Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.526
Filtrar
1.
Methods Mol Biol ; 2715: 65-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37930520

RESUMO

Protein function is generally dependent on its subcellular localization. In gram-negative bacteria such as Escherichia coli, a protein can be targeted to five different compartments: the cytoplasm, the inner membrane, the periplasm, the outer membrane, and the extracellular medium. Different approaches can be used to determine the protein localization within cell such as in silico identification of protein signal sequences and motifs, electron microscopy and immunogold labeling, optical fluorescence microscopy, and biochemical technics. In this chapter, we describe a simple and efficient method to isolate the different compartments of Escherichia coli by a fractionation method and to determine the presence of the protein of interest. For inner membrane proteins, we propose a method to discriminate between integral and peripheral membrane proteins.


Assuntos
Fracionamento Químico , Escherichia coli , Fracionamento Celular , Citoplasma , Proteínas de Membrana
2.
Methods Mol Biol ; 2715: 539-545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37930550

RESUMO

Competing bacteria secrete vast variety of toxic effectors via secretion systems. Phospholipase, peptidoglycan-hydrolase, or pore forming toxins often manifest in the bursting of the prey cell. Other toxins reach cytoplasm of the prey where they affect cell division machinery, metabolism, nucleic acid integrity, or protein synthesis. Inhibition of cell division or DNA integrity, which summons SOS response, will often lead to bacterial cell filamentation readily observable under the microscope. However, other toxic activities will not manifest in interpretable phenotypic changes that would readily suggest their mechanism of toxicity. Activity measurements of the three fundamental cellular processes-replication, transcription and translation can pave the way for further understanding of the toxin's activity. Method commonly known as metabolic labeling makes use of radioactive precursors for DNA, RNA and protein synthesis. This method provides highly sensitive snapshot of the activity of key cellular processes.


Assuntos
Fenômenos Fisiológicos Celulares , Toxinas Biológicas , Divisão Celular , Citoplasma , N-Acetil-Muramil-L-Alanina Amidase , DNA
3.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013686

RESUMO

Paracingulin (CGNL1) is recruited to tight junctions (TJs) by ZO-1 and to adherens junctions (AJs) by PLEKHA7. PLEKHA7 has been reported to bind to the microtubule minus-end-binding protein CAMSAP3, to tether microtubules to the AJs. Here, we show that knockout (KO) of CGNL1, but not of PLEKHA7, results in the loss of junctional CAMSAP3 and its redistribution into a cytoplasmic pool both in cultured epithelial cells in vitro and mouse intestinal epithelium in vivo. In agreement, GST pulldown analyses show that CGNL1, but not PLEKHA7, interacts strongly with CAMSAP3, and the interaction is mediated by their respective coiled-coil regions. Ultrastructure expansion microscopy shows that CAMSAP3-capped microtubules are tethered to junctions by the ZO-1-associated pool of CGNL1. The KO of CGNL1 results in disorganized cytoplasmic microtubules and irregular nuclei alignment in mouse intestinal epithelial cells, altered cyst morphogenesis in cultured kidney epithelial cells, and disrupted planar apical microtubules in mammary epithelial cells. Together, these results uncover new functions of CGNL1 in recruiting CAMSAP3 to junctions and regulating microtubule cytoskeleton organization and epithelial cell architecture.


Assuntos
Microtúbulos , Junções Íntimas , Animais , Camundongos , Junções Aderentes/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Junções Íntimas/metabolismo
4.
Biol Res ; 56(1): 58, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941013

RESUMO

Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.


