Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.627
Filtrar
1.
Plant Cell Rep ; 43(11): 257, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382709

RESUMO

KEY MESSAGE: The N-terminal transmembrane domain of LPAT1 crosses the inner membrane placing the N terminus in the intermembrane space and the C-terminal enzymatic domain in the stroma. Galactolipids mono- and di-galactosyl diacylglycerol are the major and vital lipids of photosynthetic membranes. They are synthesized by five enzymes hosted at different sub-chloroplast locations. However, localization and topology of the second-acting enzyme, lysophosphatidic acid acyltransferase 1 (LPAT1), which acylates the sn-2 position of glycerol-3-phosphate (G3P) to produce phosphatidic acid (PA), remain unclear. It is not known whether LPAT1 is located at the outer or the inner envelope membrane and whether its enzymatic domain faces the cytosol, the intermembrane space, or the stroma. Even the size of mature LPAT1 in chloroplasts is not known. More information is essential for understanding the pathways of metabolite flow and for future engineering endeavors to modify glycerolipid biosynthesis. We used LPAT1 preproteins translated in vitro for import assays to determine the precise size of the mature protein and found that the LPAT1 transit peptide is at least 85 residues in length, substantially longer than previously predicted. A construct comprising LPAT1 fused to the Venus fluorescent protein and driven by the LPAT1 promoter was used to complement an Arabidopsis lpat1 knockout mutant. To determine the sub-chloroplast location and topology of LPAT1, we performed protease treatment and alkaline extraction using chloroplasts containing in vitro-imported LPAT1 and chloroplasts isolated from LPAT1-Venus-complemented transgenic plants. We show that LPAT1 traverses the inner membrane via an N-terminal transmembrane domain, with its N terminus protruding into the intermembrane space and the C-terminal enzymatic domain residing in the stroma, hence displaying a different membrane topology from its bacterial homolog, PlsC.


Assuntos
Aciltransferases , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Aciltransferases/metabolismo , Aciltransferases/genética , Domínios Proteicos , Plastídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Plantas Geneticamente Modificadas , Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nicotiana/genética , Nicotiana/metabolismo
2.
World J Microbiol Biotechnol ; 40(11): 343, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39375274

RESUMO

Microalgae are susceptible to most pollutants in aquatic ecosystems and can be potentially damaged by silver nanoparticles (AgNPs). This study aims to clarify the potential consequences of Chlorella vulgaris internalizing AgNPs. The exposure of C. vulgaris to AgNPs stabilized with citrate led to the accumulation of NPs in the cell wall, increasing permeability, which allowed the entry of AgNPs and Ag + ions resulting from the dissolution of AgNPs. Ag + accumulated inside the cell could be converted into AgNPs (endogenous) due to the reducing potential of the cytoplasm. Both exogenous and endogenous AgNPs caused damage to all biological structures of the algae, as demonstrated by TEM images. This damage included the disorganization of chloroplasts, deposition of AgNPs on starch granules, and increased amounts of lipids, starch granules, exopolysaccharides, plastoglobuli, and cell diameters. These changes caused cell death by altering cell viability and interfering with organelle functions, possibly due to reactive oxygen species generated by nanoparticles, as shown in a lipid bilayer model. These findings highlight the importance of considering the exposure risks of AgNPs in a worldwide distributed chlorophyte.


Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Microalgas , Espécies Reativas de Oxigênio , Prata , Prata/metabolismo , Prata/farmacologia , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microscopia Eletrônica de Transmissão , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos dos fármacos
3.
Pestic Biochem Physiol ; 204: 106071, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277416

RESUMO

Synthetic plant activators represent a promising novel class of green pesticides that can triggering endogenous plant immunity against pathogen invasion. In our previous study, we developed a series of fluorinated compounds capable of eliciting disease resistance in plants; however, the underlying regulatory mechanisms remained unclear. In this study, we systematically investigated the mechanism of plant immune activation using four synthetic plant activators in Arabidopsis thaliana (A. thaliana), including two fluorine-substituted and two non­fluorine-substituted molecules. Our findings revealed that the fluorinated compounds exhibited superior disease resistance activity compared to the non-fluorinated molecules. Gene expression analysis in systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related pathways demonstrated that fluorine substitution effectively regulated both SAR- and ISR-pathway activation, highlighting the distinct roles of fluorine in modulating the plant immune system. Notably, the prolonged ROS burst was observed in chloroplasts following treatment with all four plant activators, contrasting with the transient ROS burst induced by natural elicitors. These results provide insights into the unique mechanisms underlying synthetic plant activator-induced plant immunity. Furthermore, comprehensive proteomic analysis revealed a robust immune response mediated by fluorine-substituted plant activators. These findings offer novel insights into the role of fluorine substitution in SAR- and ISR-associated immune signaling pathways and their distinct impact on ROS production within chloroplasts.


