Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.122
Filtrar
1.
J Public Health Manag Pract ; 29(2): 250-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715597

RESUMO

OBJECTIVES: The aim of this study was to assess the proportions and likelihood of children who receive confirmatory and follow-up blood lead testing within the recommended time frames after an initial capillary elevated blood lead level (EBLL) and confirmed EBLL, respectively, by individual and neighborhood-level sociodemographic characteristics. DESIGN: We linked and used blood testing and sociodemographic characteristics data from a Pennsylvania birth cohort including children born between 2017 and 2018. Generalized linear mixed models were constructed to examine the associations between sociodemographic factors and having recommended confirmatory and follow-up testing. SETTING: A population-based, retrospective cohort study. PARTICIPANTS: In this birth cohort, children who underwent at least 1 BLL test were followed up to 24 months of age. Children with a first unconfirmed (n = 6259) and confirmed BLL (n = 4213) ≥ 5 µg/dL were included in the analysis. MAIN OUTCOME MEASURE: Children had confirmatory and follow-up testing within the recommended time frames. RESULTS: Of the children with unconfirmed and confirmed EBLLs, 3555 (56.8%) and 1298 (30.8%) received confirmatory and follow-up testing, respectively. The proportions of the 2 outcome measures were lower among children experiencing certain sociodemographic disadvantages. In the univariate analyses, lower initial BLLs, older age, non-Hispanic Blacks, lower maternal educational levels, maternal Medicaid, The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) enrollment, maternal smoking, and higher quartiles of neighborhood poverty and old housing were associated with lower odds of having confirmatory and follow-up testing. However, in multivariate models, children with lower initial BLLs, older age, maternal smoking, and non-Hispanic Blacks were significantly less likely to have confirmatory and follow-up testing. CONCLUSIONS: There were deficiencies in having recommended confirmatory and follow-up blood lead testing among children, especially those with sociodemographic disadvantages. Public health agencies and stakeholders should finetune policies to improve follow-up testing in conjunction with primary and secondary preventions for early detection and reduction of lead exposure among targeted children at risk of lead poisoning.


Assuntos
Intoxicação por Chumbo , Chumbo , Lactente , Estados Unidos , Humanos , Criança , Feminino , Estudos Retrospectivos , Seguimentos , Intoxicação por Chumbo/diagnóstico , Intoxicação por Chumbo/epidemiologia , Características da Vizinhança
2.
Sci Total Environ ; 865: 161281, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587701

RESUMO

Lead (Pb) pollution has been one of the major environmental problems of worldwide significance. It is a latent factor for several fatal illnesses, whereas the exposure to lead in early childhood causes a lifetime IQ loss. The social cost is the concept to aggregate various adverse effects in a single monetary unit, which is useful in describing the pollution problem and provides foundation for the design of interventions. However, the assessment of the social cost is scarce for developing countries. In this study, we focus on the lead pollution problem of a former mining town, Kabwe, Zambia, where mining wastes abandoned near residential areas has caused a critical pollution problem. We first investigated the social cost of lead pollution that future generations born in 2025-2049 would incur in their lifetime. As the channels of the social cost, we considered the lost income from the IQ loss and the lost lives from lead-related mortality. The results showed that the social cost would amount to 224-593 million USD (discounted to the present value). Our results can be considered conservative, lower bound estimates because we focused only on well-identified effects of lead, but the social cost was still substantial. Then we examined several engineering remediation measures. The results showed that the social cost can be reduced (the benefits of remediations) more than the costs of implementing remediation measures. This study is the first to investigate the social cost of mining-related lead pollution problem in developing countries. Our interdisciplinary approach utilises the micro-level economic, health and pollution data and integrates the techniques in economics, toxicology and engineering.


