Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807290

RESUMO

Hydrogen sulfide (H2S), a gaseous signaling molecule, is associated with the development of various malignancies via modulating various cellular signaling cascades. Published research has established the fact that inhibition of endogenous H2S production or exposure of H2S donors is an effective approach against cancer progression. However, the effect of pharmacological inhibition of endogenous H2S-producing enzymes (cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MPST)) on the growth of breast cancer (BC) remains unknown. In the present study, DL-propargylglycine (PAG, inhibitor of CSE), aminooxyacetic acid (AOAA, inhibitor of CBS), and L-aspartic acid (L-Asp, inhibitor of 3-MPST) were used to determine the role of endogenous H2S in the growth of BC by in vitro and in vivo experiments. An in silico study was also performed to confirm the results. Corresponding to each enzyme in separate groups, we treated BC cells (MCF-7 and MDA-MB-231) with 10 mM of PAG, AOAA, and L-Asp for 24 h. Findings reveal that the combined dose (PAG + AOAA + L-Asp) group showed exclusive inhibitory effects on BC cells' viability, proliferation, migration, and invasion compared to the control group. Further, treated cells exhibited increased apoptosis and a reduced level of phospho (p)-extracellular signal-regulated protein kinases such as p-AKT, p-PI3K, and p-mTOR. Moreover, the combined group exhibited potent inhibitory effects on the growth of BC xenograft tumors in nude mice, without obvious toxicity. The molecular docking results were consistent with the wet lab experiments and enhanced the reliability of the drugs. In conclusion, our results demonstrate that the inhibition of endogenous H2S production can significantly inhibit the growth of human breast cancer cells via the AKT/PI3K/mTOR pathway and suggest that endogenous H2S may act as a promising therapeutic target in human BC cells. Our study also empowers the rationale to design novel H2S-based anti-tumor drugs to cure BC.


Assuntos
Neoplasias da Mama , Sulfeto de Hidrogênio , Animais , Neoplasias da Mama/tratamento farmacológico , Cistationina , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Feminino , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR
2.
J Pharm Biomed Anal ; 219: 114944, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35863169

RESUMO

One-carbon metabolism is an important metabolic pathway involved in many diseases, such as congenital malformations, tumours, cardiovascular diseases, anaemia, depression, cognitive diseases and liver disease. However, the current methods have specific defects in detecting and qualifying the related compounds of one-carbon metabolism. In this study, a validated method was established to simultaneously quantify 22 one-carbon metabolites & co-factors in human plasma and applied to the study of correlation between one-carbon metabolism and colorectal cancer in human plasma samples, which were from 44 healthy subjects and 55 colorectal cancer patients. The method used ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS), and the analytes included betaine, L-carnitine, L-cystathionine, L-cysteine, dimethylglycine, DL-homocysteic acid, homocysteine, methionine, pyridoxal hydrochloride, pyridoxamine dihydrochloride, pyridoxine dihydrochloride, S-(5'-Adenosyl)-L-homocysteine, serine, choline chloride, folic acid, glycine, pyridoxal phosphate monohydrate, riboflavin, taurine, 5-methyltetrahydrofolate, S-(5'-adenosyl)-L-methionine disulfate salt, trimethylamine oxide. The developed method was successfully applied to the quantification of 22 one-carbon metabolites & co-factors in human plasma from colorectal cancer patients and healthy individuals. The plasma concentrations of dimethylglycine was significantly decreased in the patients compared with the healthy individuals, while L-cystathionine was increased.


Assuntos
Neoplasias Colorretais , Espectrometria de Massas em Tandem , Carbono/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Cistationina , Homocisteína , Humanos , Metionina/metabolismo , Espectrometria de Massas em Tandem/métodos
3.
Elife ; 112022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758651

