Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 840
Filtrar
2.
Sci Rep ; 12(1): 10432, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729169

RESUMO

Broad-spectrum antimicrobial use during the treatment of critical illness influences gastrointestinal fermentation endpoints, host immune response and metabolic activity including the conversion of primary to secondary bile acids. We previously observed reduced fermentation capacity in the faecal microbiota of critically ill children upon hospital admission. Here, we further explore the timecourse of the relationship between the microbiome and bile acid profile in faecal samples collected from critically ill children. The microbiome was assayed by sequencing of the 16S rRNA gene, and faecal water bile acids were measured by liquid chromatography mass spectrometry. In comparison to admission faecal samples, members of the Lachnospiraceae recovered during the late-acute phase (days 8-10) of hospitalisation. Patients with infections had a lower proportion of Lachnospiraceae in their gut microbiota than controls and patients with primary admitting diagnoses. Keystone species linked to ecological recovery were observed to decline with the length of PICU admission. These species were further suppressed in patients with systemic infection, respiratory failure, and undergoing surgery. Bile acid composition recovers quickly after intervention for critical illness which may be aided by the compositional shift in Lachnospiraceae. Our findings suggest gut microbiota recovery can be readily assessed via measurement of faecal bile acids.


Assuntos
Microbioma Gastrointestinal , Ácidos e Sais Biliares/análise , Criança , Clostridiales/genética , Estado Terminal , Fezes/química , Microbioma Gastrointestinal/fisiologia , Humanos , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
3.
Front Cell Infect Microbiol ; 12: 838750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646726

RESUMO

Introduction: Early-life events are associated with the risk of obesity and comorbidities later in life. The gut microbiota-whose composition is influenced by genetics and environmental factors-could be involved. Since the microbiota affects metabolism and fat storage, early-life insults could contribute to the occurrence of obesity driven, in part, by microbiota composition. We examined associations of gut bacteria with early-life events, nutritional status, and body composition in the Nutritionist's Health Study (NutriHS). Methods: A cross-sectional study of 114 female participants examining early-life data, body composition, and biological samples was conducted. Fecal microbiota structure was determined targeting the V4 region of the 16S rRNA gene. Principal coordinates analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) were used to test the impact of variables on microbial diversity. Profiles were identified using the Jensen-Shannon divergence matrix and Calinski-Harabasz index. Differential abundance between the categories of exclusive breastfeeding duration and nutritional status was tested using DESeq2. Results: In the sample [median age 28 years and body mass index (BMI) 24.5 kg/m2], 2 microbiota profiles driven by the Blautia or Prevotella genus were identified. An estimated 9.1% of the variation was explained by the profiles (p < 0.001), 2.1% by nutritional status (p = 0.004), and 1.8% by exclusive breastfeeding (p = 0.012). The proportion of participants with BMI <25 kg/m2 and who were breastfed for at least 6 months was higher in the Blautia profile (p < 0.05). Conclusion: Findings in a Blautia-driven profile of healthy women reinforce that early-life events play a role in defining gut microbiota composition, confirming the importance of exclusive breastfeeding for infant gut colonization in establishing a protective profile against adiposity-related outcomes in adulthood.


Assuntos
Clostridiales , Obesidade , Adulto , Clostridiales/genética , Estudos Transversais , Feminino , Humanos , Obesidade/genética , Fenótipo , RNA Ribossômico 16S/genética
4.
Nutrients ; 14(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683992