Assuntos
Chumbo , Poluentes do Solo , Pré-Escolar , Humanos , Chumbo/análise , Exposição Ambiental/análise , Zâmbia , Poluentes do Solo/análise , Poluição Ambiental
3.
Sci Total Environ ; 865: 161284, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587703

RESUMO

Globally, soil contamination with arsenic (As) and lead (Pb) has become a severe environmental issue. Herein, a pot experiment was conducted using pak choi (Brassica chinensis L.) to investigate the effects of biochars derived from crawfish (Procambarus clarkia) shells (CSB) and Chinese banyan (Ficus microcarpa) branches (CBB) on the phytoavailability of As and Pb, and bacterial community composition in soils. Our results showed that the application of CSB and CBB decreased the concentrations of DTPA-extractable Pb in soils ranging from 26.8 % to 28.8 %, whereas CSB increased the concentration of NH4H2PO4-extractable As in soils, compared to the control. Application of both biochars reduced the uptake of As and Pb in the edible part of pak choi. In addition, application of CBB significantly (P < 0.05) increased the activities of α-glucosidase, ß-glucosidase, cellobiohydrolase, and acid phosphomonoesterase by 55.0 %, 54.4 %, 195.1 %, and 76.7 %, respectively, compared to the control. High-throughput sequencing analysis revealed that the predominant bacteria at the phyla level in both biochar-treated soils were Firmicutes, Proteobacteria, and Actinobacteriota. Redundancy and correlation analyses showed that the changes in bacterial community composition could be related to soil organic carbon content, As availability, and nutrient availability in soils. Overall, the Chinese banyan branch biochar was more suitable than the crawfish shell biochar as a potential amendment for the remediation of soils co-contaminated with As and Pb.


Assuntos
Arsênio , Ficus , Poluentes do Solo , Animais , Humanos , Arsênio/análise , Chumbo/análise , Carbono , Astacoidea , Solo , Poluentes do Solo/análise , Carvão Vegetal , Bactérias
4.
Environ Monit Assess ; 195(2): 265, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600046

RESUMO

The present study was intended for assessing the contamination level of various heavy metals in surface soil and groundwater around the automobile workshops situated at different locations in the Kollam District of Kerala state, India. The procured soil and groundwater samples were analyzed for cadmium, zinc, iron, lead, nickel, chromium, copper, manganese, and arsenic using atomic absorption spectrophotometer by following standard procedures. The contamination level of these metals was assessed using the pollution indices like enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), and pollution load index (PLI). The results revealed that the concentrations of all analyzed metals in the surface soils of the automobile workshops were higher than the control. On the contrary, the concentration of no heavy metal in the groundwater was either equal to or higher than the limit prescribed by WHO. However, the concentration levels of Fe, Pb, Cu, and Zn were either equal to or higher than the control values. Based on the Igeo, CF, and EF, it was found that the contamination intensity of the heavy metals in soil decreased in the following order: Fe > Pb > Cd > As > Cr > Zn > Cu > Ni > Mn. From the results of PLI, it was interpreted that the sampling sites S2, S4, and S5 were highly polluted. Non-contamination of underground water from the age-old workshops is the uniqueness of the present study against the other studies, which were completed in alluvial formations with inverse results. In the studied region, the groundwater is stored in the hard rock formations and its hydraulics remains different from alluvial aquifers.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes do Solo , Solo , Chumbo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Medição de Risco
5.
BMC Public Health ; 23(1): 31, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604667

RESUMO

BACKGROUND: There are few thorough studies on the extent and inter-element relationships of heavy metal contamination in printing factory workers, especially in developing countries. The objective of this study was to determine the levels of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), mercury (Hg), and manganese (Mn), in urine and scalp hair of printing industry workers, and assess inter-element correlations. METHODS: We examined a total of 85 urine samples and 85 scalp hair samples (3 cm hair segments taken from near the scalp) in 85 printing workers from a printing house in Bangkok, Thailand. We used an interviewer-administered questionnaire about participants' printing techniques, work characteristics, and work environment. Urine and scalp hair samples were analyzed for levels of each element using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. RESULTS: As, Cd, Cr, Ni, Pb were detected in urine with the geometric mean concentration range of 0.0028-0.0209 mg/L, and Hg, Pb, Ni, Cd, Co, Mn, Cr were detected in hair samples (0.4453-7.165 mg/kg dry weight) of printing workers. The geometric mean Ni level was significantly higher in the urine of production line workers than back-office personnel (0.0218 mg/L vs. 0.0132 mg/L; p = 0.0124). The other elements did not differ significantly between production line and back-office workers in either urine or hair. There was also a strong, statistically significant positive correlation between Ni and Co levels in hair samples of workers (r = 0.944, p < 0.0001). CONCLUSIONS: Average concentrations of most of the metals in urine and hair of printing workers were found to be above the upper reference values. The significantly higher concentrations of Ni in production line workers might be due to more exposure to printed materials. A strong inter-element correlation between Ni and Co in hair samples can increase stronger health effects and should be further investigated. This study reveals possible dependencies and impact interactions of heavy metal exposure in printing factory workers.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Humanos , Cádmio/análise , Tailândia , Chumbo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Manganês/análise , Níquel/análise , Arsênio/análise , Mercúrio/análise , Cabelo/química
6.
Bull Environ Contam Toxicol ; 110(1): 37, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607448