Assuntos
Fertilidade , MicroRNAs , Temperatura , Citoplasma/genética , Fertilidade/genética , Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios/metabolismo , Pólen/genética , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
5.
J Immunother Cancer ; 11(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37935566

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS: The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS: Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS: In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/uso terapêutico , Citoplasma/metabolismo , Citoplasma/patologia , Camundongos Transgênicos , Neoplasias Pancreáticas/metabolismo , Poli C/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Microambiente Tumoral
6.
Nat Commun ; 14(1): 7333, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957162

RESUMO

Cytoplasmic male sterility (CMS) lines are important for breeding hybrid crops, and utilization of CMS lines requires strong fertility restorer (Rf) genes. Rf4, a major Rf for Wild-Abortive CMS (CMS-WA), has been cloned in rice. However, the Rf4 evolution and formation of CMS-WA/Rf system remain elusive. Here, we show that the Rf4 locus emerges earlier than the CMS-WA gene WA352 in wild rice, and 69 haplotypes of the Rf4 locus are generated in the Oryza genus through the copy number and sequence variations. Eight of these haplotypes of the Rf4 locus are enriched in modern rice cultivars during natural and human selections, whereas non-functional rf4i is preferentially selected for breeding current CMS-WA lines. We further verify that varieties carrying two-copy Rf4 haplotype have stronger fertility restoration ability and are widely used in three-line hybrid rice breeding. Our findings increase our understanding of CMS/Rf systems and will likely benefit crop breeding.


Assuntos
Genes de Plantas , Oryza , Humanos , Oryza/genética , Variações do Número de Cópias de DNA , Melhoramento Vegetal , Citoplasma , Fertilidade/genética , Infertilidade das Plantas/genética
7.
J R Soc Interface ; 20(208): 20230428, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37963561

RESUMO

The Drosophila melanogaster embryo, an elongated multi-nucleated cell, is a classical model system for eukaryotic development and morphogenesis. Recent work has shown that bulk cytoplasmic flows, driven by cortical contractions along the walls of the embryo, enable the uniform spreading of nuclei along the anterior-posterior axis necessary for proper embryonic development. Here, we propose two mathematical models to characterize cytoplasmic flows driven by tangential cortical contractions in elongated cells. Assuming Newtonian fluid flow at low Reynolds number in a spheroidal cell, we first compute the flow field exactly, thereby bypassing the need for numerical computations. We then apply our results to recent experiments on nuclear transport in cell cycles 4-6 of Drosophila embryo development. By fitting the cortical contractions in our model to measurements, we reveal that experimental cortical flows enable near-optimal axial spreading of nuclei. A second mathematical approach, applicable to general elongated cell geometries, exploits a long-wavelength approximation to produce an even simpler solution, with errors below [Formula: see text] compared with the full model. An application of this long-wavelength result to transport leads to fully analytical solutions for the nuclear concentration that capture the essential physics of the system, including optimal axial spreading of nuclei.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transporte Ativo do Núcleo Celular , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo
8.
Int J Biol Sci ; 19(16): 5319-5336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928256

RESUMO

Transfer RNAs (tRNAs) impact the development and progression of various cancers, but how individual tRNAs are modulated during triple-negative breast cancer (TNBC) progression remains poorly understood. Here, we found that XPOT (Exportin-T), a nuclear export protein receptor of tRNAs, is associated with poor prognosis in breast cancer and directly orchestrates the nuclear export of a subset of tRNAs, subsequently promoting protein synthesis and proliferation of human TNBC cells. XPOT knockdown inhibited TNBC cell proliferation in vitro, and RNA-seq indicated that XPOT is involved in the completion of cytokinesis in TNBC cells. High-throughput sequencing of tRNA revealed that XPOT specifically influenced a subset of tRNA isodecoders involved in nucleocytoplasmic trafficking, including tRNA-Ala-AGC-10-1. Through codon preferential analysis and protein mass spectrometry, we found that XPOT preferentially transported nuclear tRNA-Ala-AGC-10-1 to the cytoplasm, driving the translation of TPR Repeat Protein 19 (TTC19). TTC19 is also indispensable for cytokinesis and proliferation of TNBC cells. Altogether, these findings provide a novel regulatory translation mechanism for preferential tRNA isodecoder nucleocytoplasmic transport through XPOT, which coordinates the spatial location of specific tRNA and the translation of mRNA to facilitate TNBC proliferation and progression. Targeting XPOT may be a novel therapeutic strategy for treating TNBC.