Assuntos
Arabidopsis , Cloroplastos , Espécies Reativas de Oxigênio , Transdução de Sinais , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Imunidade Vegetal/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Halogenação , Doenças das Plantas/imunologia
4.
BMC Plant Biol ; 24(1): 861, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39272034

RESUMO

BACKGROUND: Jasminum sambac, a widely recognized ornamental plant prized for its aromatic blossoms, exhibits three flora phenotypes: single-petal ("SP"), double-petal ("DP"), and multi-petal ("MP"). The lack of detailed characterization and comparison of J. sambac mitochondrial genomes (mitogenomes) hinders the exploration of the genetic and structural diversity underlying the varying floral phenotypes in jasmine accessions. RESULTS: Here, we de novo assembled three mitogenomes of typical phenotypes of J. sambac, "SP", "DP", and "MP-hutou" ("HT"), with PacBio reads and the "HT" chloroplast (cp) genome with Illumina reads, and verified them with read mapping and fluorescence in situ hybridization (FISH). The three mitogenomes present divergent sub-genomic conformations, with two, two, and four autonomous circular chromosomes ranging in size from 35.7 kb to 405.3 kb. Each mitogenome contained 58 unique genes. Ribosome binding sites with conserved AAGAAx/AxAAAG motifs were detected upstream of uncanonical start codons TTG, CTG and GTG. The three mitogenomes were similar in genomic content but divergent in structure. The structural variations were mainly attributed to recombination mediated by a large (~ 5 kb) forward repeat pair and several short repeats. The three jasmine cp. genomes showed a well-conserved structure, apart from a 19.9 kb inversion in "HT". We identified a 14.3 kb "HT"-specific insertion on Chr7 of the "HT" nuclear genome, consisting of two 7 kb chloroplast-derived fragments with two intact ndhH and rps15 genes, further validated by polymerase chain reaction (PCR). The well-resolved phylogeny suggests faster mitogenome evolution in J. sambac compared to other Oleaceae species and outlines the mitogenome evolutionary trajectories within Lamiales. All evidence supports that "DP" and "HT" evolved from "SP", with "HT" being the most recent derivative of "DP". CONCLUSION: The comprehensive characterization of jasmine organelle genomes has added to our knowledge of the structural diversity and evolutionary trajectories behind varying jasmine traits, paving the way for in-depth exploration of mechanisms and targeted genetic research.


Assuntos
Genoma Mitocondrial , Genoma de Planta , Jasminum , Jasminum/genética , Genoma de Cloroplastos , Cloroplastos/genética , Hibridização in Situ Fluorescente
5.
Carbohydr Polym ; 345: 122555, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227118

RESUMO

As a typical C4 plant and important crop worldwide, maize is susceptible to drought. In maize, transitory starch (TS) turnover occurs in the vascular bundle sheath of leaves, differing from that in Arabidopsis (a C3 plant). This process, particularly its role in drought tolerance and the key starch-hydrolyzing enzymes involved, is not fully understood. We discovered that the expression of the ß-amylase (BAM) gene ZmBAM8 is highly upregulated in the drought-tolerant inbred line Chang7-2t. Inspired by this finding, we systematically investigated TS degradation in maize lines, including Chang7-2t, Chang7-2, B104, and ZmBAM8 overexpression (OE) and knockout (KO) lines. We found that ZmBAM8 was significantly induced in the vascular bundle sheath by drought, osmotic stress, and abscisic acid. The stress-induced gene expression and chloroplast localization of ZmBAM8 align with the tissue and subcellular sites where TS turnover occurs. The recombinant ZmBAM8 was capable of effectively hydrolyzing leaf starch. Under drought conditions, the leaf starch in ZmBAM8-OE plants substantially decreased under light, while that in ZmBAM8-KO plants did not decrease. Compared with ZmBAM8-KO plants, ZmBAM8-OE plants exhibited increased drought tolerance. Our study provides insights into the significance of leaf starch degradation in C4 crops and contributes to the development of drought-resistant maize.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Amido , Zea mays , beta-Amilase , Zea mays/genética , Zea mays/metabolismo , Zea mays/enzimologia , Amido/metabolismo , beta-Amilase/metabolismo , beta-Amilase/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácido Abscísico/metabolismo , Estresse Fisiológico , Pressão Osmótica , Cloroplastos/metabolismo , Resistência à Seca
6.
Results Probl Cell Differ ; 73: 43-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39242374