RESUMO

Phytoextraction is an efficient strategy for remediating heavy metal-contaminated soil. Chelators can improve the bioavailability of heavy metals and increase phytoextraction efficiency. However, traditional chelators have gradually been replaced due to secondary pollution. In this study, a typical organic acid (citric acid, CA) and a novel biodegradable chelator (poly-glutamic acid, PGA), were investigated using pot experiments to compare the phytoextraction efficiency of Solanum nigrum L. (a Cd (hyper)accumulator) for cadmium (Cd) and lead (Pb) in contaminated soil. The results showed CA and PGA significantly improved plant growth, and total Cd and Pb amounts of S. nigrum, both CA and PGA significantly increased the shoot Cd and Pb concentrations. However, only PGA significantly increased the root Pb concentration. CA and PGA application promoted the bioavailability of Cd and Pb in rhizosphere soils and their translocations from roots to shoots in S. nigrum. Both CA and PGA increased the phytoextraction efficiency of Cd and Pb in S. nigrum plants, and the PGA for Cd and Pb phytoextraction was more effective than CA. Our findings demonstrate that the biodegradable chelator PGA has great potential for enhancing phytoextraction from compound Cd-Pb contaminated soils, suggesting that biodegradable chelator-assisted phytoextraction with (hyper)accumulator is strongly recommended in severely contaminated sites.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum nigrum , Cádmio/análise , Ácido Glutâmico , Chumbo , Ácido Cítrico , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Quelantes/farmacologia , Solo
7.
Environ Monit Assess ; 195(2): 276, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609889

RESUMO

Bioaccumulation of potentially toxic elements in soil threatens public health and the ecosystem. This study aims to assess the concentration of potentially toxic elements (chromium (Cr), lead (Pb), iron (Fe), arsenic (As), and cadmium (Cd)) in selected automobile workshop premises in Omu-Aran, Nigeria. Forty-eight samples were collected at a depth (15 cm) in six locations, including a control point. Acid digestion was carried out to prepare the soil samples before assessing their concentration via an atomic absorption spectrophotometer. Geo-accumulation index (Igeo) was used to classify the level of contamination. Statistical analysis, which includes principal component analysis (PCA) and Pearson's correlation, was also determined. The difference in concentration was determined using ANOVA. In the study area, the lowest observed concentration values for Cr, Pb, Fe, As, and Cd, which are 0.246 ± 0.002 mg/kg, 0.178 ± 0.001 mg/kg, 90.715 ± 0.038 mg/kg, 0.012 ± 0.004 mg/kg, and 0.078 ± 0.004 mg/kg, respectively, are relatively higher than observed for the control. The observed potentially toxic elements fall within three Igeo based on Muller's interpretation; heavily to extremely contaminated (Cd), moderately to heavily contaminated (Pb, Cr, and As), and uncontaminated to moderately contaminated (Fe). PCA shows that two principal components (PC) account for up to 91.052% of the original mean dataset variability. PC1 explains 67.723% of the total variance associated with Cd, Cr, Fe, Pb, and As, indicating anthropogenic is the primary source of these potentially toxic elements. The PC2 accounted for 23.329%, with Pb and As significant contributors. Cadmium contamination of soil was the most influential, with an Igeo value ranging from 4 to 5. Residents in the polluted region face considerable health risks from potentially toxic elements.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Cádmio/análise , Análise de Componente Principal , Ecossistema , Nigéria , Chumbo/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Arsênio/análise , Solo , Medição de Risco
8.
Food Res Int ; 163: 112165, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36596113

