RESUMO
Cetacean poxviruses (CePVs) cause 'tattoo' skin lesions in small and large cetaceans worldwide. Although the disease has been known for decades, genomic data for these poxviruses are very limited, with the exception of CePV-Tursiops aduncus, which was completely sequenced in 2020. Using a newly developed pan-pox real-time PCR system targeting a conserved nucleotide sequence located within the Monkeypox virus D6R gene, we rapidly detected the CePV genome in typical skin lesions collected from two Peruvian common bottlenose dolphins (Tursiops truncatus) by-caught off Peru in 1993. Phylogenetic analyses based on the sequencing of the DNA polymerase and DNA topoisomerase genes showed that the two viruses are very closely related to each other, although the dolphins they infected pertained to different ecotypes. The poxviruses described in this study belong to CePV-1, a heterogeneous clade that infects many species of dolphins (Delphinidae) and porpoises (Phocoenidae). Among this clade, the T. truncatus CePVs from Peru were more related to the viruses infecting Delphinidae than to those detected in Phocoenidae. This is the first time that CePVs were identified in free-ranging odontocetes from the Eastern Pacific, surprisingly in 30-year-old samples. These data further suggest a close and long-standing pathogen-host co-evolution, resulting in different lineages of CePVs.
Assuntos
Golfinho Nariz-de-Garrafa , Chordopoxvirinae , Toninhas , Poxviridae , Animais , Golfinho Nariz-de-Garrafa/genética , Cetáceos , Chordopoxvirinae/genética , DNA Topoisomerases/genética , DNA Polimerase Dirigida por DNA/genética , Peru/epidemiologia , Filogenia , Toninhas/genética , Poxviridae/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The presence of tattoo skin disease (TSD) was examined in 1392 free-ranging and dead odontocetes comprising 17 species from the Americas, Europe, South Africa, New Zealand and Greenland. We investigated whether TSD prevalence varied with sex, age and health status. TSD was encountered in cetaceans from the Pacific and Atlantic Oceans as well as in those from the North, Mediterranean and Tasman Seas. No clear patterns related to geography and host phylogeny were detected, except that prevalence of TSD in juveniles and, in 2 species (dusky dolphin Lagenorhynchus obscurus and Burmeister's porpoise Phocoena spinipinnis), in adults was remarkably high in samples from Peru. Environmental factors and virus properties may be responsible for this finding. Sex did not significantly influence TSD prevalence except in the case of Peruvian P. spinipinnis. Generally, there was a pattern of TSD increase in juveniles compared to calves, attributed to the loss of maternal immunity. Also, in most samples, juveniles seemed to have a higher probability of suffering TSD than adults, presumably because more adults had acquired active immunity following infection. This holo-endemic pattern was inverted in poor health short-beaked common dolphins Delphinus delphis and harbour porpoises Phocoena phocoena from the British Isles, and in Chilean dolphins Cephalorhynchus eutropia from Patagonia, where adults showed a higher TSD prevalence than juveniles. Very large tattoos were seen in some adult odontocetes from the SE Pacific, NE Atlantic and Portugal's Sado Estuary, which suggest impaired immune response. The epidemiological pattern of TSD may be an indicator of cetacean population health.