RESUMO

The sequestration of enzymes and associated processes into sub-cellular domains, called organelles, is considered a defining feature of eukaryotic cells. However, what leads to specific outcomes and allows a eukaryotic cell to function singularly is the interactivity and exchanges between discrete organelles. Our ability to observe and assess sub-cellular interactions in living plant cells has expanded greatly following the creation of fluorescent fusion proteins targeted to different organelles. Notably, organelle interactivity changes quickly in response to stress and reverts to a normal less interactive state as homeostasis is re-established. Using key observations of some of the organelles present in a plant cell, this chapter provides a brief overview of our present understanding of organelle interactions in plant cells.


Assuntos
Organelas , Células Vegetais , Organelas/metabolismo , Células Vegetais/metabolismo , Células Vegetais/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Retículo Endoplasmático/metabolismo , Peroxissomos/metabolismo
7.
Genes (Basel) ; 15(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336705

RESUMO

Yellow leaf mutations have been widely used to study the chloroplast structures, the pigment synthesis, the photosynthesis mechanisms and the chlorophyll biosynthesis pathways across various species. For this study, a spontaneous mutant with the yellow leaf color named 96-140YBM was employed to explore the primary genetic elements that lead to the variations in the leaf color of hot peppers. To identify the pathways and genes associated with yellow leaf phenotypes, we applied sequencing-based Bulked Segregant Analysis (BSA-Seq) combined with BSR-Seq. We identified 4167 differentially expressed genes (DEGs) in the mutant pool compared with the wild-type pool. The results indicated that DEGs were involved in zeatin biosynthesis, plant hormone signal transduction, signal transduction mechanisms, post-translational modification and protein turnover. A total of 437 candidates were identified by the BSA-Seq, while the BSR-Seq pinpointed four candidate regions in chromosomes 8 and 9, containing 222 candidate genes. Additionally, the combination of BSA-Seq and BSR-Seq showed that there were 113 overlapping candidate genes between the two methods, among which 8 common candidates have been previously reported to be related to the development of chloroplasts, the photomorphogenesis and chlorophyll formation of plant chloroplasts and chlorophyll biogenesis. qRT-PCR analysis of the 8 common candidates showed higher expression levels in the mutant pool compared with the wild-type pool. Among the overlapping candidates, the DEG analysis showed that the CaKAS2 and CaMPH2 genes were down-regulated in the mutant pool compared to the wild type, suggesting that these genes may be key contributors to the yellow leaf phenotype of 96-140YBM. This research will deepen our understanding of the genetic basis of leaf color formation and provide valuable information for the breeding of hot peppers with diverse leaf colors.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Mutação , Folhas de Planta , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Pigmentação/genética , Fenótipo , Mapeamento Cromossômico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Clorofila/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese/genética
8.
Cell Rep ; 43(9): 114696, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39235940

RESUMO

Chloroplasts develop from undifferentiated plastids in response to light. In angiosperms, after the perception of light, the Elongated Hypocotyl 5 (HY5) transcription factor initiates photomorphogenesis, and two families of transcription factors known as GOLDEN2-LIKE (GLK) and GATA are considered master regulators of chloroplast development. In addition, the MIR171-targeted SCARECROW-LIKE GRAS transcription factors also impact chlorophyll biosynthesis. The extent to which these proteins carry out conserved roles in non-seed plants is not known. Using the model liverwort Marchantia polymorpha, we show that GLK controls chloroplast biogenesis, and HY5 shows a small conditional effect on chlorophyll content. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed that MpGLK has a broader set of targets than has been reported in angiosperms. We also identified a functional GLK homolog in green algae. In summary, our data support the hypothesis that GLK carries out a conserved role relating to chloroplast biogenesis in land plants and green algae.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Marchantia , Marchantia/metabolismo , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
9.
Plant Mol Biol ; 114(5): 100, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302509