RESUMO

The ionic elements in wine and in vineyards are gaining attention due to characterization of the wine traits, wine origin tracing, and vine nutrient judging. In this experiment, 19 elements were detected by inductively coupled plasma mass spectrometry (ICP-MS) in 69 wine samples from 4 regions, 3 vintages, and 3 grape maturity levels. Furthermore, the elements related to vine development, such as N, P, K, Ca, Mg, Cu, Fe, Zn and Cu in the vineyard soil and petioles were determined. Two orthogonal partial least squares discriminant analysis (O2PLS-DA) showed that K, Mn, Co, Sr, B, Si, Pb, Ni, Cu, and Zn were important elements in distinguishing the regions. High-temperature vintages can bring wines with high levels of Sr in wine. Na, Ca, K, Mg, Rb, Al, Rb, Pb and Fe can be used as signature elements to distinguish wines made from 2 grape maturities. And Cu, Zn, and Mn were the key elements used to differentiate the petioles in the 4 regions. Partial square regression (PLSR) analysis showed that soil pH was positively correlated with Al, B, Ba, K, Pb, Mn, Sr and Rb in wine, and K in wine was significantly positively correlated with element K in the soil. In conclusion, the elemental contents in wine are shaped by the combination of origin, vintage and grape maturity, while some key elements can be used as indicators of origin traceability.


Assuntos
Oligoelementos , Vitis , Oligoelementos/análise , Vitis/química , Espectrometria de Massas , Chumbo/análise , Solo
9.
Bull Environ Contam Toxicol ; 110(1): 40, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627388

RESUMO

Predictive models were generated to evaluate the degree to which nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were absorbed by the leaves, stems and roots of forage sorghum in growing media comprising soil admixed with poultry manure concentrations of 0, 10, 20, 30 and 40 g/kg. The data revealed that the greatest contents of the majority of the metals were evident in the roots rather than in the stems and leaves. A bioaccumulation factor (BAF) < 1 was calculated for Cr, Fe, Ni, Pb and Zn; BAF values for Co, Cu, Mn and Cd were 3.99, 2.33, 1.44 and 1.40, respectively, i.e., > 1. Translocation factor values were < 1 for all metals with the exception of Co, Cr and Ni, which displayed values of 1.20, 1.67 and 1.35 for the leaves, and 1.12, 1.23 and 1.24, respectively, for the stems. The soil pH had a negative association with metal tissues in plant parts. A positive relationship was observed with respect to plant metal contents, electrical conductivity and organic matter quantity. The designed models exhibited a high standard of data precision; any variations between the predicted and experimentally observed contents for the nine metals in the three plant tissue components were nonsignificant. Thus, it was concluded that the presented predictive models constitute a pragmatic tool to establish the safety from risk to human well-being with respect to growing forage sorghum when cultivating media fortified with poultry manure.


Assuntos
Metais Pesados , Poluentes do Solo , Sorghum , Animais , Humanos , Solo/química , Esterco , Metais Pesados/análise , Aves Domésticas , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental
10.
Anal Chim Acta ; 1239: 340714, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628769

RESUMO

Lead ion (Pb2+) is one of the most toxic and widely polluted heavy metal ions. Given the potential health risks and economic losses associated with Pb2+, the rapid detection of Pb2+ using fluorescent aptasensors is of significant importance in evaluating food safety. A rapid, facile and economic fluorescent aptasensor using convenient paper as the sensing substrate was designed to high-throughput detect Pb2+ in complex samples within about 45 min. The Pb2+ changed the conformation of FAM-modified Apt from a random coil to a stable G-quadruplex structure. And then Dabcyl-labeled cDNA was added to form double-stranded DNA with the Apt that did not form a G-quadruplex structure, resulting in a weak fluorescence due to the fluorescence resonance energy transfer (FRET). The fluorescent aptasensor showed a positive correlation with Pb2+ concentration, and a linear relationship was obtained in the range of 0.01-10 µM with LOD of 6.1 nM. In addition, this method has been successfully used for the determination of Pb2+ in water, soil and various foods containing complex substrates. Meanwhile, the high-throughput detection of Pb2+ has also reached an acceptable level. Therefore, this convenient strategy has potential application value for on-site rapid detection of Pb2+.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Água , Chumbo , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes , Limite de Detecção
11.
Anal Chim Acta ; 1239: 340730, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628773

