we found there had been an increase in temperatures of 0.439 °C/decade, more than the 0.1 °C indicated by estimates for the second half of the previous century. We found an advancement in the onset of the reproduction process of 26 days/decade for the period 2009-2022, a change that has been even more marked during the last eight years, when data were annually recorded. Minimum temperatures and the absence of frost days in the week prior to the onset of the spawning period determine the start of reproduction. Predictions on habitat availability for spawning provided by climatic niche analysis for the period 2021-2100 show a potential contraction of the species range in the Montseny and, remarkably, much isolation from the neighbouring populations.


Assuntos
Mudança Climática , Ecossistema , Animais , Rana temporaria , Temperatura , Reprodução
13.
Proc Biol Sci ; 290(1991): 20222262, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651053

RESUMO

Climate change increases the frequency and intensifies the magnitude and duration of extreme events in the sea, particularly so in coastal habitats. However, the interplay of multiple extremes and the consequences for species and ecosystems remain unknown. We experimentally tested the impacts of summer heatwaves of differing intensities and durations, and a subsequent upwelling event on a temperate keystone predator, the starfish Asterias rubens. We recorded mussel consumption throughout the experiment and assessed activity and growth at strategically chosen time points. The upwelling event overall impaired starfish feeding and activity, likely driven by the acidification and low oxygen concentrations in the upwelled seawater. Prior exposure to a present-day heatwave (+5°C above climatology) alleviated upwelling-induced stress, indicating cross-stress tolerance. Heatwaves of present-day intensity decreased starfish feeding and growth. While the imposed heatwaves of limited duration (9 days) caused slight impacts but allowed for recovery, the prolonged (13 days) heatwave impaired overall growth. Projected future heatwaves (+8°C above climatology) caused 100% mortality of starfish. Our findings indicate a positive ecological memory imposed by successive stress events. Yet, starfish populations may still suffer extensive mortality during intensified end-of-century heatwave conditions.


Assuntos
Mudança Climática , Ecossistema , Animais , Água do Mar , Estrelas-do-Mar , Estações do Ano , Compostos de Benzalcônio
17.
Am J Public Health ; 113(2): 185-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652648

RESUMO

Despite broad agreement that prioritizing health equity is critical to minimizing the health impacts of climate change, there is a lack of clarity about what advancing health equity means in practice. More than reducing health disparities; it also implies engaging and empowering marginalized communities. We propose a typology of health equity processes, focused on building community agency and power, and then apply it to a nonrepresentative, purposive sample of 48 community-based climate actions (CBCAs) selected from lists of projects funded by foundations and state climate programs and from other sources. All CBCAs were in the United States, community-based, active since 2015 or more recently, engaged in climate mitigation or adaptation, and stated health equity aims. Two team members reviewed project reports to assess the engagement of vulnerable and marginalized populations, agency-building, and transformation of community power relationships. Although 33 CBCAs reported efforts to build community agency, only 19 reported efforts to increase community power. City-led CBCAs showed less emphasis on agency-building and power transformation. This typology can support efforts to advance health equity by providing concrete indicators to diagnose gaps and track progress. (Am J Public Health. 2023;113(2):185-193. https://doi.org/10.2105/AJPH.2022.307143).


Assuntos
Equidade em Saúde , Humanos , Estados Unidos , Participação da Comunidade , Cidades , Mudança Climática
18.
Proc Natl Acad Sci U S A ; 120(4): e2120869120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656855

RESUMO

Observed range shifts of numerous species support predictions of climate change models that species will shift their distribution northward into the Arctic and sub-Arctic seas due to ocean warming. However, how this is affecting overall species richness is unclear. Here we analyze 20,670 scientific research trawls from the North Sea to the Arctic Ocean collected from 1994 to 2020, including 193 fish species. We found that demersal fish species richness at the local scale has doubled in some Arctic regions, including the Barents Sea, and increased at a lower rate at adjacent regions in the last three decades, followed by an increase in species richness and turnover at a regional scale. These changes in biodiversity correlated with an increase in sea bottom temperature. Within the study area, Arctic species' probability of occurrence generally declined over time. However, the increase in species from southern latitudes, together with an increase in some Arctic species, ultimately led to an enrichment of the Arctic and sub-Arctic marine fauna due to increasing water temperature consistent with climate change.


Assuntos
Biodiversidade , Peixes , Animais , Regiões Árticas , Oceanos e Mares , Temperatura , Mudança Climática , Ecossistema , Oceano Atlântico
19.
Sci Rep ; 13(1): 1057, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658205