RESUMO

Hyperactivation of oncogenic pathways downstream of RAS and PI3K/AKT in normal cells induces a senescence-like phenotype that acts as a tumor-suppressive mechanism that must be overcome during transformation. We previously demonstrated that AKT-induced senescence (AIS) is associated with profound transcriptional and metabolic changes. Here, we demonstrate that human fibroblasts undergoing AIS display upregulated cystathionine-ß-synthase (CBS) expression and enhanced uptake of exogenous cysteine, which lead to increased hydrogen sulfide (H2S) and glutathione (GSH) production, consequently protecting senescent cells from oxidative stress-induced cell death. CBS depletion allows AIS cells to escape senescence and re-enter the cell cycle, indicating the importance of CBS activity in maintaining AIS. Mechanistically, we show this restoration of proliferation is mediated through suppressing mitochondrial respiration and reactive oxygen species (ROS) production by reducing mitochondrial localized CBS while retaining antioxidant capacity of transsulfuration pathway. These findings implicate a potential tumor-suppressive role for CBS in cells with aberrant PI3K/AKT pathway activation. Consistent with this concept, in human gastric cancer cells with activated PI3K/AKT signaling, we demonstrate that CBS expression is suppressed due to promoter hypermethylation. CBS loss cooperates with activated PI3K/AKT signaling in promoting anchorage-independent growth of gastric epithelial cells, while CBS restoration suppresses the growth of gastric tumors in vivo. Taken together, we find that CBS is a novel regulator of AIS and a potential tumor suppressor in PI3K/AKT-driven gastric cancers, providing a new exploitable metabolic vulnerability in these cancers.


Assuntos
Sulfeto de Hidrogênio , Neoplasias Gástricas , Cistationina , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Glutationa/metabolismo , Glicogênio Sintase , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas/genética
4.
Biomolecules ; 12(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740876

RESUMO

The gasotransmitter hydrogen sulfide (H2S) produced by the transsulfuration pathway (TSP) is an important biological mediator, involved in many physiological and pathological processes in multiple higher organisms, including humans. Cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in H2S production and metabolism. Here, we investigated the role of H2S in learning and memory processes by exploring several Drosophila melanogaster strains with single and double deletions of CBS and CSE developed by the CRISPR/Cas9 technique. We monitored the learning and memory parameters of these strains using the mating rejection courtship paradigm and demonstrated that the deletion of the CBS gene, which is expressed predominantly in the central nervous system, and double deletions completely block short- and long-term memory formation in fruit flies. On the other hand, the flies with CSE deletion preserve short- and long-term memory but fail to exhibit long-term memory retention. Transcriptome profiling of the heads of the males from the strains with deletions in Gene Ontology terms revealed a strong down-regulation of many genes involved in learning and memory, reproductive behavior, cognition, and the oxidation-reduction process in all strains with CBS deletion, indicating an important role of the hydrogen sulfide production in these vital processes.


Assuntos
Sulfeto de Hidrogênio , Animais , Cistationina , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Sulfeto de Hidrogênio/metabolismo , Masculino
5.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682634

RESUMO

Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- ß-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 µM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 µM), L-cysteine (150 µM), and 3-mercaptopyruvate (150 µM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2- levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.


Assuntos
Sulfeto de Hidrogênio , Sarcopenia , Cistationina , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Glucosinolatos , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Oximas , Sarcopenia/tratamento farmacológico , Sulfóxidos , Sulfurtransferases/metabolismo
6.
Metab Brain Dis ; 37(6): 1863-1874, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35759072

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter endogenously synthesized by cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopiruvate sulfurtransferase (3-MST) enzymes. H2S exogenous administration prevents the development of hemodynamic impairments after traumatic brain injury (TBI). Since the hypothalamus and the brainstem highly regulate the cardiovascular system, this study aimed to evaluate the effect of NaHS subchronic treatment on the changes of H2S-sythesizing enzymes in those brain areas after TBI and in physiological conditions. For that purpose, animals were submitted to a lateral fluid percussion injury, and the changes in CBS, CSE, and 3-MST protein expression were measured by western blot at days 1, 2, 3, 7, and 28 in the vehicle group, and 7 and 28 days after NaHS treatment. After severe TBI induction, we found a decrease in CBS and CSE protein expression in the hypothalamus and brainstem; meanwhile, 3-MST protein expression diminished only in the hypothalamus compared to the Sham group. Remarkably, i.p. daily injections of NaHS, an H2S donor, (3.1 mg/kg) during seven days: (1) restored CBS and CSE but no 3-MST protein expression in the hypothalamus at day 28 post-TBI; (2) reestablished only CSE in brainstem 7 and 28 days after TBI; and (3) did not modify H2S-sythesizing enzymes protein expression in uninjured animals. Mainly, our results show that the NaHS effect on CBS and CSE protein expression is observed in a time- and tissue-dependent manner with no effect on 3-MST expression, which may suggest a potential role of H2S synthesis in hypothalamus and brainstem impairments observed after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Sulfeto de Hidrogênio , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Tronco Encefálico , Cistationina , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipotálamo/metabolismo
7.
Biochem Biophys Res Commun ; 615: 109-115, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35609415