RESUMO

In this work, we report the development of a new type of highly active and stable Bi-based electrode material, i.e., BiCu metal-organic frames (MOF) derived carbon film (CF) encapsulating BiCu alloy nanoparticles (BiCu-ANPs) for electrochemical sensing. The integration of Bi with Cu to form BiCu-ANPs can improve their electrocatalytic activity as well as the acid resistance. Meanwhile, the carbon film that encapsulates BiCu-ANPs not only guarantees the BiCu-ANPs with high electrical conductivity and fast electrochemical kinetics but also effectively alleviates the volume change during the adsorption and desorption of heavy metal (HM) ions. Therefore, the as-obtained CF encapsulating BiCu-ANPs (BiCu-ANPs@CF) exhibits fully exposed active sites, facile charge transfer, high stability and conductivity, which gives rise to enhanced sensitivity and stability for the electrochemical detection of HM ions. When integrated into a potable electrochemical sensing system for simultaneous detection of Pb2+, Cd2+ and Zn2+, the BiCu-ANPs@CF modified electrode exhibits low detection limit (i.e., 0.081 ppb for Pb2+, 0.95 ppb for Cd2+, 35 ppb for Zn2+), wide detection range (i.e., 0.5-700 ppb for Pb2+, 5-900 ppb for Cd2+, 150-600 ppb for Zn2+) and good anti-interference. Finally, the system has been used for on-site detection of multiplexed HM ions in human biological liquids and environmental water with a good spiked recovery rate, which demanstrates its promise application in the future for on-site monitoring of human health and pollutants in water quality.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Humanos , Carbono , Cádmio/química , Ligas , Chumbo , Metais Pesados/química , Íons
12.
Chemosphere ; 314: 137703, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587914

RESUMO

Pb0 in flue gas which is ubiquitous in the environment, poses a certain threat to human and ecology, but the study on EPS-dependent stabilization of lead to remove Pb0 from flue gas remains insufficient. In this investigation, the characteristics and heavy metals-binding ability of four EPS fractions were evaluated. The EPS were extracted from denitrifying membrane biofilm reactor (MBfR) and divided into slime EPS (S-EPS), loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and EPS in circulating flow (Y-EPS). The S, LB, TB-EPS related to Pb stabilization on biofilm need more attention. Compared to Pb-S-EPS (0.013 mg g-1) and Pb-LB-EPS (0.13 mg g-1), the Pb-TB-EPS (0.26 mg g-1) was mainly stable form of vapor Pb0, since TB-EPS's higher content (30.67-82.44 mg g-1 VSS), proteins (13.47-36.32 mg g-1 VSS) and polysaccharides (9.37-32.48 mg g-1 VSS) concentration. Particularly, proteins related ligands were more effective in S, LB, TB-EPS dependent adsorption of Pb, complexing with hydrophobic acid ligands further strengthened in TB-EPS adsorption. The Pb-EPS complex formed via binding with functional groups (such as O-H, N-H, C-H and CC) on EPS, also facilitated by loose structure of proteins. This study enlightens the researchers on the bio-treatment and EPS-dependent biosorption of Pb0 in flue gas in denitrifying MBfR.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Chumbo , Humanos , Matriz Extracelular de Substâncias Poliméricas/química , Chumbo/análise , Ligantes , Esgotos/química , Biofilmes , Proteínas/análise
13.
Artigo em Inglês | MEDLINE | ID: mdl-36613124

RESUMO

Heavy metals pollution of water resources is an emerging concern worldwide and seeks immediate attention. Date palm waste was transformed into biochar (BC), which was further modified through Fe-intercalation for the production of magnetic biochar (Fe-BC) in this study. The produced BC and Fe-BC were analyzed for chemical, proximate, surface, and elemental composition. The efficiency of the produced adsorbents to decontaminate the water from Cd2+ and Pb2+ ions was investigated through kinetics and an isotherm adsorption batch trial. Kinetics adsorption data fit well with the pseudo-second order and power function model, while equilibrium data were described well with the Langmuir and Freundlich isotherms. The maximum adsorption capacity as shown by the Langmuir model was the highest for Fe-BC for both Cd2+ (48.44 mg g-1) and Pb2+ (475.14 mg g-1), compared with that of BC (26.78 mg g-1 Cd2+ and 160.07 mg g-1 Pb2+). Both materials showed higher removal of Pb (36.34% and 99.90% on BC and Fe-BC, respectively) as compared with Cd (5.23% and 12.28% on BC and Fe-BC, respectively) from a binary solution. Overall, Fe-BC was more efficient in adsorbing both of the studied metals from contaminated water. The application of Fe-BC resulted in 89% higher adsorption of Cd2+ and 197% higher adsorption of Pb2+ from aqueous media as compared to BC. Kinetics and isotherm models as well as SEM-EDS analysis of the post-adsorption adsorbents suggested multiple adsorption mechanisms including chemisorption, pore-diffusion, and electrostatic interactions.