RESUMO

Plastid-encoded RNA polymerase (PEP) is a bacterial-type multisubunit RNA polymerase responsible for the majority of transcription in chloroplasts. PEP consists of four core subunits, which are orthologs of their cyanobacterial counterparts. In Arabidopsis thaliana, PEP is expected to interact with 14 PEP-associated proteins (PAPs), which serve as peripheral subunits of the RNA polymerase. The exact contributions of PAPs to PEP function are still poorly understood. We used ptChIP-seq to show that PAP1 (also known as pTAC3), a peripheral subunit of PEP, binds to the same genomic loci as RpoB, a core subunit of PEP. The pap1 mutant shows a complete loss of RpoB binding to DNA throughout the genome, indicating that PAP1 is necessary for RpoB binding to DNA. A similar loss of RpoB binding to DNA is observed in a mutant defective in PAP7 (also known as pTAC14), another peripheral PEP subunit. We propose that PAPs are required for the recruitment of core PEP subunits to DNA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Polimerases Dirigidas por DNA , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/enzimologia , Plastídeos/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Mutação , Regulação da Expressão Gênica de Plantas , Ligação Proteica , Cloroplastos/genética , Cloroplastos/metabolismo
10.
Plant Physiol Biochem ; 215: 109078, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39226762

RESUMO

-Action potential (AP) of excitable plant cells is an important signaling event that can differentially alter physicochemical and physiological processes in various parts of the same cell. In giant cells of characean algae, the AP propagation has minor effect on photosynthetic electron transport in areas with high activity of plasmalemmal H+-pump but inhibits linear electron flow in regions featuring high passive H+/OH- conductance of the plasma membrane (PM). Uneven spatial distributions of local periplasmic and cytoplasmic pH facilitate the operation of distinct (CO2-dependent and O2-mediated) pathways of photoinduced electron flow, which presumably accounts for differential influence of AP on photosynthesis. The excitation of Chara australis cell in the presence of methyl viologen (MV), a redox mediator with the prooxidant action, provides a convenient model system to clarify the influence of voltage-dependent ion fluxes across PM on photosynthetic activity of chloroplasts. This study shows that permeation of MV to their target sites in chloroplasts is restricted by PM in resting cells, but MV easily passes through ionic channels opened during the PM depolarization. This gated permeation of MV gives rise to strong non-photochemical quenching, decrease in the effective quantum yield of linear electron flow, apparent O2 uptake, and, finally, the enhanced ROS production, as detected by the fluorescent probe dichlorofluorescein. Taken together, the results indicate that the AP generation in the presence of MV acts as trigger for instant redirection of photosynthetic linear electron flow from CO2-dependent route to the path of O2 reduction with the eventual formation of H2O2 as a dominant and most stable ROS form.


Assuntos
Membrana Celular , Chara , Oxigênio , Paraquat , Fotossíntese , Fotossíntese/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Paraquat/farmacologia , Membrana Celular/metabolismo , Oxigênio/metabolismo , Chara/metabolismo , Chara/efeitos dos fármacos , Oxirredução , Cloroplastos/metabolismo
11.
Planta ; 260(4): 102, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302471