RESUMO

Endoplasmic reticulum stress (ER stress) plays a crucial role in the process of Alzheimer's disease (AD). Activating transcription factor 6 (ATF6) is a crucial sensor of ER stress. In AD patients, the homeostasis of the endogenous signal H2S produced by cystathionine γ-lyase (CTH) is in disbalance. However, the role of ATF6 and CTH in AD is rarely reported. Herein, we found that ATF6 and CTH were reduced in AD patients and APP/PS1 mice by immunohistochemistry and western blots. In LN229 and U87 MG cells, knockdown of ATF6 attenuated CTH expression, whereas overexpression of ATF6 resulted in upregulation of CTH. Brain-specific ATF6 knockout mice expressed significantly down-regulated CTH in the hippocampus and cortex compared to wild-type mice. Mechanistically, ATF6 and CTH increased H2S generation and autophagy-related proteins. Further we observed that CTH promoted the sulfhydration of αSNAP. This is probably to be the specific mechanism by which AFT6 promotes autophagy. Through in vivo studies, we found that αSNAP sulfhydration expression was significantly lower in ATF6 knockout mice than in wild-type mice. Decreased ATF6 impaired spatial memory retention, while addition of CTH rescued memory loss. Together, we demonstrate that ATF6 positively regulates the expression of CTH, which is closely related to the rescue of AD. Targeting the ATF6/CTH signal pathway may provide a new strategy for the treatment of AD.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Doença de Alzheimer , Fator 6 Ativador da Transcrição/genética , Doença de Alzheimer/genética , Animais , Autofagia , Cistationina , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Humanos , Camundongos , Camundongos Knockout
8.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2251-2256, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531742

RESUMO

The present study analyzed the potential biomarkers of chronic obstructive pulmonary disease(COPD) with lung-Qi deficiency syndrome by non-targeted metabolomics and explored the biological basis of this syndrome. Blood samples of 96 COPD patients with lung-Qi deficiency syndrome(COPD with lung-Qi deficiency syndrome group) and 106 healthy people(healthy control group) were collected, and the metabolic profiles of both groups were analyzed by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Multivariate statistical analysis and differential metabolite screening were carried out by using Progenesis QI and Simca-P. Metabolic pathways were constructed through the MetaboAnalyst. Seven potential biomarkers, such as L-cystathionine, protoporphyrinogen Ⅸ, and citalopram aldehyde, were identified. Compared with the results in the healthy control group, the content of citalopram aldehyde, N1-methyl-2-pyridone-5-carboxamide, and 11ß,17ß-dihydroxy-4-androsten-3-one was significantly up-regulated, while that of the other four compounds such as L-cystathionine, dihydrotestosterone, protoporphyrinogen Ⅸ, and D-urobilinogen was down-regulated. These potential biomarkers involved six metabolic pathways, including cysteine and methionine metabolism, porphyrin and chlorophyll metabolism, drug metabolism of cytochrome P450, steroid hormone biosynthesis, glycine, serine, and threonine metabolism, and nicotinate and nicotinamide meta-bolism. This study is expected to provide a certain scientific basis for the research on traditional Chinese medicine syndrome of COPD with lung-Qi deficiency syndrome from the molecular biology level.


Assuntos
Cistationina , Doença Pulmonar Obstrutiva Crônica , Aldeídos , Biomarcadores , Cromatografia Líquida de Alta Pressão , Citalopram , Humanos , Pulmão , Metabolômica/métodos
9.
Magn Reson Med ; 88(2): 537-545, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35381117

RESUMO

PURPOSE: To evaluate the ability of the PRESS sequence (TE  = 97 ms, optimized for 2-hydroxyglutarate detection) to detect cystathionine in gliomas and the effect of the omission of cystathionine on the quantification of the full neurochemical profile. METHODS: Twenty-three subjects with a glioma were retrospectively included based on the availability of both MEGA-PRESS and PRESS acquisitions at 3T, and the presence of the cystathionine signal in the edited MR spectrum. In eight subjects, the PRESS acquisition was performed also in normal tissue. Metabolite quantification was performed using LCModel and simulated basis sets. The LCModel analysis for the PRESS data was performed with and without cystathionine. RESULTS: All subjects with glioma had detectable cystathionine levels >1 mM with Cramér-Rao lower bounds (CRLB) <15%. The mean cystathionine concentrations were 3.49 ± 1.17 mM for MEGA-PRESS and 2.20 ± 0.80 mM for PRESS data. Cystathionine concentrations showed a significant correlation between the two MRS methods (r = 0.58, p = .004), and it was not detectable in normal tissue. Using PRESS, 19 metabolites were quantified with CRLB <50% for more than half of the subjects. The metabolites that were significantly (p < .0028) and mostly affected by the omission of cystathionine were aspartate, betaine, citrate, γ-aminobutyric acid (GABA), and serine. CONCLUSIONS: Cystathionine was detectable by PRESS in all the selected gliomas, while it was not detectable in normal tissue. The omission from the spectral analysis of cystathionine led to severe biases in the quantification of other neurochemicals that may play key roles in cancer metabolism.


Assuntos
Neoplasias Encefálicas , Glioma , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Cistationina , Glioma/patologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estudos Retrospectivos
10.
Eur J Nutr ; 61(6): 3161-3173, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35415822

RESUMO

AIM: Plasma total cysteine (tCys) is associated with fat mass and insulin resistance, whereas taurine is inversely related to diabetes risk. We investigated the association of serum sulfur amino acids (SAAs) and related amino acids (AAs) with incident diabetes. METHODS: Serum AAs were measured at baseline in 2997 subjects aged ≥ 65 years. Diabetes was recorded at baseline and after 4 years. Logistic regression evaluated the association of SAAs [methionine, total homocysteine (tHcy), cystathionine, tCys, and taurine] and related metabolites [serine, total glutathione (tGSH), glutamine, and glutamic acid] with diabetes risk. RESULTS: Among 2564 subjects without diabetes at baseline, 4.6% developed diabetes. Each SD increment in serum tCys was associated with a 68% higher risk (95% CI 1.27, 2.23) of diabetes [OR for upper vs. lower quartile 2.87 (1.39, 5.91)], after full adjustments (age, sex, other AAs, adiposity, eGFR, physical activity, blood pressure, diet and medication); equivalent ORs for cystathionine were 1.33 (1.08, 1.64) and 1.68 (0.85, 3.29). Subjects who were simultaneously in the upper tertiles of both cystathionine and tCys had a fivefold risk [OR = 5.04 (1.55, 16.32)] of diabetes compared with those in the lowest tertiles. Higher serine was independently associated with a lower risk of developing diabetes [fully adjusted OR per SD = 0.68 (0.54, 0.86)]. Glutamic acid and glutamine showed positive and negative associations, respectively, with incident diabetes in age- and sex-adjusted analysis, but only the glutamic acid association was independent of other confounders [fully adjusted OR per SD = 1.95 (1.19, 3.21); for upper quartile = 7.94 (3.04, 20.75)]. tGSH was inversely related to diabetes after adjusting for age and sex, but not other confounders. No consistent associations were observed for methionine, tHcy or taurine. CONCLUSION: Specific SAAs and related metabolites show strong and independent associations with incident diabetes. This suggests that perturbations in the SAA metabolic pathway may be an early marker for diabetes risk.


Assuntos
Aminoácidos Sulfúricos , Diabetes Mellitus , Aminoácidos , Cistationina , Cisteína , Glutamatos , Glutamina , Humanos , Metionina , Estudos Prospectivos , Serina , Taurina
11.
Mech Ageing Dev ; 203: 111656, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247392

RESUMO

The gasotransmitter hydrogen sulfide (H2S) is an important biological mediator, playing an essential role in many physiological and pathological processes. It is produced by transsulfuration - an evolutionarily highly conserved pathway for the metabolism of sulfur-containing amino acids methionine and cysteine. Cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in cysteine metabolism and H2S production. Here we investigated the fitness components (longevity, stress resistance, viability of preimaginal stages, and reproductive function parameters) in D. melanogaster lines containing deletions of the CBS and CSE genes. Surprisingly, in most tests, CSE deletion improved, and CBS worsened the fitness. Lines with deletion of both CBS and CSE demonstrated better stress resistance and longevity than lines with single CBS deletion. At the same time, deletion of both CBS and CSE genes causes more serious disturbances of reproductive function parameters than single CBS deletion. Thus, a complex interaction of H2S-producing pathways and cellular stress response in determining the lifespan and fitness components of the whole organism was revealed.


Assuntos
Cistationina gama-Liase , Sulfeto de Hidrogênio , Animais , Cistationina , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cisteína , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Sulfeto de Hidrogênio/metabolismo , Longevidade
12.
Anal Chem ; 94(2): 1203-1210, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34955022

RESUMO

Cystathionine lyase, the key enzyme in transsulfuration and reverse transsulfuration pathways, is involved in a wide array of physiological and pathophysiological processes in both mammals and nonmammals. Though the biological significance of the hydrogen sulfide/cystathionine lyase system in disease states is extensively discussed, the absence of molecular methods for direct monitoring of cystathionine lyase in complex biosamples renders the result unreliable and perplexing. Here, we present the first attempt at designing and developing effective activatable fluorescent probes for cystathionine lyase based on the naphthylamide scaffold. CBLP and CSEP were designed based on the catalytic preference of cystathionine ß-lyase (CBL) and cystathionine γ-lyase (CSE). Briefly, incorporation of cysteine/homocysteine as the recognition moiety and a carbamate ethyl sulfide group as a self-immolated linker proved to be an effective strategy for cystathionine lyase fluorescence reporting. CBLP exhibits high selectivity and sensitivity in vitro in semiquantifying CBL levels in roots of wild-type Arabidopsis thaliana and cbl mutants (cbl knockout: SALK_014740C, overexpressed: OE-CBL). Meanwhile, CSEP successfully detected CSE levels in HCC-LM3 cells, zebrafish models, and upregulated CSE in frozen section slides from the liver tissue of cecal ligation and puncture (CLP)-induced septic rats, which was also validated by Western blotting and immunohistochemical analysis. In summary, the practical design strategy facilitates profiling of cystathionine lyase activity in biological processes. It may pave the way for the development of accurate and efficient methods for the direct estimation of cystathionine lyase.


Assuntos
Carcinoma Hepatocelular , Sulfeto de Hidrogênio , Neoplasias Hepáticas , Liases , Animais , Cistationina , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ratos , Peixe-Zebra/metabolismo
13.
Commun Biol ; 4(1): 725, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117367

RESUMO

Methionine metabolism arises as a key target to elucidate the molecular adaptations underlying animal longevity due to the negative association between longevity and methionine content. The present study follows a comparative approach to analyse plasma methionine metabolic profile using a LC-MS/MS platform from 11 mammalian species with a longevity ranging from 3.5 to 120 years. Our findings demonstrate the existence of a species-specific plasma profile for methionine metabolism associated with longevity characterised by: i) reduced methionine, cystathionine and choline; ii) increased non-polar amino acids; iii) reduced succinate and malate; and iv) increased carnitine. Our results support the existence of plasma longevity features that might respond to an optimised energetic metabolism and intracellular structures found in long-lived species.


Assuntos
Longevidade/fisiologia , Metionina/sangue , Animais , Carnitina/metabolismo , Gatos , Bovinos , Colina/sangue , Colina/metabolismo , Colina/fisiologia , Cistationina/sangue , Cistationina/metabolismo , Cistationina/fisiologia , Cães , Cromatografia Gasosa-Espectrometria de Massas , Cobaias , Cavalos , Humanos , Malatos/sangue , Malatos/metabolismo , Metionina/metabolismo , Metionina/fisiologia , Camundongos , Filogenia , Coelhos , Ratos , Ovinos , Ácido Succínico/sangue , Ácido Succínico/metabolismo , Suínos
14.
Artigo em Inglês | MEDLINE | ID: mdl-33719952

RESUMO

BACKGROUND: The protein coded by the cystathionine ß synthase (CBS) gene acts as a catalyzer and converts homocysteine to cystathionine. Impairment of the CBS gene leads to homocystinuria by cystathionine ß synthase deficiency which is linked to Coronary Artery Disease. A number of polymorphisms studies have been performed on the cystathionine ß synthase gene. In the current study, we planned to analyze the influence of CBS T833C gene polymorphism(exon 8 cystathionine rs5742905T T>C), its association with Coronary Artery Disease development, and its progression in the north Indian population. MATERIALS AND METHODS: The present study comprises 100 angiographically confirmed CAD patients and 100 age and sex-matched healthy controls. A total of 50% or more luminal stenosis at one major coronary artery was considered for the inclusion criteria of the cases. The investigation of T833C polymorphism in the CBS gene was performed by PCR- RFLP technique. RESULTS: As a result, we found that homozygous mutant (CC) and heterozygous (TC) genotypes of CBS T833C gene polymorphism were significantly higher in CAD patients than in healthy subjects. We also observed a substantially increased CAD risk in dominant, codominant inheritance, and allele-specific models for the CBS T833C gene polymorphism. We analyzed the differential distribution with respect to disease severity, but there was no significant association (p=0.96). CONCLUSION: In conclusion, this study demonstrates that CBS T833C gene polymorphism plays a key role in developing coronary artery disease and its progression.


Assuntos
Doença da Artéria Coronariana , Cistationina , Doença da Artéria Coronariana/genética , Cistationina beta-Sintase/genética , Éxons/genética , Humanos , Polimorfismo Genético
15.
J Nutr ; 151(4): 883-891, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33484134

RESUMO

BACKGROUND: One-carbon metabolism (OCM) refers to the transfer of methyl groups central to DNA methylation and histone modification. Insufficient access to methyl donors and B-vitamin cofactors affects epigenetic maintenance and stability, and when occurring in early life may impact future health and neurodevelopment. OBJECTIVE: The objective of this study was to examine the relative associations between one-carbon metabolites in Nepalese mother-infant pairs and child cognition measured at 5 y of age. METHODS: This is a cross-sectional study from Bhaktapur, Nepal, in a population at high risk of subclinical B-vitamin deficiencies and cumulative infection burden. Venous blood samples from 500 mother-infant pairs were collected when the infants were 2 to 12 mo old, and metabolite concentrations measured by microbiological assays and GC-tandem MS. We re-enrolled 321 of these children at 5 y and assessed cognition by the Ages and Stages Questionnaire, 3rd edition, and subtests from the Developmental Neuropsychological Assessment, 2nd edition (NEPSY-II). The associations of the independent metabolites or unobserved metabolic phenotypes (identified by latent class analysis) with the cognitive outcomes were estimated by seemingly unrelated regression. We explored direct and indirect relations between the OCM pathway and the cognitive outcomes using path analysis. RESULTS: Infant cystathionine concentration was inversely associated with 4 cognitive outcomes (standardized ßs ranging from -0.22 to -0.11, P values from <0.001 to 0.034). Infants with a metabolic phenotype indicating impaired OCM and low vitamin B-12 status had poorer cognitive outcomes compared with infants with normal OCM activity and adequate vitamin B-12 status (standardized ßs ranging from -0.80 to -0.40, P < 0.001 and 0.05). In the path analysis, we found several OCM biomarkers were associated with affect recognition through infant plasma cystathionine. CONCLUSIONS: Elevated plasma cystathionine during infancy reflects a metabolic phenotype of impaired OCM and low vitamin B-12 status and is associated with poorer cognitive function when the children are 5 y old.


Assuntos
Carbono/metabolismo , Desenvolvimento Infantil/fisiologia , Cognição/fisiologia , Adolescente , Adulto , Biomarcadores/sangue , Pré-Escolar , Estudos Transversais , Cistationina/sangue , Metilação de DNA , Feminino , Código das Histonas , Humanos , Lactente , Análise de Classes Latentes , Masculino , Pessoa de Meia-Idade , Mães , Nepal , Fenótipo , Vitamina B 12/sangue , Deficiência de Vitamina B 12/sangue , Deficiência de Vitamina B 12/psicologia , Adulto Jovem
16.
Redox Biol ; 42: 101668, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32800520

RESUMO

In the present study, we aimed to investigate the impact of permanent cystathionine-ß-Synthase (CBS) gene knockdown in human telomerase reverse transcriptase (hTERT) immortalized human adipose-derived mesenchymal stem cells (ASC52telo) and in their capacity to differentiate into adipocytes. CBS gene KD in ASC52telo cells led to increased cellular inflammation (IL6, CXCL8, TNF) and oxidative stress markers (increased intracellular reactive oxygen species and decreased reduced glutathione levels) in parallel to decreased H2S production and rejuvenation (LC3 and SIRT1)-related gene expression. In addition, CBS gene KD in ASC52telo cells resulted in altered mitochondrial respiratory function, characterised by decreased basal respiration (specifically proton leak) and spare respiratory capacity, without significant effects on cell viability and proliferation. In this context, shCBS-ASC52telo cells displayed enhanced adipogenic (FABP4, ADIPOQ, SLC2A4, CEBPA, PPARG)-, lipogenic (FASN, DGAT1)- and adipocyte (LEP, LBP)-related gene expression markers, decreased expression of proinflammatory cytokines, and increased intracellular lipid accumulation during adipocyte differentiation compared to control ASC52telo cells. Otherwise, the increased adipogenic potential of shCBS-ASC52telo cells was detrimental to the ability to differentiate into osteogenic linage. In conclusion, this study demonstrated that permanent CBS gene KD in ASC52telo cells promotes a cellular senescence phenotype with a very increased adipogenic potential, promoting a non-physiological enhanced adipocyte differentiation with excessive lipid storage.


Assuntos
Células-Tronco Mesenquimais , Adipogenia/genética , Diferenciação Celular , Células Cultivadas , Cistationina , Cistationina beta-Sintase/genética , Técnicas de Silenciamento de Genes , Humanos , Inflamação/genética , Estresse Oxidativo/genética
17.
Metallomics ; 12(12): 2032-2048, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33165451

RESUMO

Low molecular weight selenium containing metabolites in the leaves of the selenium hyperaccumulator Cardamine violifolia (261 mg total Se per kg d.w.) were targeted in this study. One dimensional cation exchange chromatography coupled to ICP-MS was used for purification and fractionation purposes prior to LC-Unispray-QTOF-MS analysis. The search for selenium species in full scan spectra was assisted with an automated mass defect based filtering approach. Besides selenocystathionine, selenohomocystine and its polyselenide derivative, a total number of 35 water soluble selenium metabolites other than selenolanthionine were encountered, including 30 previously unreported compounds. High occurrence of selenium containing hexoses was observed, together with the first assignment of N-glycoside derivatives of selenolanthionine. Quantification of the most abundant selenium species, selenolanthionine, was carried out with an ion pairing LC - post column isotope dilution ICP-MS setup, which revealed that this selenoamino acid accounted for 30% of the total selenium content of the leaf (78 mg (as Se) per kg d.w.).


Assuntos
Cardamine/metabolismo , Cistationina/análogos & derivados , Homocistina/análogos & derivados , Compostos Organosselênicos/metabolismo , Selênio/metabolismo , Alanina/análogos & derivados , Alanina/análise , Alanina/metabolismo , Cardamine/química , Cistationina/análise , Cistationina/metabolismo , Homocistina/análise , Homocistina/metabolismo , Compostos Organosselênicos/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Selênio/análise , Solubilidade , Água/química
18.
Sci Rep ; 10(1): 14886, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913258