Assuntos
Phoeniceae , Poluentes Químicos da Água , Cádmio/análise , Chumbo , Carvão Vegetal/química , Água , Adsorção , Poluentes Químicos da Água/análise , Cinética
14.
Artigo em Inglês | MEDLINE | ID: mdl-36613194

RESUMO

Layered double hydroxide (LDH)-doped chicken-manure biochar (CMB) with long-term stability was synthesized to immobilize Pb/Cd. MgAl-Cl-LDH-doped CMB (MHs) showed prominent long-term oxidation resistance and the least biodegradation sensitivity. Efficient Pb/Cd adsorption was observed on MHs, and the maximum adsorption capacities of Pb(II)/Cd(II) reached 1.95 mmol/g and 0.65 mmol/g, respectively. Precipitation and isomorphous substitution were identified as the key adsorption mechanisms, which formed highly stable Pb/Cd species (PbAl-CO3-LDH, Pb3(OH)2CO3, CdAl-Cl-LDH and CdCO3). Pb(II) and Cd(II) precipitated with CO32- in MHs; meanwhile, Mg(II) and Ca(II) in LDH layers were substituted by Pb(II) and Cd(II) respectively. Therefore, MHs had the potential for long-term stability of Pb/Cd. Moreover, complexation and electrostatic adsorption also contributed to the Pb/Cd immobilization to a certain extent. When 5% MHs (w/w) was applied to Pb/Cd contaminated smelting site soils, the soil pH increased from 5.9 to 7.3. After applying MHs for 25 d, the content of bioavailable Pb(II) and Cd(II) decreased by 98.8% and 85.2%, respectively, and the content of soluble Pb and Cd dropped by 99.5% and 96.7%. This study paves the way for designing a novel LDH doped CMB as efficient Pb/Cd immobilizers for smelting site soils.


Assuntos
Cádmio , Poluentes do Solo , Animais , Cádmio/química , Esterco , Galinhas , Chumbo , Hidróxidos , Carvão Vegetal/química , Solo/química , Poluentes do Solo/química
15.
Environ Monit Assess ; 195(2): 323, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692645

RESUMO

The current study investigated the concentrations, possible sources, toxicity, and ecological risk of eight heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and sixteen priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the port of Prahovo (Danube, Serbia). Among the examined HMs, the most abundant was Cu (38.3 mg/kg), followed by Zn. The Σ16PAHs concentrations ranged from 25 to 112.5 µg/kg, with 4-ring PAHs (17.3 µg/kg) being the most dominant in the study area. The mean and maximum values of HMs and PAHs obtained in this study were below the national regulatory limits and within environmental criteria. Particularly significant correlations between As, Cd, Cr, Ni, Pb, Zn, 5-, 6-ring PAHs, as well as between Pb and Hg, indicated their similar anthropogenic sources, pathways, and adsorption mechanisms. These findings were confirmed by cluster analysis and principal component analysis. Diagnostic ratios demonstrated that contamination in inner port stations was characterized by pyrogenic sources, while PAHs of petrogenic origin prevailed in samples near the port entrance. The mean ERM quotient (mERMq), toxic risk index (TRI), and toxic equivalent quotient (TEQ) were also calculated to assess the toxicity of the investigated HMs and PAHs in sediments. Positive matrix factorization suggested four potential sources as the main components of sediment contamination, whereas the risk assessment indicated a low or relatively insignificant risk of adverse biological effects from the combined toxicity of HMs and PAHs for the entire study area.


Assuntos
Mercúrio , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental , Metais Pesados/análise , Mercúrio/análise , Medição de Risco , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , China
16.
Toxicol Lett ; 375: 69-76, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610527

RESUMO

The objectives of the study were to simulate low-level Pb exposure scenario in an animal model and to examine reproductive adverse effects. Based on obtained data, we have performed Benchmark dose (BMD)-response modelling. Male Wistar rats were randomized in seven groups (n = 6): one control and six treated with: 0.1, 0.5, 1, 3, 7, and 15 mg Pb/kg body weight, daily for 28 days by oral gavage. The rats were sacrificed and the blood and testes were used for further analysis of testosterone levels in serum, testicular essential metal levels and histological analysis. The Pb treatment led to a dose-dependent decrease of serum testosterone levels with a negative trend (BMDI 0.17-6.13 mg Pb/kg). Increase of Zn (dose-dependent, BMDI 0.004-19.7 mg Pb/kg) and Cu and a decrease of Mn testicular levels were also detected with unscathed histology of the testes. The presented results might be used in further evaluation of the point of departure in human health risk assessment for Pb.