RESUMO

MAIN CONCLUSION: The leaf color asymmetry found in the reciprocal hybrids C. hystrix × C. sativus (HC) and C. sativus × C. hystrix (CH) could be influenced by the CsPPR gene (CsaV3_1G038250.1). Most angiosperm organelles are maternally inherited; thus, the reciprocal hybrids usually exhibit asymmetric phenotypes that are associated with the maternal parent. However, there are two sets of organelle genomes in the plant cytoplasm, and the mechanism of reciprocal differences are more complex and largely unknown, because the chloroplast genes are involved besides mitochondrial genes. Cucumis spp. contains the species, i.e., cucumber and melon, which chloroplasts and mitochondria are maternally inherited and paternally inherited, respectively, serving as good materials for the study of reciprocal differences. In this study, leaf color asymmetry was observed in the reciprocal hybrids (HC and CH) derived from C. sativus (2n = 14, CC) and C. hystrix (2n = 24, HH), where the leaves of HC were found to have reduced chlorophyll content, abnormal chloroplast structure and lower photosynthetic capacity. Transcriptomic analysis revealed that the chloroplast development-related genes were differentially expressed in leaf color asymmetry. Genetic analysis showed that leaf color asymmetry was caused by the maternal chloroplast genome. Comparative analysis of chloroplast genomes revealed that there was no mutation in the chloroplast genome during interspecific hybridization. Moreover, a PPR gene (CsaV3_1G038250.1) with RNA-editing function was found to be involved in the regulation of leaf color asymmetry. These findings provide new insights into the regulatory mechanisms of asymmetric phenotypes in plant reciprocal crosses.


Assuntos
Cloroplastos , Cucumis sativus , Folhas de Planta , Edição de RNA , Cucumis sativus/genética , Cucumis sativus/fisiologia , Cucumis sativus/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Cloroplastos/genética , Edição de RNA/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hibridização Genética , Fotossíntese/genética , Fenótipo , Clorofila/metabolismo
12.
Physiol Plant ; 176(5): e14539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329246

RESUMO

Nutrient deprivation induces reserve accumulation in unicellular algae. An absence of nitrogen in the growth media results in the reorganization of the photosynthetic apparatus and triggers an increase in starch and triacylglyceride (TAG) accumulation in different algal species. Here we study the integration of photosynthetic regulatory mechanisms with carbon partitioning under N stress in C. reinhardtii. The mutant, proton gradient regulation 5 (pgr5) is impaired in photosynthetic cyclic electron flow resulting in low chloroplastic ATP/NADPH ratios. Over a time course, under both mixotrophic and phototrophic conditions, the pgr5 mutant did not accumulate starch in the first three days, but rather degraded its meagre reserves. In contrast, there was a high TAG content in the pgr5 mutant which we show, is not linked to a selective increase in autophagy in pgr5. In all strains, proteins involved in alternative electron pathways are upregulated while Photosystem II and chlorophyll are strongly degraded; pgr5 only preferentially preserved some cyt b6f complex. Our results show that low ATP/NADPH ratios due to an absence of cyclic electron flow in pgr5 result in the mobilization of starch and strong TAG accumulation from the onset of N stress in Chlamydomonas.


Assuntos
Chlamydomonas reinhardtii , Fotossíntese , Amido , Amido/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Fotossíntese/fisiologia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Nitrogênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Mutação , Cloroplastos/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
13.
Genomics ; 116(5): 110940, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39303860

RESUMO

Seagrasses are ideal for studying plant adaptation to marine environments. In this study, the mitochondrial (mt) and chloroplast (cp) genomes of Ruppia sinensis were sequenced. The results showed an extensive gene loss in seagrasses, including a complete loss of cp-rpl19 genes in Zosteraceae, most cp-ndh genes in Hydrocharitaceae, and mt-rpl and mt-rps genes in all seagrasses, except for the mt-rpl16 gene in Phyllospadix iwatensis. Notably, most ribosomal protein genes were lost in the mt and cp genomes. The deleted cp genes were not transferred to the mt genomes through horizontal gene transfer. Additionally, a significant DNA transfer between seagrass organelles was found, with the mt genomes of Zostera containing numerous sequences from the cp genome. Rearrangement analyses revealed an unreported inversion of the cp genome in R. sinensis. Moreover, four positively selected genes (atp8, nad5, atp4, and ccmFn) and five variable regions (matR, atp4, atp8, rps7, and ccmFn) were identified.