RESUMO

BACKGROUND: We have previously reported that the addition of resistant maltodextrin (RMD), a fermentable functional fiber, to the diet increases fecal weight as well as the amount of fecal bifidobacteria. Here, we report on the targeted analysis of changes in potentially beneficial gut bacteria associated with the intervention. OBJECTIVE: The primary objective of this study was to determine the effect of adding 0, 15 and 25 g RMD to the diets of healthy free-living adults on potentially beneficial gut bacteria. METHODS: We expanded on our previously reported microbiota analysis in a double-blind, placebo-controlled feeding study (NCT02733263) by performing additional qPCR analyses targeting fecal lactic acid bacteria (LAB), Akkermansia muciniphila, Faecalibacterium prausnitzii and Fusicatenibacter saccharivorans in samples from 49 participants. RESULTS: RMD resulted in an approximately two-fold increase in fecal Fusicatenibacter saccharivorans (p = 0.024 for 15 g/day RMD and p = 0.017 for 25 g/day RMD). For Akkermansia muciniphila and Faecalibacterium prausnitzii, we obtained borderline evidence that showed increased amounts in participants that had low baseline levels of these bacteria (p < 0.1 for 25 g/day RMD). We did not detect any effects of RMD on LAB. CONCLUSIONS: RMD supplementation in healthy individuals increases Fusicatenibacter saccharivorans. Albeit to a lesser extent, RMD at the higher intake level may also increase Akkermansia muciniphila and Faecalibacterium prausnitzii in individuals with low baseline levels of those two species. Potential benefits associated with these microbiota changes remain to be established in studies with quantifiable health-related endpoints.


Assuntos
Faecalibacterium prausnitzii , Polissacarídeos , Adulto , Akkermansia , Clostridiales , Método Duplo-Cego , Fezes/microbiologia , Humanos , Polissacarídeos/farmacologia , Verrucomicrobia
5.
Microb Cell Fact ; 21(1): 116, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710409

RESUMO

BACKGROUND: Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS: Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS: The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.


Assuntos
Clostridium , Propionatos , Acrilatos/metabolismo , Clostridiales , Clostridium/metabolismo , Etanol/metabolismo , Fermentação , Ácido Láctico/metabolismo , Propionatos/metabolismo
6.
Arch Microbiol ; 204(7): 382, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687150

RESUMO

Horses are non-ruminant, herbivorous mammals, been used through history for various purposes, with a gut microbiota from cecum to the colon, possessing remarkable fermentative capacity. We studied the fecal microbiota of Azteca, Criollo, Frisian, Iberian, Pinto, Quarter and Spanish horse breeds living in Mexico by next-generation DNA sequencing of 16S rRNA gene libraries. Dominant phyla Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, Fibrobacteres, Actinobacteria and Verrucomicrobia have different relative abundances among breeds, with contrasted alpha and beta diversities as well. Heatmap analysis revealed that Ruminococcaceae, Lachnospiraceae, Mogibacteriaceae families, and order Clostridiales are more abundant in Spanish, Azteca, Quarter and Criollo breeds. The LEfSe analysis displayed higher abundance of order Bacteroidales, family BS11, and genera Faecalibacterium, Comamonas, Collinsella, Acetobacter, and Treponema in Criollo, Azteca, Iberian, Spanish, Frisian, Pinto, and Quarter horse breeds. The conclusion is that dominant bacterial taxa, found in fecal samples of horse breeds living in Mexico, have different relative abundances.


Assuntos
Actinobacteria , Bacteroidetes , Actinobacteria/genética , Animais , Bacteroidetes/genética , Clostridiales/genética , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Mamíferos/genética , México , RNA Ribossômico 16S/genética , Verrucomicrobia/genética
7.
Microbiome ; 10(1): 89, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689247