Assuntos
Chumbo , Testículo , Testosterona , Animais , Masculino , Ratos , Benchmarking , Chumbo/administração & dosagem , Chumbo/toxicidade , Ratos Wistar , Testículo/química , Testículo/patologia , Testosterona/sangue , Modelos Animais
17.
Chemosphere ; 316: 137787, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36623594

RESUMO

Environmental lead exposure poses risks to children' health, thus exposure sources and pathways identification remain important concern and research scope. Due to sharing the same environment, domestic animals, especially dogs, have been used as useful sentinels to identify human lead exposure. However, more evidence is needed on whether domestic dogs could be used to identify the lead exposure pathways and sources of children. Thus, this study investigated the dietary habits, behaviors, and household environment of children and dogs in a typical coal-fired area in China. The lead levels and lead isotope ratios (Acronym: LIRs, expressed as 208Pb/206Pb and 207Pb/206Pb) in dogs' and children's blood, as well as in environmental media (food, PM2.5, indoor/outdoor dust, drinking water and soil) were measured to explore the predominant lead pollution sources and exposure pathways of children. The results showed that the LIRs of children's blood (208Pb/206Pb = 2.0703 ± 0.0076, 207Pb/206Pb = 0.8501 ± 0.0052) were similar to those of dogs' blood (208Pb/206Pb = 2.0696 ± 0.0085, 207Pb/206Pb = 0.8499 ± 0.0052), as well as similar to the LIRs of environmental media, i.e. children's food (208Pb/206Pb = 2.0731 ± 0.0057, 207Pb/206Pb = 0.8491 ± 0.0036) and coal (208Pb/206Pb = 2.0683 ± 0.017, 207Pb/206Pb = 0.8515 ± 0.01). Children and dogs had similar lead exposure pathways, but the contributions of each exposure pathway were different, i.e., 83.1% vs. 76.9% for children and dogs via food ingestion, 1.4% vs. 5.6% via particulate matter exposure, and 15.5% vs. 17.5% via household dust exposure, respectively. The contribution of food via ingestion to lead exposure remains dominant, and coal combustion is a main lead exposure source for children and domestic dogs.


Assuntos
Exposição Ambiental , Chumbo , Humanos , Criança , Cães , Animais , Chumbo/análise , Exposição Ambiental/análise , Poeira/análise , Carvão Mineral/análise , Isótopos/análise , China , Monitoramento Ambiental/métodos
18.
Chemosphere ; 316: 137799, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634718

RESUMO

Trace heavy metals exist in drinking water, having great adverse effects on human health and making it a huge challenge to remove. Herein, novel materials have been prepared by a simple and green method using single- (polydopamine (PDA) or 2,3-dimercaptopropanesulfonic sodium (DMPS)) (PDA-OACF or DMPS-OACF) and two-component (PDA and DMPS) (DMPS-PDA-OACF) functionalized activated carbon fibers pretreated by hydrogen peroxide for the removal of trace heavy metals. The as-prepared DMPS-OACF (7.5,20) under DMPS addition of 7.5 mg and sonication time of 20 min retained large specific surface area, micro-mesoporous structure and rich functional groups and showed better adsorption performance for trace lead and mercury. It also exhibited wide applicable ranges of pH (3.50-10.50) and concentration (50-1136 µg L-1), rapid adsorption kinetics, and excellently selective removal performance for trace lead. The maximum lead adsorption capacity reached 16.03 mg g-1 when the effluent lead concentration met World Health Organization (WHO) standard and the adsorbent can be regenerated by EDTA solution. The fitting results of adsorption kinetics and isotherm models revealed that the lead adsorption process was multi-site adsorption on heterogeneous surfaces and chemical adsorption. The excellent adsorption properties for trace heavy metals were attributed that the sulfur/oxygen/nitrogen-containing functional groups boosted diffusion and adsorption by electrostatic attraction and coordination, suggesting that DMPS-OACF (7.5,20) has great application potential in the removal of trace heavy metals.