Assuntos
Transferência Genética Horizontal , Genoma Mitocondrial , Cloroplastos/genética , Genoma de Cloroplastos , Alismatales/genética , Alismatales/metabolismo , Filogenia , Mitocôndrias/genética , Mitocôndrias/metabolismo
14.
Int J Mol Sci ; 25(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39337416

RESUMO

The autochthonous grape varieties of the Don Valley, situated in southern Russia, constitute a distinctive element of regional cultural heritage. These varieties have been adapted over centuries to the region's specific local climatic and soil conditions. For the most part, these varieties are not imported from other countries. They are closely related to varieties found in Crimea and the North Caucasus. In this study, we obtained the first complete, unfragmented sequences of the chloroplast genomes of eight autochthonous varieties from the Don Valley and one from Crimea. We also performed a comparative analysis of their genomic features. The size of Vitis vinifera chloroplast genome sequences varied from 160,925 to 160,991 bp, depending on the cultivar, with a uniform GC ratio of 37.38%. Each genome consists of four subregions: a single copy region (LSC) ranging from 89,158 to 89,336 bp, a small single copy region (SSC) ranging from 19,070 to 19,073 bp, and a pair of inverted repeat regions (IRa and IRb) in the range of 26,292 to 26,353 bp. The chloroplast genomes of the studied V. vinifera varieties contained 130 genes, including 85 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The sequence divergence analysis has enabled the identification of four highly variable regions, which may be utilized as potential markers for phylogenetic analysis. The analysis revealed the presence of 58 to 61 SSRs and multiple long repeated sequences in the chloroplast genomes of these varieties. The phylogenetic analyses of the sequences obtained and complete chloroplast genomes available from public databases indicated that the majority of autochthonous V. vinifera varieties do not have a direct origin from any European variety.


Assuntos
Variação Genética , Genoma de Cloroplastos , Filogenia , Vitis , Vitis/genética , Vitis/classificação , Federação Russa , Cloroplastos/genética
15.
Sci Rep ; 14(1): 20577, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232239

RESUMO

Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.


Assuntos
Espécies em Perigo de Extinção , Evolução Molecular , Genoma de Cloroplastos , Filogenia , Quercus , Quercus/genética , Genoma de Cloroplastos/genética , Uso do Códon , Cloroplastos/genética
16.
PLoS Biol ; 22(9): e3002785, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39298532

RESUMO

Plastids are pivotal target organelles for comprehensively enhancing photosynthetic and metabolic traits in plants via plastid engineering. Plastidial proteins predominantly originate in the nucleus and must traverse membrane-bound multiprotein translocons to access these organelles. This import process is meticulously regulated by chloroplast-targeting peptides (cTPs). Whereas many cTPs have been employed to guide recombinantly expressed functional proteins to chloroplasts, there is a critical need for more efficient cTPs. Here, we performed a comprehensive exploration and comparative assessment of an advanced suite of cTPs exhibiting superior targeting capabilities. We employed a multifaceted approach encompassing computational prediction, in planta expression, fluorescence tracking, and in vitro chloroplast import studies to identify and analyze 88 cTPs associated with Arabidopsis thaliana mutants with phenotypes linked to chloroplast function. These polypeptides exhibited distinct abilities to transport green fluorescent protein (GFP) to various compartments within leaf cells, particularly chloroplasts. A highly efficient cTP derived from Arabidopsis plastid ribosomal protein L35 (At2g24090) displayed remarkable effectiveness in chloroplast localization. This cTP facilitated the activities of chloroplast-targeted RNA-processing proteins and metabolic enzymes within plastids. This cTP could serve as an ideal transit peptide for precisely targeting biomolecules to plastids, leading to advancements in plastid engineering.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Plastídeos , Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Plastídeos/metabolismo , Plastídeos/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Proteico , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Sinais Direcionadores de Proteínas
17.
BMC Plant Biol ; 24(1): 888, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343888

RESUMO

BACKGROUND: Cotton is one of the topmost fiber crops throughout the globe. During the last decade, abrupt changes in the climate resulted in drought, heat, and salinity. These stresses have seriously affected cotton production and significant losses all over the textile industry. The GhAGC kinase, a subfamily of AGC group and member of serine/threonine (Ser/Thr) protein kinases group and is highly conserved among eukaryotic organisms. The AGC kinases are compulsory elements of cell development, metabolic processes, and cell death in mammalian systems. The investigation of RNA editing sites within the organelle genomes of multicellular vascular plants, such as Gossypium hirsutum holds significant importance in understanding the regulation of gene expression at the post-transcriptional level. METHODS: In present work, we characterized twenty-eight GhAGC genes in cotton and constructed phylogenetic tree using nine different species from the most primitive to the most recent. RESULTS: In sequence logos analyses, highly conserved amino acid residues were found in G. hirsutum, G. arboretum, G. raimondii and A. thaliana. The occurrence of cis-acting growth and stress-related elements in the promoter regions of GhAGCs highlight the significance of these factors in plant development and abiotic stress tolerance. Ka/Ks levels demonstrated that purifying selection pressure resulting from segmental events was applied to GhAGC with little functional divergence. We focused on identifying RNA editing sites in G. hirsutum organelles, specifically in the chloroplast and mitochondria, across all 28 AGC genes. CONCLUSION: The positive role of GhAGCs was explored by quantifying the expression in the plant tissues under abiotic stress. These findings help in understanding the role of GhAGC genes under abiotic stresses which may further be used in cotton breeding for the development of climate smart varieties in abruptly changing climate.