RESUMO

BACKGROUND: Haematopoietic stem cell transplantation is a curative procedure for a variety of conditions. Despite major advances, a plethora of adverse clinical outcomes can develop post-transplantation including graft-versus-host disease and infections, which remain the major causes of morbidity and mortality. There is increasing evidence that the gastrointestinal microbiota is associated with clinical outcomes post-haematopoietic stem cell transplantation. Herein, we investigated the longitudinal dynamics of the gut microbiota and metabolome and potential associations to clinical outcomes in paediatric haematopoietic stem cell transplantation at a single centre. RESULTS: On admission (baseline), the majority of patients presented with a different gut microbial composition in comparison with healthy control children with a significantly lower alpha diversity. A further, marked decrease in alpha diversity was observed immediately post-transplantation and in most microbial diversity, and composition did not return to baseline status whilst hospitalised. Longitudinal trajectories identified continuous fluctuations in microbial composition, with the dominance of a single taxon in a significant proportion of patients. Using pam clustering, three clusters were observed in the dataset. Cluster 1 was common pre-transplantation, characterised by a higher abundance of Clostridium XIVa, Bacteroides and Lachnospiraceae; cluster 2 and cluster 3 were more common post-transplantation with a higher abundance of Streptococcus and Staphylococcus in the former whilst Enterococcus, Enterobacteriaceae and Escherichia predominated in the latter. Cluster 3 was also associated with a higher risk of viraemia. Likewise, further multivariate analysis reveals Enterobacteriaceae, viraemia, use of total parenteral nutrition and various antimicrobials contributing towards cluster 3, Streptococcaceae, Staphylococcaceae, Neisseriaceae, vancomycin and metronidazole contributing towards cluster 2. Lachnospiraceae, Ruminococcaceae, Bifidobacteriaceae and not being on total parenteral nutrition contributed to cluster 1. Untargeted metabolomic analyses revealed changes that paralleled fluctuations in microbiota composition; importantly, low faecal butyrate was associated with a higher risk of viraemia. CONCLUSIONS: These findings highlight the frequent shifts and dominations in the gut microbiota of paediatric patients undergoing haematopoietic stem cell transplantation. The study reveals associations between the faecal microbiota, metabolome and viraemia. To identify and explore the potential of microbial biomarkers that may predict the risk of complications post-HSCT, larger multi-centre studies investigating the longitudinal microbial profiling in paediatric haematopoietic stem cell transplantation are warranted. Video abstract.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Criança , Clostridiales , Enterobacteriaceae , Fezes , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Metaboloma , Viremia/etiologia
8.
Front Cell Infect Microbiol ; 12: 904401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656030

RESUMO

Background: Recent data indicate the importance of gut-kidney axis in the pathogenesis of Immunoglobulin A nephropathy (IgAN). Growing evidence suggests the alterations of diversity and composition of gut microbiome among patients with IgAN, however, the details are not yet fully understood. Methods: Eligible studies comparing the gut microbiome between patients with IgAN and non-IgAN individuals were systematically searched from PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, and ClinicalTrials.gov. The primary outcomes were alpha- and beta-diversity, and the differences in gut microbiota composition between patients with IgAN and non-IgAN persons. Qualitative analysis and meta-analysis were performed according to available data. Results: Eleven cross-sectional studies, including 409 patients with IgAN and 243 healthy controls, were enrolled. No significant differences in the diversity and enrichment of gut bacteria were found between IgAN and healthy individuals, whereas the beta-diversity consistently showed significant microbial dissimilarities among the two groups. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia were the dominant phyla, however, no significant differences were found between IgAN patients and healthy controls at the phylum level. The genera, Streptococcus and Paraprevotella showed a higher proportion in patients with IgAN compared to healthy individuals, whereas Fusicatenibacter showed a lower abundance according to meta-analysis. Qualitative analyses suggested that Escherichia-Shigella might be increased in IgAN patients; the genera, Clostridium, Prevotella 9,and Roseburia, members of Ruminococcaceae and Lachnospiraceae families, were likely to have decreased abundances in patients with IgAN compared to healthy individuals. Conclusion: Gut microbiota dysbiosis was demonstrated in IgAN, which might be involved in the pathogenesis of IgAN. Further studies are needed to confirm the findings of this study, due to the substantial heterogeneity. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier PROSPERO (CRD42022304034).


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite por IGA , Bacteroidetes , Clostridiales , Estudos Transversais , Disbiose , Humanos , Verrucomicrobia
9.
Front Cell Infect Microbiol ; 12: 780354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493740

RESUMO

Mucous Membrane Pemphigoid is an orphan multi-system autoimmune scarring disease involving mucosal sites, including the ocular surface (OcMMP) and gut. Loss of tolerance to epithelial basement membrane proteins and generation of autoreactive T cell and/or autoantibodies are central to the disease process. The gut microbiome plays a critical role in the development of the immune system. Alteration in the gut microbiome (gut dysbiosis) affects the generation of autoreactive T cells and B cell autoantibody repertoire in several autoimmune conditions. This study examines the relationship between gut microbiome diversity and ocular inflammation in patients with OcMMP by comparing OcMMP gut microbiome profiles with healthy controls. DNA was extracted from faecal samples (49 OcMMP patients, 40 healthy controls), amplified for the V4 region of the 16S rRNA gene and sequenced using Illumina Miseq platform. Sequencing reads were processed using the bioinformatics pipeline available in the mothur v.1.44.1 software. After adjusting for participant factors in the multivariable model (age, gender, BMI, diet, proton pump inhibitor use), OcMMP cohort was found to be associated with lower number of operational taxonomic units (OTUs) and Shannon Diversity Index when compared to healthy controls. Within the OcMMP cohort, the number of OTUs were found to be significantly correlated with both the bulbar conjunctival inflammation score (p=0.03) and the current use of systemic immunotherapy (p=0.02). The linear discriminant analysis effect size scores indicated that Streptococcus and Lachnoclostridium were enriched in OcMMP patients whilst Oxalobacter, Clostridia uncultured genus-level group (UCG) 014, Christensenellaceae R-7 group and butyrate-producing bacteria such as Ruminococcus, Lachnospiraceae, Coprococcus, Roseburia, Oscillospiraceae UCG 003, 005, NK4A214 group were enriched in healthy controls (Log10 LDA score < 2, FDR-adjusted p <0.05). In conclusion, OcMMP patients have gut dysbiosis correlating with bulbar conjunctival inflammation and the use of systemic immunotherapies. This provides a framework for future longitudinal deep phenotyping studies on the role of the gut microbiome in the pathogenesis of OcMMP.


Assuntos
Disbiose , Penfigoide Bolhoso , Clostridiales/genética , Disbiose/microbiologia , Humanos , Inflamação , Membrana Mucosa , RNA Ribossômico 16S/genética
10.
Biochem Biophys Res Commun ; 613: 81-86, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35537289

RESUMO

Butyrate producing bacteria are one of the major components of the human gut microbiota. Their major metabolite, butyrate, has several beneficial properties for host health. Fructooligosaccharides (FOSs) are well documented prebiotics and are hydrolyzed by intracellular glycoside hydrolase family 32 (GH32) enzyme in several butyrate producers, whereas butyrate producers Anaerostipes hadrus and Anaerostipes butyraticus possess extracellular GH32 enzymes. The present study characterized the extracellular GH32 enzymes in the organisms to consider possible cross-feeding of FOSs with other microbes. Culture supernatant of A. hadrus actively hydrolyzed kestose and nystose, i.e., degrees of polymerization 3 and 4 FOSs, respectively, whereas that of A. butyraticus did not hydrolyzed. When co-cultured with Lacticaseibacillus rhamnosus GG in the presence of nystose, which was negative for growth on the FOSs but positive for growth on FOS degradants, A. hadrus promoted the growth of L. rhamnosus GG, but A. butyraticus did not. The observed negative results in A. butyraticus would be due to the presence of a stop codon in the gene encoding extracellular GH32. Genomic analysis revealed that A. hadrus conserved a single extracellular GH32 enzyme at the species level. The enzyme was phylogenetically distinguished into two groups, but the two groups shared similar FOS degradation properties. The results obtained here suggested that A. hadrus is active for extracellular degradation of FOSs and provides its degradants to other microbes. This study provides a basis of knowledge to understand how ingested FOSs are co-metabolized in gut microbiota.


Assuntos
Microbioma Gastrointestinal , Oligossacarídeos , Butiratos/metabolismo , Clostridiales , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Oligossacarídeos/metabolismo , Prebióticos
11.
Microb Cell Fact ; 21(1): 91, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35598016

RESUMO

BACKGROUND: Omics approaches are widely applied in the field of biology for the discovery of potential CAZymes including whole genome sequencing. The aim of this study was to identify protein encoding genes including CAZymes in order to understand glycans-degrading machinery in the thermophilic Caldicoprobacter algeriensis TH7C1T strain. RESULTS: Caldicoprobacter algeriensis TH7C1T is a thermophilic anaerobic bacterium belonging to the Firmicutes phylum, which grows between the temperatures of 55 °C and 75 °C. Next generation sequencing using Illumina technology was performed on the C. algeriensis strain resulting in 45 contigs with an average GC content of 44.9% and a total length of 2,535,023 bp. Genome annotation reveals 2425 protein-coding genes with 97 ORFs coding CAZymes. Many glycoside hydrolases, carbohydrate esterases and glycosyltransferases genes were found linked to genes encoding oligosaccharide transporters and transcriptional regulators; suggesting that CAZyme encoding genes are organized in clusters involved in polysaccharides degradation and transport. In depth analysis of CAZomes content in C. algeriensis genome unveiled 33 CAZyme gene clusters uncovering new enzyme combinations targeting specific substrates. CONCLUSIONS: This study is the first targeting CAZymes repertoire of C. algeriensis, it provides insight to the high potential of identified enzymes for plant biomass degradation and their biotechnological applications.


Assuntos
Polissacarídeos , Composição de Bases , Clostridiales , Filogenia , Polissacarídeos/metabolismo , RNA Ribossômico 16S , Análise de Sequência de DNA
12.
J Diabetes Res ; 2022: 1826181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601017

RESUMO

Background: Chronic hepatitis B cirrhosis is often accompanied by glucose metabolism disorder, and intestinal microbiota was closely related to both cirrhosis and diabetes. There are few studies on the role of intestinal microbiota in hepatitis B liver cirrhosis and diabetes mellitus (LCDM). The purpose of this study was to investigate the characteristics of intestinal microbiota in patients with LCDM and to evaluate the relationship between the severity of intestinal microbiota imbalance and clinical significance. Methods: A case-controlled study was conducted. People who met the inclusion and exclusion criteria of chronic HBV-related liver cirrhosis (LC), LCDM, and healthy controls (HC) were enrolled in, and their fecal and blood samples were collected. The V3-V4 region of 16s rDNA gene of fecal microbiota was sequenced; the bioinformatics analysis including α-diversity, ß-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) was performed; and the correlation between bacteria and clinical indexes was analyzed. Results: A total of 70 participants completed fecal and blood tests, including 20 HC, 20 LCDM, and 30 LC. The α diversity of intestinal microbiota in the LCDM decreased than that in the HC. The abundance of Proteobacteria, Streptococcus, Escherichia-Shigella, and Lactobacillus increased, while the abundance of Bacteroidota, Bacteroides, Prevotella, Faecalibacterium, and Lachnospira decreased in the LCDM compared with the HC. The abundance of Lactobacillus, Roseburia, and Veillonella and the degree of hepatitis B cirrhosis dysbiosis indicator (HBCDI) increased in the LCDM than in the LC. The abundance of Escherichia-Shigella, Veillonella, and Lactobacillus positively correlated with liver injury and fasting blood glucose (FBG) level. The abundance of Escherichia-Shigella, Veillonella, Streptococcus, and Lactobacillus increased more significantly when FBG and glycosylated hemoglobin level increased. Conclusion: Intestinal microbiota of patients with LCDM was significantly disordered, and the degree was more serious than that cirrhosis patients without diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hepatite B Crônica , Clostridiales/genética , Diabetes Mellitus Tipo 2/complicações , Disbiose/microbiologia , Fezes/microbiologia , Hepatite B Crônica/complicações , Humanos , Cirrose Hepática , RNA Ribossômico 16S/genética
13.
Oxid Med Cell Longev ; 2022: 5994033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571251

RESUMO

We presented a low-cost, eco-friendly, and efficient bacterium-mediated synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing Paraclostridium benzoelyticum strain 5610 as a capping and reducing agent. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray, and UV-vis spectroscopy were used to physiochemically characterize the biosynthesized ZnO-NPs. A major narrow peak at 441 nm was observed using UV-visible spectroscopy, verifying the presence of nanoparticles. According to SEM and TEM studies, the average dimensions of ZnO-NPs was 50 nm. The crystal size of 48.22 nm was determined by XRD analysis. FTIR analysis confirmed the presence of various reducing metabolites on the surface of ZnO-NPs. The synthesized nanoparticles were investigated for biological activity against Helicobacter suis, Helicobacter bizzozeronii, Helicobacter felis, and Helicobacter salomonis. Helicobacter suis was the most vulnerable strain, with an inhibitory zone of 19.53 ± 0.62 mm at 5 mg/mL dosage. The anti-inflammatory and the findings of the rat paw edema experiments revealed that the bacterium-mediated ZnO-NPs had a strong inhibitory action. In the arthritis model, the solution of ZnO-NPs showed 87.62 ± 0.12% inhibitory effect of edema after 21 days when linked with that of the standard drug. In the antidiabetic assay, ZnO-NPs sharply reduced glucose level in STZ-induced diabetic mice. In this study, the particle biocompatibility by human red blood cells was also determined. Keeping in view the biological importance of ZnO-NPs, we may readily get the conclusion that Paraclostridium benzoelyticum strain 5610-mediated ZnO-NPs will be a prospective antidiabetic, antibacterial, antiarthritic, and anti-inflammatory agent in vivo experimental models and can be used as a potent antidiabetic drug.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Clostridiales , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Extratos Vegetais/farmacologia , Estudos Prospectivos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Óxido de Zinco/uso terapêutico
14.
FEMS Microbiol Ecol ; 98(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35511201

RESUMO

The primary objective of this study was to investigate if common colonic community indicators could be identified from the microbiota of 22-day-old suckling pigs in repeated small-scale trials. A total of three separate trials were conducted at different times in the same year and facility with genetically similar animals. Colonic samples were collected from four pigs in each trial and the microbiome composition assessed by 16s rRNA gene sequencing. Pig weight, average daily gain (ADG), bacterial diversity, and abundance were not significantly different between repeated trials, except for a significant difference in Jaccard Similarity. At genus level, the most abundant taxa identified were Porphyromonadaceae unclassified (15.81%), Ruminococcaceae unclassified, (12.78%), Prevotella (7.26%), Clostridiales unclassified (6.99%), Lactobacillus (6.58%), Phascolarctobacterium (6.52%), and Firmicutes unclassified (5.69%). The secondary objective was to establish if pooled data in terms of microbial diversity and abundance of the colonic microbiota related to weight and ADG. Pig weight at day 22 and ADG positively correlated with α-diversity. Abundance of potential protein digesting and short-chain fatty acid producing operational taxonomic units ascribed to Terrisporobacter, Ruminococcaceae unclassified, Intestinimonas, and Dorea correlated with weight and ADG, suggesting a nutritional role for these common colonic community microbiota members in suckling pigs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Clostridiales/genética , Colo/microbiologia , Microbioma Gastrointestinal/genética , Prevotella , RNA Ribossômico 16S/genética , Suínos
15.
Sci Rep ; 12(1): 8456, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589783

RESUMO

Mucin-degrading microbes are known to harbor glycosyl hydrolases (GHs) which cleave specific glycan linkages. Although several microbial species have been identified as mucin degraders, there are likely many other members of the healthy gut community with the capacity to degrade mucins. The aim of the present study was to systematically examine the CAZyme mucin-degrading profiles of the human gut microbiota. Within the Verrucomicrobia phylum, all Akkermansia glycaniphila and muciniphila genomes harbored multiple gene copies of mucin-degrading GHs. The only representative of the Lentisphaerae phylum, Victivallales, harbored a GH profile that closely mirrored Akkermansia. In the Actinobacteria phylum, we found several Actinomadura, Actinomyces, Bifidobacterium, Streptacidiphilus and Streptomyces species with mucin-degrading GHs. Within the Bacteroidetes phylum, Alistipes, Alloprevotella, Bacteroides, Fermenitomonas Parabacteroides, Prevotella and Phocaeicola species had mucin degrading GHs. Firmicutes contained Abiotrophia, Blautia, Enterococcus, Paenibacillus, Ruminococcus, Streptococcus, and Viridibacillus species with mucin-degrading GHs. Interestingly, far fewer mucin-degrading GHs were observed in the Proteobacteria phylum and were found in Klebsiella, Mixta, Serratia and Enterobacter species. We confirmed the mucin-degrading capability of 23 representative gut microbes using a chemically defined media lacking glucose supplemented with porcine intestinal mucus. These data greatly expand our knowledge of microbial-mediated mucin degradation within the human gut microbiota.


Assuntos
Microbioma Gastrointestinal , Mucinas , Animais , Clostridiales/metabolismo , Humanos , Mucinas/metabolismo , Polissacarídeos/metabolismo , Suínos , Verrucomicrobia/metabolismo
16.
Nutrients ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631304

RESUMO

Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia&nbsp;radiata,&nbsp;Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35-81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.


Assuntos
Microbioma Gastrointestinal , Alga Marinha , Austrália , Bactérias , Clostridiales/genética , Carboidratos da Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Inulina/farmacologia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Prebióticos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
17.
PLoS One ; 17(5): e0268466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622782

RESUMO

PURPOSE: Premenstrual symptoms can negatively impact the quality of life of women through a range of mood, behavioral, and physical symptoms. The association between the microbiota and brain function has been extensively studied. Here, we examined the characteristics of the microbiota in women with premenstrual disorders (PMDs) and the association between premenstrual symptoms and the microbiota. MATERIALS AND METHODS: In this single center cross-sectional pilot study, we recruited 27 women reporting premenstrual symptoms and 29 women with no serious premenstrual symptoms. Among them, we further selected 21 women experiencing premenstrual symptoms resulting in interference to their social life (PMDs group) and 22 women with no serious premenstrual symptoms and thereby no interference to their social life (control group). The severity of symptoms was evaluated by a premenstrual symptoms questionnaire (PSQ). Inflammatory markers were analyzed in blood samples, including C reactive protein, soluble CD14, and lipopolysaccharide binding protein. Sequencing of 16S ribosomal ribonucleic acid genes was performed on stool samples. RESULTS: Inflammatory markers in blood samples did not differ significantly between the PMDs and control groups. A difference in beta, but not alpha diversity, was detected for the gut microbiotas of the PMDs and control groups. The relative abundance of the Bacteroidetes phylum was lower in the PMDs group. At the genus level, the prevalence was decreased for Butyricicoccus, Extibacter, Megasphaera, and Parabacteroides and increased for Anaerotaenia in the PMDs group, but after false discovery rate correction, these differences were no longer significant. Linear discriminant effect size analysis revealed a decrease in Extibacter, Butyricicoccus, Megasphaera, and Parabacteroides and an increase in Anaerotaenia in the PMDs group. The PSQ total score correlated with Anaerotaenia, Extibacter, and Parabacteroides. Multiple regression analysis showed that Parabacteroides and Megasphaera negatively predicted the PSQ total score. CONCLUSION: The properties of the gut microbiota are associated with premenstrual symptoms.


Assuntos
Microbioma Gastrointestinal , Síndrome Pré-Menstrual , Bacteroidetes , Clostridiaceae , Clostridiales , Estudos Transversais , Feminino , Microbioma Gastrointestinal/genética , Humanos , Projetos Piloto , Síndrome Pré-Menstrual/epidemiologia , Qualidade de Vida
18.
Mediators Inflamm ; 2022: 2808249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633656

RESUMO

Objectives: Sepsis is characterized as a dysregulated host immune response to infection and has been known to be closely associated with the gut microbiome. This study was aimed at investigating the gut microbial profiles of Zhuang ethnic patients with sepsis. Method: Eleven Zhuang ethnic patients with sepsis and 20 healthy individuals (controls) were recruited at the Baise City People's Hospital, China. Their gut microbial community profiles were analyzed by 16S rRNA gene sequencing using the Illumina MiSeq system. Results: The gut microbial community of patients with sepsis was significantly altered compared to that of the healthy individuals based on the results of principal coordinate analysis and microbial ecological networks. Additionally, significantly lower microbial alpha diversity was observed in patients with sepsis than in healthy individuals. In particular, the enrichment of Bilophila, Burkholderia, Corynebacterium, and Porphyromonas, along with the reduced abundance of a large number of short-chain fatty acid-producing microbes, including Roseburia, Bifidobacterium, Faecalibacterium, Coprococcus, Blautia, Clostridium, Ruminococcus, and Anaerostipe was observed in patients with sepsis compared to the control group. Moreover, patients with sepsis could be effectively classified based on the abundance of these bacteria using a support vector machine algorithm. Conclusion: This study demonstrated significant differences in the gut microbiome between Zhuang ethnic patients with sepsis and healthy individuals. In the future, it is necessary to determine whether such alterations are the cause or consequence of sepsis.


Assuntos
Microbioma Gastrointestinal , Sepse , Clostridiales , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , RNA Ribossômico 16S/genética
19.
Gut Microbes ; 14(1): 2073784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579971

RESUMO

Ruminococcus gnavus is a prevalent member of the human gut microbiota, which is over-represented in inflammatory bowel disease and neurological disorders. We previously showed that the ability of R. gnavus to forage on mucins is strain-dependent and associated with sialic acid metabolism. Here, we showed that mice monocolonized with R. gnavus ATCC 29149 (Rg-mice) display changes in major sialic acid derivatives in their cecum content, blood, and brain, which is accompanied by a significant decrease in the percentage of sialylated residues in intestinal mucins relative to germ-free (GF) mice. Changes in metabolites associated with brain function such as tryptamine, indolacetate, and trimethylamine N-oxide were also detected in the cecal content of Rg-mice when compared to GF mice. Next, we investigated the effect of R. gnavus monocolonization on hippocampus cell proliferation and behavior. We observed a significant decrease of PSA-NCAM immunoreactive granule cells in the dentate gyrus (DG) of Rg-mice as compared to GF mice and recruitment of phagocytic microglia in the vicinity. Behavioral assessments suggested an improvement of the spatial working memory in Rg-mice but no change in other cognitive functions. These results were also supported by a significant upregulation of genes involved in proliferation and neuroplasticity. Collectively, these data provide first insights into how R. gnavus metabolites may influence brain regulation and function through modulation of granule cell development and synaptic plasticity in the adult hippocampus. This work has implications for further understanding the mechanisms underpinning the role of R. gnavus in neurological disorders.


Assuntos
Encéfalo , Clostridiales , Microbioma Gastrointestinal , Mucinas , Animais , Encéfalo/metabolismo , Camundongos , Mucinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo
20.
Anaerobe ; 75: 102581, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35526662

RESUMO

We report on a 47-year-old woman with jejunal adenocarcinoma and concurrent endometrial cancer, admitted with sepsis. Uterine fluid and blood cultures were positive for Robinsoniella peoriensis. This is the first case report of Robinsoniella peoriensis in Canada. We encourage clinicians to publish their experience treating gynecologic infections caused by Robinsoniella peoriensis. Failure to recognize this pathogen as causative for pyometra, may result in insufficient antimicrobial treatment, and death.


Assuntos
Piometra , Sepse , Antibacterianos/uso terapêutico , Clostridiales , Feminino , Humanos , Pessoa de Meia-Idade , Piometra/diagnóstico , Piometra/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...