RESUMO

The reverse transsulfuration pathway, which is composed of cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CGL), plays a role to synthesize L-cysteine using L-serine and the sulfur atom in L-methionine. A plant-derived lactic acid bacterium Lactobacillus plantarum SN35N has been previously found to harbor the gene cluster encoding the CBS- and CGL-like enzymes. In addition, it has been demonstrated that the L. plantarum CBS can synthesize cystathionine from O-acetyl-L-serine and L-homocysteine. The aim of this study is to characterize the enzymatic functions of the L. plantarum CGL. We have found that the enzyme has the high γ-lyase activity toward cystathionine to generate L-cysteine, together with the ß-lyase activity toward L-cystine to generate L-cysteine persulfide. By the crystallographic analysis of the inactive CGL K194A mutant complexed with cystathionine, we have found the residues which recognize the distal amino and carboxyl groups of cystathionine or L-cystine. The PLP-bound substrates at the active site may take either the binding pose for the γ- or ß-elimination reaction, with the former being the major reaction in the case of cystathionine.


Assuntos
Cistationina gama-Liase/metabolismo , Lactobacillus plantarum/enzimologia , Catálise , Cristalografia por Raios X , Cistationina/metabolismo , Cistationina gama-Liase/química , Homocisteína/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Especificidade por Substrato
19.
Sci Rep ; 10(1): 14657, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887901

RESUMO

Cystathionine ß-synthase (CBS) catalyzes the condensation of serine and homocysteine to water and cystathionine, which is then hydrolyzed to cysteine, α-ketobutyrate and ammonia by cystathionine γ-lyase (CGL) in the reverse transsulfuration pathway. The protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, includes both CBS and CGL enzymes. We have recently reported that the putative T. gondii CGL gene encodes a functional enzyme. Herein, we cloned and biochemically characterized cDNA encoding CBS from T. gondii (TgCBS), which represents a first example of protozoan CBS that does not bind heme but possesses two C-terminal CBS domains. We demonstrated that TgCBS can use both serine and O-acetylserine to produce cystathionine, converting these substrates to an aminoacrylate intermediate as part of a PLP-catalyzed ß-replacement reaction. Besides a role in cysteine biosynthesis, TgCBS can also efficiently produce hydrogen sulfide, preferentially via condensation of cysteine and homocysteine. Unlike the human counterpart and similar to CBS enzymes from lower organisms, the TgCBS activity is not stimulated by S-adenosylmethionine. This study establishes the presence of an intact functional reverse transsulfuration pathway in T. gondii and demonstrates the crucial role of TgCBS in biogenesis of H2S.


Assuntos
Cistationina beta-Sintase/metabolismo , Cisteína/biossíntese , Sulfeto de Hidrogênio/metabolismo , Toxoplasma/enzimologia , Toxoplasma/genética , Biocatálise , Cistationina/biossíntese , Cistationina beta-Sintase/genética , Cistationina gama-Liase/metabolismo , DNA Complementar , Genes de Protozoários , Heme/metabolismo , Homocisteína/metabolismo , Cinética , Serina/análogos & derivados , Serina/metabolismo
20.
Nat Commun ; 11(1): 2772, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487986

RESUMO

Vestigial structures are key indicators of evolutionary descent, but the mechanisms underlying their development are poorly understood. This study examines vestigial eye formation in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling morph and multiple populations of blind cave morphs. Cavefish embryos initially develop eyes, but they subsequently degenerate and become vestigial structures embedded in the head. The mutated genes involved in cavefish vestigial eye formation have not been characterized. Here we identify cystathionine ß-synthase a (cbsa), which encodes the key enzyme of the transsulfuration pathway, as one of the mutated genes responsible for eye degeneration in multiple cavefish populations. The inactivation of cbsa affects eye development by increasing the transsulfuration intermediate homocysteine and inducing defects in optic vasculature, which result in aneurysms and eye hemorrhages. Our findings suggest that localized modifications in the circulatory system may have contributed to the evolution of vestigial eyes in cavefish.


Assuntos
Cistationina beta-Sintase/genética , Cistationina/metabolismo , Olho/embriologia , Olho/metabolismo , Peixes/fisiologia , Animais , Apoptose , Evolução Biológica , Encéfalo/embriologia , Sistema Cardiovascular , Cistationina beta-Sintase/metabolismo , Biologia do Desenvolvimento , Olho/citologia , Olho/crescimento & desenvolvimento , Feminino , Peixes/embriologia , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Cabeça , Cristalino/citologia , Cristalino/metabolismo , Masculino , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...