Assuntos
Cloroplastos , Gossypium , Filogenia , Edição de RNA , Estresse Fisiológico , Gossypium/genética , Gossypium/fisiologia , Edição de RNA/genética , Estresse Fisiológico/genética , Cloroplastos/genética , Genoma de Planta , Mitocôndrias/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas , RNA Mitocondrial/genética , Genes de Plantas
18.
Nat Plants ; 10(9): 1400-1417, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39160348

RESUMO

The translocon at the outer chloroplast membrane (TOC) is the gateway for chloroplast protein import and so is vital for photosynthetic establishment and plant growth. Chloroplast-associated protein degradation (CHLORAD) is a ubiquitin-dependent proteolytic system that regulates TOC. In CHLORAD, cytosolic Cdc48 provides motive force for the retrotranslocation of ubiquitinated TOC proteins to the cytosol but how Cdc48 is recruited is unknown. Here, we identify plant UBX-domain protein PUX10 as a component of the CHLORAD machinery. We show that PUX10 is an integral chloroplast outer membrane protein that projects UBX and ubiquitin-associated domains into the cytosol. It interacts with Cdc48 via its UBX domain, bringing it to the chloroplast surface, and with ubiquitinated TOC proteins via its ubiquitin-associated domain. Genetic analyses in Arabidopsis revealed a requirement for PUX10 during CHLORAD-mediated regulation of TOC function and plant development. Thus, PUX10 coordinates ubiquitination and retrotranslocation activities of CHLORAD to enable efficient TOC turnover.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Proteólise , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Ubiquitinação , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Domínios Proteicos
19.
J Photochem Photobiol B ; 259: 113004, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137703

RESUMO

This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.


Assuntos
Luz , Complexo de Proteína do Fotossistema II , Plantas , Espécies Reativas de Oxigênio , Estresse Fisiológico , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos da radiação , Plantas/metabolismo , Plantas/efeitos da radiação , Fotossíntese/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Fosforilação
20.
Plant Sci ; 348: 112208, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39089330

RESUMO

Chloroplast development underpins plant growth, by facilitating not only photosynthesis but also other essential biochemical processes. Nonetheless, the regulatory mechanisms and functional components of chloroplast development remain largely uncharacterized due to their complexity. In our study, we identified a plastid-targeted gene, ATYCO/RP8/CDB1, as a critical factor in early chloroplast development in Arabidopsis thaliana. YCO knock-out mutant (yco) exhibited a seedling-lethal, albino phenotype, resulting from dysfunctional chloroplasts lacking thylakoid membranes. Conversely, YCO knock-down mutants produced a chlorophyll-deficient cotyledon and normal leaves when supplemented with sucrose. Transcription analysis also revealed that YCO deficiency could be partially compensated by sucrose supplementation, and that YCO played different roles in the cotyledons and the true leaves. In YCO knock-down mutants, the transcript levels of plastid-encoded RNA polymerase (PEP)-dependent genes and nuclear-encoded photosynthetic genes, as well as the accumulation of photosynthetic proteins, were significantly reduced in the cotyledons. Moreover, the chlorophyll-deficient phenotype in YCO knock-down line can be effectively suppressed by inhibition of PSI cyclic electron transport activity, implying an interaction between YCO and PSI cyclic electron transport. Taken together, our findings de underscore the vital role of YCO in early chloroplast development and photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cotilédone , Regulação da Expressão Gênica de Plantas , Fotossíntese , Tilacoides , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fotossíntese/genética , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/genética , Cotilédone/fisiologia , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Cloroplastos/metabolismo , Clorofila/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA