Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.860
Filtrar
1.
PLoS One ; 17(9): e0265134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048873

RESUMO

Chloroplast metabolism is very sensitive to environmental fluctuations and is intimately related to plant leaf development. Characterization of the chloroplast proteome dynamics can contribute to a better understanding on plant adaptation to different climate scenarios and leaf development processes. Herein, we carried out a discovery-driven analysis of the Eucalyptus grandis chloroplast proteome during leaf maturation and throughout different seasons of the year. The chloroplast proteome from young leaves differed the most from all assessed samples. Most upregulated proteins identified in mature and young leaves were those related to catabolic-redox signaling and biogenesis processes, respectively. Seasonal dynamics revealed unique proteome features in the fall and spring periods. The most abundant chloroplast protein in humid (wet) seasons (spring and summer) was a small subunit of RuBisCO, while in the dry periods (fall and winter) the proteins that showed the most pronounced accumulation were associated with photo-oxidative damage, Calvin cycle, shikimate pathway, and detoxification. Our investigation of the chloroplast proteome dynamics during leaf development revealed significant alterations in relation to the maturation event. Our findings also suggest that transition seasons induced the most pronounced chloroplast proteome changes over the year. This study contributes to a more comprehensive understanding on the subcellular mechanisms that lead to plant leaf adaptation and ultimately gives more insights into Eucalyptus grandis phenology.


Assuntos
Eucalyptus , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Proteoma/metabolismo , Estações do Ano
2.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077287

RESUMO

N6-methyladenosine (m6A) is one of the most abundant internal modifications of mRNA, which plays important roles in gene expression regulation, and plant growth and development. Vir-like m6A methyltransferase associated (VIRMA) serves as a scaffold for bridging the catalytic core components of the m6A methyltransferase complex. The role of VIRMA in regulating leaf development and its related mechanisms have not been reported. Here, we identified and characterized two upland cotton (Gossypium hirsutum) VIRMA genes, named as GhVIR-A and GhVIR-D, which share 98.5% identity with each other. GhVIR-A and GhVIR-D were ubiquitously expressed in different tissues and relatively higher expressed in leaves and main stem apexes (MSA). Knocking down the expression of GhVIR genes by the virus-induced gene silencing (VIGS) system influences leaf cell size, cell shape, and total cell numbers, thereby determining cotton leaf morphogenesis. The dot-blot assay and colorimetric experiment showed the ratio of m6A to A in mRNA is lower in leaves of GhVIR-VIGS plants compared with control plants. Messenger RNA (mRNA) high-throughput sequencing (RNA-seq) and a qRT-PCR experiment showed that GhVIRs regulate leaf development through influencing expression of some transcription factor genes, tubulin genes, and chloroplast genes including photosystem, carbon fixation, and ribosome assembly. Chloroplast structure, chlorophyll content, and photosynthetic efficiency were changed and unsuitable for leaf growth and development in GhVIR-VIGS plants compared with control plants. Taken together, our results demonstrate GhVIRs function in cotton leaf development by chloroplast dependent and independent pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Adenosina/análogos & derivados , Cloroplastos/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Metilação , Metiltransferases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
3.
PLoS One ; 17(9): e0272990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048810