Assuntos
Citocinese , Neoplasias de Mama Triplo Negativas , Humanos , Citocinese/genética , Neoplasias de Mama Triplo Negativas/genética , Proliferação de Células/genética , Transporte Biológico , Citoplasma , RNA de Transferência/genética , Linhagem Celular Tumoral , Proteínas de Transporte Nucleocitoplasmático
9.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909039

RESUMO

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Assuntos
Carcinoma , Imunoglobulina A , Humanos , Imunoglobulina A/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Citoplasma/metabolismo
10.
Curr Protoc ; 3(11): e939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37994667

RESUMO

Tunneling nanotubes (TNTs) are thin membranous channels providing a direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication, and pathogen and amyloid protein transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this protocol represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; (4) monitor their formation in living cells; (5) characterize TNTs by a micropatterning approach; and (6) investigate TNT ultrastructure by cryo-EM are provided. Finally, this article describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of tunneling nanotubes Alternate Protocol 1: Identifying the cytoskeletal elements present in tunneling nanotubes Alternate Protocol 2: Distinguishing tunneling nanotubes from intercellular bridges formed during cell division Basic Protocol 2: Deciphering tunneling nanotube formation and lifetime by live fluorescent microscopy Alternate Protocol 3: Deciphering tunneling nanotube formation using a live-compatible dye Basic Protocol 3: Assessing tunneling nanotubes functionality in intercellular transfer Alternate Protocol 4: Flow cytometry approach to quantify the rate of vesicle or mitochondria transfer Support Protocol: Controls to support TNT-mediated transfer Basic Protocol 4: Studies of tunneling nanotubes by cell micropatterning Basic Protocol 5: Characterization of the ultrastructure of tunneling nanotubes by cryo-EM.


Assuntos
Nanotubos , Nanotubos/química , Comunicação Celular , Citoplasma , Técnicas de Cultura de Células
11.
Theor Appl Genet ; 136(12): 252, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987845

RESUMO

KEY MESSAGE: Simulations demonstrated that estimates of realized genetic gain from linear mixed models using regional trials are biased to some degree. Thus, we recommend multiple selected models to obtain a range of reasonable estimates. Genetic improvements of discrete characteristics are obvious and easy to demonstrate, while quantitative traits require reliable and accurate methods to disentangle the confounding genetic and non-genetic components. Stochastic simulations of soybean [Glycine max (L.) Merr.] breeding programs were performed to evaluate linear mixed models to estimate the realized genetic gain (RGG) from annual multi-environment trials (MET). True breeding values were simulated under an infinitesimal model to represent the genetic contributions to soybean seed yield under various MET conditions. Estimators were evaluated using objective criteria of bias and linearity. Covariance modeling and direct versus indirect estimation-based models resulted in a substantial range of estimated values, all of which were biased to some degree. Although no models produced unbiased estimates, the three best-performing models resulted in an average bias of [Formula: see text] kg/ha[Formula: see text]/yr[Formula: see text] ([Formula: see text] bu/ac[Formula: see text]/yr[Formula: see text]). Rather than relying on a single model to estimate RGG, we recommend the application of several models with minimal and directional bias. Further, based on the parameters used in the simulations, we do not think it is appropriate to use any single model to compare breeding programs or quantify the efficiency of proposed new breeding strategies. Lastly, for public soybean programs breeding for maturity groups II and III in North America, the estimated RGG values ranged from 18.16 to 39.68 kg/ha[Formula: see text]/yr[Formula: see text] (0.27-0.59 bu/ac[Formula: see text]/yr[Formula: see text]) from 1989 to 2019. These results provide strong evidence that public breeders have significantly improved soybean germplasm for seed yield in the primary production areas of North America.


Assuntos
Melhoramento Vegetal , Soja , Soja/genética , Citoplasma , Modelos Lineares , Sementes/genética
12.
Mol Cancer ; 22(1): 179, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932766

RESUMO

BACKGROUND: Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. Non-small cell lung cancer (NSCLC) is one of the most common malignant cancers. Information on the functions and mechanism of circRNAs in lung cancer is limited; thus, the topic needs more exploration. The purpose of this study was to identify aberrantly expressed circRNAs in lung cancer, unravel their roles in NSCLC progression, and provide new targets for lung cancer diagnosis and therapy. METHODS: High-throughput sequencing was used to analyze differential circRNA expression in patients with lung cancer. qRT‒PCR was used to determine the level of circHERC1 in lung cancer tissues and plasma samples. Gain- and loss-of-function experiments were implemented to observe the impacts of circHERC1 on the growth, invasion, and metastasis of lung cancer cells in vitro and in vivo. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circHERC1. Nucleocytoplasmic localization of FOXO1 was determined by nucleocytoplasmic isolation and immunofluorescence. The interaction of circHERC1 with FOXO1 was verified by RNA pull-down, RNA immunoprecipitation (RIP) and western blot assays. The proliferation and migration of circHERC1 in vivo were verified by subcutaneous and tail vein injection in nude mice. RESULTS: CircHERC1 was significantly upregulated in lung cancer tissues and cells, ectopic expression of circHERC1 strikingly facilitated the proliferation, invasion and metastasis, and inhibited the apoptosis of lung cancer cells in vitro and in vivo. However, knockdown of circHERC1 exerted the opposite effects. CircHERC1 was mainly distributed in the cytoplasm. Further mechanistic research indicated that circHERC1 acted as a competing endogenous RNA of miR-142-3p to relieve the repressive effect of miR-142-3p on its target HMGB1, activating the MAPK/ERK and NF-κB pathways and promoting cell migration and invasion. More importantly, we found that circHERC1 could bind FOXO1 and sequester it in the cytoplasm, adjusting the feedback AKT pathway. The accumulation of FOXO1 in the cytosol and nuclear exclusion promoted cell proliferation and inhibited apoptosis. CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential prognostic biomarker and therapeutic target for NSCLC. CONCLUSIONS: CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential diagnosis biomarker and therapeutic target for NSCLC. Our findings indicate that circHERC1 facilitates the invasion and metastasis of NSCLC cells by regulating the miR-142-3p/HMGB1 axis and activating the MAPK/ERK and NF-κB pathways. In addition, circHERC1 can promote cell proliferation and inhibit apoptosis by sequestering FOXO1 in the cytoplasm to regulate AKT activity and BIM transcription.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína HMGB1 , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , RNA Circular/genética , MicroRNAs/genética , NF-kappa B/metabolismo , Camundongos Nus , Proteína HMGB1/metabolismo , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Citoplasma/metabolismo , Biomarcadores , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
13.
Sci Rep ; 13(1): 19383, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938622

RESUMO

Caloric restriction is known to extend the lifespan and/or improve diverse physiological parameters in a vast array of organisms. In the yeast Saccharomyces cerevisiae, caloric restriction is performed by reducing the glucose concentration in the culture medium, a condition previously associated with increased chronological lifespan and 20S proteasome activity in cell extracts, which was not due to increased proteasome amounts in restricted cells. Herein, we sought to investigate the mechanisms through which glucose restriction improved proteasome activity and whether these activity changes were associated with modifications in the particle conformation. We show that glucose restriction increases the ability of 20S proteasomes, isolated from Saccharomyces cerevisiae cells, to degrade model substrates and whole proteins. In addition, threonine 55 and/or serine 56 of the α5-subunit, were/was consistently found to be phosphorylated in proteasomes isolated from glucose restricted cells, which may be involved in the increased proteolysis capacity of proteasomes from restricted cells. We were not able to observe changes in the gate opening nor in the spatial conformation in 20S proteasome particles isolated from glucose restricted cells, suggesting that the changes in activity were not accompanied by large conformational alterations in the 20S proteasome but involved allosteric activation of proteasome catalytic site.