Assuntos
Água Potável , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Humanos , Chumbo , Carvão Vegetal/química , Fibra de Carbono , Poluentes Químicos da Água/análise , Metais Pesados/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio
19.
Chemosphere ; 316: 137832, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640989

RESUMO

Heavy metal pollution has become a major problem in environmental pollution. Ion imprinted polymers with specific identification and wide practicality have gradually become an important tool for wastewater treatment. In this work, ion-imprinted polymer-grafted modified nanocellulose was designed as an adsorbent for the serious hazard of Pb(II) and Hg(II) in wastewater. This work used medical cotton wool as raw material to prepare a nanocellulose suspension by acid-catalyzed hydrolysis. The high reactivity of carbonyl diimidazole (CDI) was utilized to react with acrylic acid (AA) to generate reactive intermediates, which then reacted with nanocellulose to form activated nanocellulose (AA-CDI-NC). Crown ether was used as functional monomers to synthesize Pb(II) ion-imprinted polymers and grafted onto the AA-CDI-NC surface (Pb(II)-MIP-NC). Meanwhile, Hg(II) ion-imprinted polymer was synthesized and grafted onto the AA-CDI-NC surface (Hg(II)-MIP-NC) using thymine as a functional monomer. The experimental results showed that Pb(II)-MIP-NC and Hg(II)-MIP-NC could effectively adsorb Pb(II) and Hg(II), respectively. Their adsorption behaviors for Pb(II) and Hg(II) were consistent with the secondary kinetic model and Langmuir adsorption isotherm model. The adsorption capacities of Pb (II)-MIP-NC and Hg (II)-MIP-NC for Pb (II) and Hg (II) were 27.55 mg/g and 161.31, respectively.


Assuntos
Mercúrio , Impressão Molecular , Poluentes Químicos da Água , Polímeros Molecularmente Impressos , Chumbo , Adsorção , Poluentes Químicos da Água/análise , Polímeros
20.
Chemosphere ; 316: 137870, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642150

RESUMO

The evaluation of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) impact on arthritis is usually limited to the analysis of the arthritis subtype (rheumatoid arthritis, RA), whereas studies on osteoarthritis (OA) are relatively sparse. Furthermore, the combined effect of HMs and PAHs co-exposure on arthritis also has rarely been analyzed. Herein, we aimed to comprehensively estimate the association between HMs and PAHs (three blood HMs and six urinary PAHs metabolites) co-exposure and arthritis. Using data from the National Health and Nutrition Examination Survey (NHANES), 2003-2016, we included 9735 adults, of whom 2464 had total arthritis, 1371 had OA, and 468 had RA. The logistic regression model was conducted to estimate the single effect of HMs and PAHs on arthritis. Moreover, weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) were separately performed to assess the combined effect of HMs and PAHs co-exposure on arthritis. In the single-exposure analyses, cadmium (Cd) and lead (Pb) statistically grew the risk of total arthritis, OA, and RA. Among PAHs, 1-hydroxynaphthalene (1-NAP) and 3-hydroxyfluorene (3-FLU) showed a positive association with total arthritis, OA, and RA. Meanwhile, 2-NAP also was significantly associated with total arthritis. 2-NAP, 2-FLU, and 1-hydroxyphenanthrene (1-PHE) also were significantly associated with RA. Furthermore, the three complementary models consistently demonstrated that co-exposure to high levels of HMs and PAHs was positively associated with total arthritis, OA, and RA risk. The above associations were more obvious in young and medium-aged people. Interestingly, BKMR analyses indicated that 1-NAP might interact with Cd and 3-FLU in total arthritis, while Pb might interact with Cd in OA. Therefore, this study provided novel evidence that co-exposure to HMs and PAHs positively correlated with arthritis, especially OA, and these results were worthy of further prospective studies.


Assuntos
Metais Pesados , Osteoartrite , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Idoso , Hidrocarbonetos Policíclicos Aromáticos/análise , Inquéritos Nutricionais , Cádmio , Estudos Prospectivos , Teorema de Bayes , Chumbo , Osteoartrite/induzido quimicamente , Osteoartrite/epidemiologia , Biomarcadores/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...