RESUMO

The agriculture sector provides the majority of food supplies, ensures food security, and promotes sustainable development. Due to recent climate changes as well as trends in human population growth and environmental degradation, the need for timely agricultural information continues to rise. This study analyzes and predicts the impacts of climate change on food security (FS). For 2002-2021, Landsat, MODIS satellite images and predisposing variables (land surface temperature (LST), evapotranspiration, precipitation, sunny days, cloud ratio, soil salinity, soil moisture, groundwater quality, soil types, digital elevation model, slope, and aspect) were used. First, we used a deep learning convolutional neural network (DL-CNN) based on the Google Earth Engine (GEE) to detect agricultural land (AL). A remote sensing-based approach combined with the analytical network process (ANP) model was used to identify frost-affected areas. We then analyzed the relationship between climatic, geospatial, and topographical variables and AL and frost-affected areas. We found negative correlations of - 0.80, - 0.58, - 0.43, and - 0.45 between AL and LST, evapotranspiration, cloud ratio, and soil salinity, respectively. There is a positive correlation between AL and precipitation, sunny days, soil moisture, and groundwater quality of 0.39, 0.25, 0.21, and 0.77, respectively. The correlation between frost-affected areas and LST, evapotranspiration, cloud ratio, elevation, slope, and aspect are 0.55, 0.40, 0.52, 0.35, 0.45, and 0.39. Frost-affected areas have negative correlations with precipitation, sunny day, and soil moisture of - 0.68, - 0.23, and - 0.38, respectively. Our findings show that the increase in LST, evapotranspiration, cloud ratio, and soil salinity is associated with the decrease in AL. Additionally, AL decreases with a decreasing in precipitation, sunny days, soil moisture, and groundwater quality. It was also found that as LST, evapotranspiration, cloud ratio, elevation, slope, and aspect increase, frost-affected areas increase as well. Furthermore, frost-affected areas increase when precipitation, sunny days, and soil moisture decrease. Finally, we predicted the FS threat for 2030, 2040, 2050, and 2060 using the CA-Markov method. According to the results, the AL will decrease by 0.36% from 2030 to 2060. Between 2030 and 2060, however, the area with very high frost-affected will increase by about 10.64%. In sum, this study accentuates the critical impacts of climate change on the FS in the region. Our findings and proposed methods could be helpful for researchers to model and quantify the climate change impacts on the FS in different regions and periods.


Assuntos
Mudança Climática , Tecnologia de Sensoriamento Remoto , Humanos , Solo , Agricultura/métodos , Segurança Alimentar
20.
Rev. esp. salud pública ; 97: e202301001-e202301001, Ene. 2023. graf, tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-214650

RESUMO

FUNDAMENTOS: El uso de anestésicos volátiles juega un papel importante en la producción de gases de efecto invernadero y otros contaminantes ambientales que afectan negativamente a la salud mundial. Se ha demostrado que los programas para reducir los contaminantes de la anestesia en el medio ambiente son eficaces y también reducen los costes. Por este motivo nos planteamos como objetivo implementar un Programa de Emisiones Zero para producir cero emisiones de dióxido de carbono derivados de los gases anestésicos utilizados en el quirófano, como recomienda el Pacto Verde de la Unión Europea, para 2030 y ser climáticamente neutros en 2050, manteniendo la satisfacción y los resultados clínicos actuales. MÉTODOS: Se implementó un Programa de Emisiones Zero dentro de los programas Zero de seguridad del Hospital Universitario de Cruces (Barakaldo) con la finalidad de producir cero emisiones de dióxido de carbono derivado de los gases anestésicos utilizados en los quirófanos. Se determinó la contribución de los gases anestésicos a la producción de dióxido de carbono previo y posterior a la implementación del programa. El análisis de los datos se llevó a cabo de forma descriptiva para analizar la efectividad del programa. RESULTADOS: La implementación de un Programa de Emisiones de Zero nos permitió conseguir una disminución de las emisiones a cero. CONCLUSIONES: Los anestesiólogos debemos comprender que minimizar nuestro impacto nocivo en la sostenibilidad de la salud ambiental no es solo deseable, sino éticamente necesario. Una de las formas de contribuir con esta responsabilidad ética es con la implementación de Programas de Emisiones Zero que son eficaces en la reducción a cero de estas emisiones con lo que mejoraremos nuestro impacto en la salud del planeta.(AU)


BACKGROUND: The use of volatile anesthetics plays an important role in the production of greenhouse gases and other environmental pollutants that negatively affect global health. Programs to reduce anesthesia contaminants have been shown to be effective and reduce costs. For this reason, we conducted a study to implementing a Zero Emissions Program for zero carbon dioxide emissions derived from anesthetic gases used in the operating room, as recommended by the Green Deal of the European Union by 2030 and be climate neutral in 2050, maintaining satisfaction and current clinical results. METHODS: A Zero Emissions Program was implemented within the Zero safety programs of the Cruces University Hospital in order to produce zero emissions of carbon dioxide derived from the anesthetic gases used in the operating rooms. The contribution of anesthetic gases to carbon dioxide production before and after implementation of program was determined. Data analysis was conducted descriptively to analyze program effectiveness. RESULTS: The implementation of a Zero Emissions Program allowed us to achieve a reduction in emissions to zero. CONCLUSIONS: Anesthesiologists must understand that minimizing our harmful impact on environmental health sustainability is not only desirable, but ethically necessary. A way to contribute to this ethical responsibility is Zero Emissions Programs which are effective in reducing emissions to zero, probably improving our impact on planet health.(AU)


Assuntos
Humanos , Hospitais Universitários , Anestésicos , Poluentes Gasosos , Mudança Climática , Saúde Pública , Saúde Global
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...