RESUMO

BACKGROUND: Many species of the genus Caragana have been used as wind prevention and sand fixation plants. They are also important traditional Chinese medicine, and ethnic medicine resource plant. Thus, chloroplast genomes (cp-genome) of some of these important species must be studied. METHODS: In this study, we analyzed the chloroplast genomes of C. jubata, C. erinacea, C. opulens, and C. bicolor, including their structure, repeat sequences, mutation sites, and phylogeny. RESULTS: The size of the chloroplast genomes was between 127,862 and 132,780 bp, and such genomes contained 112 genes (30 tRNA, 4 rRNA, and 78 protein-coding genes), 43 of which were photosynthesis-related genes. The total guanine + cytosine (G+C) content of four Caragana species was between 34.49% and 35.15%. The four Caragana species all lacked inverted repeats and can be classified as inverted repeat-lacking clade (IRLC). Of the anticipated genes of the four chloroplast genomes, introns were discovered in 17 genes, most of which were inserted by one intron. A total of 50 interspersed repeated sequences (IRSs) were found among them, 58, 29, 61, and 74 simple sequences repeats were found in C. jubata, C. bicolor, C. opulens, and C. erinacea, respectively. Analyses of sequence divergence showed that some intergenic regions (between trnK-UUU and rbcl; trnF-GAA and ndhJ; trnL-CAA and trnT-UGU; rpoB and trnC-GCA; petA and psbL; psbE and pebL; and sequences of rpoC, ycf1, and ycf2) exhibited a high degree of variations. A phylogenetic tree of eight Caragana species and another 10 legume species was reconstructed using full sequences of the chloroplast genome. CONCLUSIONS: (1) Chloroplast genomes can be used for the identification and classification of Caragana species. (2) The four Caragana species have highly similar cpDNA G+C content. (3) IRS analysis of the chloroplast genomes showed that these four species, similar to the chloroplast genome of most legumes, lost IRLC regions. (4) Comparative cp-genomic analysis suggested that the cp genome structure of the Caragana genus was well conserved in highly variable regions, which can be used to exploit markers for the identification of Caragana species and further phylogenetic study. (5) Results of phylogenetic analyses were in accordance with the current taxonomic status of Caragana. The phylogenetic relationship of Caragana species was partially consistent with elevation and geographical distribution.


Assuntos
Caragana , Genoma de Cloroplastos , Caragana/genética , Cloroplastos/genética , Genômica , Filogenia
4.
BMC Genomics ; 23(1): 639, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076168

RESUMO

BACKGROUND: Sinosenecio B. Nordenstam (Asteraceae) currently comprises 44 species. To investigate the interspecific relationship, several chloroplast markers, including ndhC-trnV, rpl32-trnL, matK, and rbcL, are used to analyze the phylogeny of Sinosenecio. However, the chloroplast genomes of this genus have not been thoroughly investigated. We sequenced and assembled the Sinosenecio albonervius chloroplast genome for the first time. A detailed comparative analysis was performed in this study using the previously reported chloroplast genomes of three Sinosenecio species. RESULTS: The results showed that the chloroplast genomes of four Sinosenecio species exhibit a typical quadripartite structure. There are equal numbers of total genes, protein-coding genes and RNA genes among the annotated genomes. Per genome, 49-56 simple sequence repeats and 99 repeat sequences were identified. Thirty codons were identified as RSCU values greater than 1 in the chloroplast genome of S. albonervius based on 54 protein-coding genes, indicating that they showed biased usage. Among 18 protein-coding genes, 46 potential RNA editing sites were discovered. By comparing these chloroplast genomes' structures, inverted repeat regions and coding regions were more conserved than single-copy and non-coding regions. The junctions among inverted repeat and single-copy regions showed slight difference. Several hot spots of genomic divergence were detected, which can be used as new DNA barcodes for species identification. Phylogenetic analysis of the whole chloroplast genome showed that the four Sinosenecio species have close interspecific relationships. CONCLUSIONS: The complete chloroplast genome of Sinosenecio albonervius was revealed in this study, which included a comparison of Sinosenecio chloroplast genome structure, variation, and phylogenetic analysis for related species. These will help future research on Sinosenecio taxonomy, identification, origin, and evolution to some extent.


Assuntos
Asteraceae , Genoma de Cloroplastos , Asteraceae/genética , Cloroplastos/genética , Repetições de Microssatélites/genética , Filogenia
5.
Gene ; 845: 146851, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057366

RESUMO

The cleome species of the Cleomaceae family have several medical uses, including applications such as antioxidants and insecticides. In the present study, we sequenced the complete chloroplast genome (cp genome) of Cleome paradoxa. The chloroplast genome is 159,393 bp long, with a typical four-region structure: a large single copy (LSC) region of 88,191 bp, a small single copy (SSC) region of 18,620 bp, and inverted repeat regions (IRa and IRb) of 26,291 bp each. The proportion of GC content was 35.79 %. The chloroplast genome of C. paradoxa contains 133 genes, 81 of which encode proteins, 29 encode tRNA, and 4 encode rRNA. We noticed a divergence in the location and number of certain genes at the IR-LSC and IR-SSC boundaries. The phylogenetic tree constructed from the complete chloroplast genome data broadly supported the taxonomic situation of Cleome paradoxa as belonging to the Cleomaceae family and Cleome species. The cp genome of C. paradoxa was rich in single sequence repeats (SSRs), with a total of 314 SSRs. Additionally, several genes were under positive selection. These results could be useful for determining the genetic variations and resolving conflicting relationships among Cleomaceae species.


Assuntos
Cleome , Genoma de Cloroplastos , Inseticidas , Magnoliopsida , Plantas Medicinais , Antioxidantes , Cloroplastos/genética , Cleome/genética , Magnoliopsida/genética , Filogenia , Plantas Medicinais/genética , RNA de Transferência/genética
6.
PLoS One ; 17(9): e0274067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36054201

RESUMO

Aglaonema, commonly called Chinese evergreens, are widely used for ornamental purposes. However, attempts to identify Aglaonema species and cultivars based on leaf morphology have been challenging. In the present study, chloroplast sequences were used to elucidate the phylogenetic relationships of cultivated Aglaonema in South China. The chloroplast genomes of one green species and five variegated cultivars of Aglaonema, Aglaonema modestum, 'Red Valentine', 'Lady Valentine', 'Hong Yan', 'Hong Jian', and 'Red Vein', were sequenced for comparative and phylogenetic analyses. The six chloroplast genomes of Aglaonema had typical quadripartite structures, comprising a large single copy (LSC) region (91,092-91,769 bp), a small single copy (SSC) region (20,816-26,501 bp), and a pair of inverted repeat (IR) regions (21,703-26,732 bp). The genomes contained 112 different genes, including 79-80 protein coding genes, 28-29 tRNAs and 4 rRNAs. The molecular structure, gene order, content, codon usage, long repeats, and simple sequence repeats (SSRs) were generally conserved among the six sequenced genomes, but the IR-SSC boundary regions were significantly different, and 'Red Vein' had a distinct long repeat number and type frequency. For comparative and phylogenetic analyses, Aglaonema costatum was included; it was obtained from the GenBank database. Single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were determined among the seven Aglaonema genomes studied. Nine divergent hotspots were identified: trnH-GUG-CDS1_psbA, trnS-GCU_trnS-CGA-CDS1, rps4-trnT-UGU, trnF-GAA-ndhJ, petD-CDS2-rpoA, ycf1-ndhF, rps15-ycf1-D2, ccsA-ndhD, and trnY-GUA-trnE-UUC. Additionally, positive selection was found for rpl2, rps2, rps3, ycf1 and ycf2 based on the analyses of Ka/Ks ratios among 16 Araceae chloroplast genomes. The phylogenetic tree based on whole chloroplast genomes strongly supported monophyletic Aglaonema and clear relationships among Aroideae, Lasioideae, Lemnoideae, Monsteroideae, Orontioideae, Pothoideae and Zamioculcadoideae in the family Araceae. By contrast, protein coding gene phylogenies were poorly to strongly supported and incongruent with the whole chloroplast genome phylogenetic tree. This study provided valuable genome resources and helped identify Aglaonema species and cultivars.


Assuntos
Araceae , Genoma de Cloroplastos , Araceae/genética , Cloroplastos/genética , Humanos , Repetições de Microssatélites , Filogenia
7.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4048-4054, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046894

RESUMO

Light is the main source for plants to obtain energy.Asarum forbesii is a typical shade medicinal plant, which generally grows in the shady and wet place under the bushes or beside the ditches.It can grow and develop without too much light intensity.This experiment explores the effects of shading on the growth, physiological characteristics and energy metabolism of A.forbesii, which can provide reference and guidance for its artificial planting.In this experiment, A.forbesii was planted under 80%, 60%, 40%, 20% and no shade.During the vigorous growth period, the photosynthetic physiological characteristics such as fluorescence parameters, photosynthetic parameters, photosynthetic pigment content and ultrastructure, as well as the content of mitochondrial electron transport chain(ETC) synthase and nutrients were measured.The results showed that the photosynthetic pigment content, chlorophyll fluorescence parameters and net photosynthesis rate(P_n) decreased with the decrease of shading.Under 20%-40% shading treatment, the plants had damaged ultrastructure, expanded and disintegrated chloroplast, disordered stroma lamella and grana lamella, and increased osmiophi-lic granules and starch granules.The activities of nicotinamide adenine dinucleotide dehydrogenase(NADH), succinate dehydrogenase(SDH), cytochrome C oxidoreductase(CCO) and adenosine triphosphate(ATP) synthasewere positively related to light intensity.With the reduction of shading, the content of total sugar and protein in nutrients increased first and then decreased, and the content was the highest under 60% shade.In conclusion, under 60%-80% shading treatment, the chloroplast and mitochondria had more complete structure, faster energy metabolism, higher light energy-conversion efficiency, better absorption and utilization of light energy and more nutrient synthesis, which was more suitable for the growth and development of A.forbesii.


Assuntos
Asarum , Clorofila/metabolismo , Cloroplastos , Metabolismo Energético , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
8.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077009

RESUMO

Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic functions essential to most life on Earth. Many of these functions require tightly controlled regulatory processes to maintain homeostasis at the protein level. One such regulatory mechanism is the ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent segregase CDC48 in chloroplast function.


Assuntos
Cloroplastos , Ubiquitina-Proteína Ligases , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077233

RESUMO

Bordeaux mixture (Bm) is a copper (Cu)-based pesticide that has been widely used for controlling citrus scab and citrus canker. However, frequent spraying of Bm is toxic to citrus. To our knowledge, few studies are available that discuss how the photosynthetic characteristics and chloroplast ultrastructure of citrus leaves are affected by Cu toxicity induced by excessive Bm. In the study, two-year-old seedlings of Citrus grandis (C. grandis) and Citrus sinensis (C. sinensis), which were precultured in pots, were foliar-sprayed with deionized water (as control) or Bm diluted 500-fold at intervals of 7 days for 6 times (4 times as recommended by the manufacturer) to investigate the leaf Cu absorption, photosynthesis, chloroplast ultrastructure and antioxidant enzymatic activities. Bm foliar-sprayed 6 times on citrus seedlings increased the leaf Cu content, decreased the photosynthetic pigments content and destroyed the chloroplast ultrastructure, which induced leaf chlorosis and photosynthetic inhibition. A lower Cu absorption, a higher light photon-electron transfer efficiency, a relative integrity of chloroplast ultrastructure and a promoted antioxidant protection contributed to a higher photosynthetic activity of C. grandis than C. sinensis under excessive spraying of Bm. The present study provides crucial references for screening and selecting citrus species with a higher tolerance to Cu toxicity induced by excessive Bm.


Assuntos
Citrus , Antioxidantes , Cloroplastos , Citrus/fisiologia , Cobre/toxicidade , Fotossíntese , Folhas de Planta/fisiologia , Plântula/fisiologia
10.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077319

RESUMO

RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.


Assuntos
Proteínas de Arabidopsis , Sinapis , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Plastídeos/genética , Plastídeos/metabolismo , Proteômica , Sinapis/metabolismo
11.
J Agric Food Chem ; 70(36): 11154-11168, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048567

RESUMO

A critical approach against copper (Cu) toxicity is the use of carbon nanomaterials (CNMs). However, the effect of CNMs on Cu toxicity-exposed chloroplasts is not clear. The photosynthetic, genetic, and biochemical effects of multiwalled carbon nanotubes (50-100-250 mg L-1 CNT) were investigated under Cu stress (50-100 µM CuSO4) in Zea mays chloroplasts. Fv/Fm and Fv/Fo were suppressed under stress. Stress altered the antioxidant system and the expression of psaA, psaB, psbA, and psbD. The chloroplastic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione S-transferase (GST), and glutathione peroxidase (GPX) increased under CNT + stress, and those of hydrogen peroxide (H2O2) and lipid peroxidation decreased. CNTs were promoted to the maintenance of the redox state by regulating enzyme/non-enzyme activity/contents involved in the AsA-GSH cycle. Furthermore, CNTs inverted the negative effects of Cu by upregulating the transcriptions of photosystem-related genes. However, the high CNT concentration had adverse effects on the antioxidant capacity. CNT has great potential to confer tolerance by reducing Cu-induced damage and protecting the biochemical reactions of photosynthesis.


Assuntos
Antioxidantes , Nanotubos de Carbono , Antioxidantes/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Cloroplastos/metabolismo , Cobre/farmacologia , Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Nanotubos de Carbono/toxicidade , Estresse Oxidativo , Fotoquímica , Zea mays/metabolismo
12.
BMC Plant Biol ; 22(1): 437, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36096762

RESUMO

BACKGROUND: The chloroplast is the organelle responsible for photosynthesis in higher plants. The generation of functional chloroplasts depends on the precise coordination of gene expression in the nucleus and chloroplasts and is essential for the development of plants. However, little is known about nuclear-plastid regulatory mechanisms at the early stage of chloroplast generation in rice. RESULTS: In this study, we identified a rice (Oryza sativa) mutant that exhibited albino and seedling-lethal phenotypes and named it ssa1(seedling stage albino1). Transmission electron microscopy (TEM) analysis indicated that the chloroplasts of ssa1 did not have organized thylakoid lamellae and that the chloroplast structure was destroyed. Genetic analysis revealed that the albino phenotypes of ssa1 were controlled by a pair of recessive nuclear genes. Map-based cloning experiments found that SSA1 encoded a pentapeptide repeat (PPR) protein that was allelic to OSOTP51,which was previously reported to participate in Photosystem I (PSI) assembly. The albino phenotype was reversed to the wild type (WT) phenotype when the normal SSA1 sequence was expressed in ssa1 under the drive of the actin promoter. Knockout experiments further created mutants ssa1-2/1-9, which had a phenotype similar to that of ssa1. SSA1 consisted of 7 pentatricopeptide repeat domains and two C-terminal LAGLIDADG tandem sequence motifs and was located in the chloroplast. GUS staining and qRT-PCR analysis showed that SSA1 was mainly expressed in young leaves and stems. In the ssa1 mutants, plastid genes transcribed by plastid-encoded RNA polymerase decreased, while those transcribed by nuclear-encoded RNA polymerase increased at the mRNA level. Loss-of-function SSA1 destroys RNA editing of ndhB-737 and intron splicing of atpF and ycf3-2 in the plastid genome. Yeast two-hybrid and BiFC assays revealed that SSA1 physically interacted with two new RNA editing partners, OsMORF8 and OsTRXz, which have potential functions in RNA editing and chloroplast biogenesis. CONCLUSIONS: Rice SSA1 encodes a pentatricopeptide repeat protein, which is targeted to the chloroplast. SSA1 regulates early chloroplast development and plays a critical role in RNA editing and intron splicing in rice. These data will facilitate efforts to further elucidate the molecular mechanism of chloroplast biogenesis.


Assuntos
Oryza , Cloroplastos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Edição de RNA/genética , Splicing de RNA
13.
Plant Physiol Biochem ; 189: 35-45, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041366

RESUMO

Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Plantas/metabolismo , Plastídeos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico/genética
14.
BMC Genomics ; 23(1): 570, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35945507

RESUMO

BACKGROUND: Saposhnikovia divaricata (Turcz.) Schischk. is a perennial herb whose dried roots are commonly used as a source of traditional medicines. To elucidate the organelle-genome-based phylogeny of Saposhnikovia species and the transfer of DNA between organelle genomes, we sequenced and characterised the mitochondrial genome (mitogenome) of S. divaricata. RESULTS: The mitogenome of S. divaricata is a circular molecule of 293,897 bp. The nucleotide composition of the mitogenome is as follows: A, 27.73%; T, 27.03%; C, 22.39%; and G, 22.85. The entire gene content is 45.24%. A total of 31 protein-coding genes, 20 tRNAs and 4 rRNAs, including one pseudogene (rpl16), were annotated in the mitogenome. Phylogenetic analysis of the organelle genomes from S. divaricata and 10 related species produced congruent phylogenetic trees. Selection pressure analysis revealed that most of the mitochondrial genes of related species are highly conserved. Moreover, 2 and 46 RNA-editing sites were found in the chloroplast genome (cpgenome) and mitogenome protein-coding regions, respectively. Finally, a comparison of the cpgenome and the mitogenome assembled from the same dataset revealed 10 mitochondrial DNA fragments with sequences similar to those in the repeat regions of the cpgenome, suggesting that the repeat regions might be transferred into the mitogenome. CONCLUSIONS: In this study, we assembled and annotated the mitogenome of S. divaricata. This study provides valuable information on the taxonomic classification and molecular evolution of members of the family Apiaceae.


Assuntos
Apiaceae , Genoma de Cloroplastos , Genoma Mitocondrial , Apiaceae/genética , Cloroplastos/genética , Filogenia
15.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955752

RESUMO

Photosynthesis is one of the most important factors in mulberry growth and production. To study the photosynthetic regulatory network of mulberry we sequenced the transcriptomes of two high-yielding (E1 and E2) and one low-yielding (H32) mulberry genotypes at two-time points (10:00 and 12:00). Re-annotation of the mulberry genome based on the transcriptome sequencing data identified 22,664 high-quality protein-coding genes with a BUSCO-assessed completeness of 93.4%. A total of 6587 differentially expressed genes (DEGs) were obtained in the transcriptome analysis. Functional annotation and enrichment revealed 142 out of 6587 genes involved in the photosynthetic pathway and chloroplast development. Moreover, 3 out of 142 genes were further examined using the VIGS technique; the leaves of MaCLA1- and MaTHIC-silenced plants were markedly yellowed or even white, and the leaves of MaPKP2-silenced plants showed a wrinkled appearance. The expression levels of the ensiled plants were reduced, and the levels of chlorophyll b and total chlorophyll were lower than those of the control plants. Co-expression analysis showed that MaCLA1 was co-expressed with CHUP1 and YSL3; MaTHIC was co-expressed with MaHSP70, MaFLN1, and MaEMB2794; MaPKP2 was mainly co-expressed with GH9B7, GH3.1, and EDA9. Protein interaction network prediction revealed that MaCLA1 was associated with RPE, TRA2, GPS1, and DXR proteins; MaTHIC was associated with TH1, PUR5, BIO2, and THI1; MaPKP2 was associated with ENOC, LOS2, and PGI1. This study offers a useful resource for further investigation of the molecular mechanisms involved in mulberry photosynthesis and preliminary insight into the regulatory network of photosynthesis.


Assuntos
Morus , Cloroplastos/genética , Cloroplastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Morus/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA-Seq , Transcriptoma
16.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2700-2712, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36002404

RESUMO

GLKs (GOLDEN 2-LIKEs) are a group of plant-specific transcription factors regulating the chloroplast biogenesis, differentiation and function maintains by triggering the expression of the photosynthesis-associated nuclear genes (PhANGs). The GLKs also play important roles in nutrient's accumulation in fruits, leaf senescence, immunity and abiotic stress response. The expression of GLK genes were affected by multiple hormones or environmental factors. Therefore, GLKs were considered as the key nodes of regulatory network in plant cells, and potential candidates to improve the photosynthetic capacity of crops. Since numerous researches of GLKs have been reported in plants, the biological function, molecular mechanism of GLKs genes and its applications in breeding were summarized and a GLK-mediated signaling network model was developed. This review may facilitate future research and application of GLKs.


Assuntos
Melhoramento Vegetal , Fatores de Transcrição , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Fatores de Transcrição/metabolismo
17.
Genes (Basel) ; 13(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36011380

RESUMO

The J-proteins, also called DNAJ-proteins or heat shock protein 40 (HSP40), are one of the famous molecular chaperones. J-proteins, HSP70s and other chaperones work together as constitute ubiquitous types of molecular chaperone complex, which function in a wide variety of physiological processes. J-proteins are widely distributed in major cellular compartments. In the chloroplast of higher plants, around 18 J-proteins and multiple J-like proteins are present; however, the functions of most of them remain unclear. During the last few years, important progress has been made in the research on their roles in plants. There is increasing evidence that the chloroplast J-proteins play essential roles in chloroplast development, photosynthesis, seed germination and stress response. Here, we summarize recent research advances on the roles of J-proteins in the chloroplast, and discuss the open questions that remain in this field.


Assuntos
Cloroplastos , Chaperonas Moleculares , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Plantas/metabolismo
18.
J Plant Physiol ; 277: 153782, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963041

RESUMO

Chloroplast development and chlorophyll biosynthesis are affected by temperature. However, the underlying molecular mechanism of this phenomenon remains elusive. Here, we isolated and characterized a thermosensitive yellow-green leaf mutant named tsyl1 (thermosensitive yellow leaf 1) from an ethylmethylsulfone (EMS)-mutagenized pool of rice. The mutant exhibits a yellow-green leaf phenotype and decreased leaf chlorophyll contents throughout development. At the mature stage of the tsyl1 mutant, the plant height, tiller number, number of spikelets per panicle and 1000 seed weight were decreased significantly compared to those of wild-type plants, but the seed setting rate and panicle length were not. The mutant phenotype was controlled by a single recessive nuclear gene on the short arm of rice chromosome 11. Map-based cloning of TSYL1, followed by a complementation experiment, showed a G base deletion at the coding region of LOC_Os11g05552, leading to the yellow-green phenotype. The TSYL1 gene encodes a signal recognition particle 54 kDa (SRP54) protein that is conserved in all organisms. The expression of tsyl1 was induced by high temperature. Furthermore, the expression of chlorophyll biosynthesis- and chloroplast development-related genes was influenced in tsyl1 at different temperatures. These results indicated that the TSYL1 gene plays a key role in chlorophyll biosynthesis and is affected by temperature at the transcriptional level.


Assuntos
Oryza , Clorofila/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo
19.
Biophys J ; 121(18): 3411-3421, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35986519

RESUMO

The inner membrane-associated protein of 30 kDa (IM30) is essential in chloroplasts and cyanobacteria. The spatio-temporal cellular localization of the protein appears to be highly dynamic and triggered by internal as well as external stimuli, mainly light intensity. The soluble fraction of the protein is localized in the cyanobacterial cytoplasm or the chloroplast stroma, respectively. Additionally, the protein attaches to the thylakoid membrane as well as to the chloroplast inner envelope or the cyanobacterial cytoplasmic membrane, respectively, especially under conditions of membrane stress. IM30 is involved in thylakoid membrane biogenesis and/or maintenance, where it either stabilizes membranes and/or triggers membrane-fusion processes. These apparently contradicting functions have to be tightly controlled and separated spatiotemporally in chloroplasts and cyanobacteria. IM30's fusogenic activity depends on Mg2+ binding to IM30; yet, it still is unclear how Mg2+-loaded IM30 interacts with membranes and promotes membrane fusion. Here, we show that the interaction of Mg2+ with IM30 results in increased binding of IM30 to native, as well as model, membranes. Via atomic force microscopy in liquid, IM30-induced bilayer defects were observed in solid-supported bilayers in the presence of Mg2+. These structures differ dramatically from the membrane-stabilizing carpet structures that were previously observed in the absence of Mg2+. Thus, Mg2+-induced alterations of the IM30 structure switch the IM30 activity from a membrane-stabilizing to a membrane-destabilizing function, a crucial step in membrane fusion.


Assuntos
Synechocystis , Cloroplastos/metabolismo , Fusão de Membrana , Proteínas de Membrana/química , Synechocystis/metabolismo , Tilacoides/química
20.
Biochem Biophys Res Commun ; 626: 236-242, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36041347

RESUMO

Heat shock proteins 70 (HSP70s) could cooperate with structurally diverse HSP40s (J proteins) to generate diverse chaperone networks in various cellular compartments, performing multiple housekeeping and stress-related functions in the organisms. There are two kinds of chloroplast heat shock protein 70 (cpHsc70-1, cpHsc70-2) and multiple J proteins in the Arabidopsis chloroplasts, while the interaction between cpHsc70s and J proteins and the function of most J proteins are largely unknown. In the present study, we found that AtDJC78 interacts with cpHsc70-1 through its C terminal, according to the results of yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Bioinformatics analysis showed that DJC78 is one of the widespread and highly conserved J proteins in plants, AtDJC78 could be transported into chloroplasts, and the expression of AtDJC78 was significantly up-regulated under heat stress. Furthermore, we found that AtDJC78 may be associated with regulating hydrogen peroxide levels under heat stress in plants. These findings suggest that AtDJC78 is a new cochaperone interacting with cpHsc70-1 in the chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...