Assuntos
Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae , Fosforilação , Citoplasma , Glucose
14.
Reprod Biol Endocrinol ; 21(1): 109, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993944

RESUMO

BACKGROUND: TUBB8, a crucial gene encoding microtubule protein, plays a pivotal role in cellular processes. Deleterious TUBB8 variants have been shown to significantly hinder oocyte maturation. In this study, we conducted an in vitro investigation using TUBB8 mutant mouse oocytes to elucidate the pathogenic mechanisms of TUBB8 variants in oocyte nuclear and cytoplasmic maturation. METHODS: A mutant model was successfully established in mouse oocytes via microinjection to further investigate the effects of four novel discovered TUBB8 mutations on the nuclear and cytoplasmic maturation of mouse oocytes. Immunofluorescence and confocal microscopy were performed to observe the cortical polarity and spindle and of mutant oocytes. Active mitochondrial staining was performed to analyze mitochondrial distribution patterns. Endoplasmic reticulum and Ca2+ staining were conducted to assess ER distribution and cytoplasmic calcium ion concentration in oocytes. RESULTS: In mouse oocytes, TUBB8 variants (p.A313V, p.C239W, p.R251Q, and p.G96R) resulted in a reduction of the first polar body extrusion rate, disruption of spindle assembly, and abnormal chromosome distribution. Additionally, these variants induced oocyte organelle abnormalities, including anomalies in mitochondrial redistribution and endoplasmic reticulum stress compared to the wild-type. CONCLUSION: Deleterious TUBB8 variants could disrupt microtubule function, affecting critical processes such as spindle assembly, chromosome distribution, and organelle rearrangement during oocyte meiosis. These disruptions culminate in compromised nuclear-cytoplasmic maturation, consequently giving rise to oocyte maturation defects.


Assuntos
Oogênese , Tubulina (Proteína) , Camundongos , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Oogênese/genética , Oócitos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Citoplasma , Meiose/genética
15.
Mol Cell ; 83(20): 3740-3753.e9, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832546

RESUMO

Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.


Assuntos
Mitocôndrias , eIF-2 Quinase , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , eIF-2 Quinase/metabolismo , Citoplasma/metabolismo , Fosforilação , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
17.
Appl Microbiol Biotechnol ; 107(24): 7647-7655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815615

RESUMO

Immotile yeast cells were transiently moved in nonuniform sinusoidal electric fields using multiple pairs of micro-parallel cylindrical electrodes equipped with a sequential signal generator (SSG) to analyze cell viability at a clinical scale for the brewery/fermentation industry. Living yeast cells of Saccharomyces cerevisiae during the exponential-stationary phase, with a cell density of 1.15 × 105 cells mL-1 were suspended in sucrose medium. The conductivity (σs) was adjusted to 0.01 S m-1 with added KCl. Cells exposed in electric field strengths ranging from 32.89 to 40.98 kV m-1, exhibited positive dielectrophoresis (pDEP) with the lower critical frequencies (LCF) at 85.72 ± 3.59 kHz. The optimized value of LCF was shifted upwards to 780.00 ± 83.67 kHz when σswas increased to 0.10 S m-1. Dielectrophoretic and LCF spectra (translational speed of cells vs. electric field frequencies) of yeast suspensions during positive dielectrophoresis were analyzed in terms of the dielectric properties of the cell membrane and cytoplasm which reflect yeast cell viability and metabolic health status. The dielectrophoretic collection yield of cells using positive dielectrophoresis was reported on the monitor of sequential signal generator software to evaluate the number of living and dead cells through a real-time image processing analyzer. The spectra of both positive dielectrophoresis of the living and dead cells had distinguishable dielectric properties. The conductivity of the yeast cytoplasm (σc) of the dead cells was significantly less (≈ ≤ 0.05 S m-1) than that of the living yeast cells which typically had a cytoplasmic conductivity of ≈ 0.2 S m-1. This difference between viable and non-viable cells is sufficient for cell separation procedures. KEY POINTS: • Dielectrophoresis can be used to separate viable and non-viable yeast cells, • Cellular dielectric properties can be derived from the analysis of their dielectric spectra, • Cytoplasmic conductivity of viable cells is ≈ 0.2 S m-1 while that of non-viable cells ≈ ≤ 0.05 S m-1.


Assuntos
Eletricidade , Saccharomyces cerevisiae , Citoplasma , Condutividade Elétrica , Membrana Celular , Eletroforese/métodos
18.
BMC Cancer ; 23(1): 948, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803297

RESUMO

HER2-positive breast cancer (BC) invasiveness and drug-resistance issue is the critical treatment obstacle recently. We investigated the total and phosphorylated status EZH2 expression in database and BC tissue microarray. We demonstrated for the first time that EZH2 is distributed both in cytoplasm and nucleus of breast cancer cells in a phosphorylation site-specific manner. High expressed-EZH2 cases more frequently had an advanced clinical stage (lymph node metastasis) and aggressive features than EZH2-low cases, potentially indicating the high risk of HER2-positive BC (p < 0.05). Notably, highly expressed phosphorylated EZH2 is differently located in cytoplasm or nucleus in a site-specific manner in breast cancer cells. Nucleus-located pEZH2-S21 is expressed in invasive and lymph node metastatic HER2-positive BC cases (p = 0.144, p = 0.001). Cytoplasmic pEZH2-T487 is correlated with HER2 positive status (p = 0.014).In conclusion, high expression of nucleus-located EZH2 might be a predictor of invasive BC. Activation of phosphorylated EZH2-S21 site in nucleus would be a potential predictor of HER2-positve BC and poor efficacy of HER2-target therapy. These results point to a PRC2-independent non-epigenetic mechanism and therapeutic strategy of EZH2 in HER2-positive BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/metabolismo , Fosforilação , Citoplasma/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
19.
BMC Bioinformatics ; 24(1): 388, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828466

RESUMO

BACKGROUND: Image segmentation pipelines are commonly used in microscopy to identify cellular compartments like nucleus and cytoplasm, but there are few standards for comparing segmentation accuracy across pipelines. The process of selecting a segmentation assessment pipeline can seem daunting to researchers due to the number and variety of metrics available for evaluating segmentation quality. RESULTS: Here we present automated pipelines to obtain a comprehensive set of 69 metrics to evaluate segmented data and propose a selection methodology for models based on quantitative analysis, dimension reduction or unsupervised classification techniques and informed selection criteria. CONCLUSION: We show that the metrics used here can often be reduced to a small number of metrics that give a more complete understanding of segmentation accuracy, with different groups of metrics providing sensitivity to different types of segmentation error. These tools are delivered as easy to use python libraries, command line tools, Common Workflow Language Tools, and as Web Image Processing Pipeline interactive plugins to ensure a wide range of users can access and use them. We also present how our evaluation methods can be used to observe the changes in segmentations across modern machine learning/deep learning workflows and use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Aprendizado de Máquina , Citoplasma
20.
Mol Cell ; 83(21): 3869-3884.e7, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797622

RESUMO

Effective immunity requires the innate immune system to distinguish foreign nucleic acids from cellular ones. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA-editing enzyme ADAR1 to evade being recognized as viral dsRNA by cytoplasmic dsRNA sensors, including MDA5 and PKR. The loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5. Additional RNA-editing-independent functions of ADAR1 have been proposed, but a specific mechanism has not been delineated. We now demonstrate that the loss of ADAR1-mediated RNA editing specifically activates MDA5, whereas loss of the cytoplasmic ADAR1p150 isoform or its dsRNA-binding activity enabled PKR activation. Deleting both MDA5 and PKR resulted in complete rescue of the embryonic lethality of Adar1p150-/- mice to adulthood, contrasting with the limited or no rescue by removing MDA5 or PKR alone. Our findings demonstrate that MDA5 and PKR are the primary in vivo effectors of fatal autoinflammation following the loss of ADAR1p150.


Assuntos
Imunidade Inata , RNA de Cadeia Dupla , Animais , Camundongos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Citoplasma/metabolismo , Imunidade Inata/genética , RNA de Cadeia Dupla/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...