Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.390
Filtrar
1.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806258

RESUMO

Connexin (Cxs) hemichannels participate in several physiological and pathological processes, but the molecular mechanisms that control their gating remain elusive. We aimed at determining the role of extracellular cysteines (Cys) in the gating and function of Cx46 hemichannels. We studied Cx46 and mutated all of its extracellular Cys to alanine (Ala) (one at a time) and studied the effects of the Cys mutations on Cx46 expression, localization, and hemichannel activity. Wild-type Cx46 and Cys mutants were expressed at comparable levels, with similar cellular localization. However, functional experiments showed that hemichannels formed by the Cys mutants did not open either in response to membrane depolarization or removal of extracellular divalent cations. Molecular-dynamics simulations showed that Cys mutants may show a possible alteration in the electrostatic potential of the hemichannel pore and an altered disposition of important residues that could contribute to the selectivity and voltage dependency in the hemichannels. Replacement of extracellular Cys resulted in "permanently closed hemichannels", which is congruent with the inhibition of the Cx46 hemichannel by lipid peroxides, through the oxidation of extracellular Cys. These results point to the modification of extracellular Cys as potential targets for the treatment of Cx46-hemichannel associated pathologies, such as cataracts and cancer, and may shed light into the gating mechanisms of other Cx hemichannels.


Assuntos
Junções Comunicantes , Ativação do Canal Iônico , Conexinas/metabolismo , Cisteína/metabolismo , Junções Comunicantes/metabolismo
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806312

RESUMO

Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood-brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.


Assuntos
Conexinas , Acoplamento Neurovascular , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Microcirculação
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806342

RESUMO

Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.


Assuntos
Cálcio , Conexinas , Transporte Biológico , Cálcio/metabolismo , Conexinas/metabolismo , Humanos , Íons
4.
Oxid Med Cell Longev ; 2022: 5339361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847590

RESUMO

Background: Asymmetric dimethylarginine (ADMA) is a nonselective nitric oxide synthase inhibitor. ADMA is thought to inhibit the production of nitric oxide (NO) by neurons after oxygen-glucose deprivation (OGD). The gap junction protein Connexin-36 (cx-36) is involved in the pathophysiology of stroke. We investigated whether ADMA could protect neurons from OGD insults by regulating the expression of cx-36. Methods: Cultured rat cortical neuronal cells were used. Neurons were treated with OGD with or without ADMA pretreatment. The lactate dehydrogenase (LDH) release rate was used to assess neuronal injury. Intracellular NO levels were determined using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. Western blotting was performed to detect cx-36 expression. Results: The LDH release rate increased in the supernatant of neurons after the OGD insult, whereas ADMA treatment reduced the LDH release rate. Intracellular NO levels increased following OGD treatment, and this increase was not inhibited by ADMA treatment. Expression of cx-36 was upregulated in neurons under OGD conditions, and treatment with ADMA downregulated the expression of cx-36. Conclusions: ADMA protects neurons from OGD insult, and cx-36 downregulation may be a possible pathway involved in ADMA-mediated neuronal protection.


Assuntos
Glucose , Oxigênio , Animais , Arginina/análogos & derivados , Células Cultivadas , Conexinas/metabolismo , Glucose/metabolismo , L-Lactato Desidrogenase/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Ratos
5.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805969

RESUMO

The human genome is covered by 8% of candidate cis-regulatory elements. The identification of distal acting regulatory elements and an understanding of their action are crucial to determining their key role in gene expression. Disruptions of such regulatory elements and/or chromatin conformation are likely to play a critical role in human genetic diseases. Non-syndromic hearing loss (i.e., DFNB1) is mostly due to GJB2 (Gap Junction Beta 2) variations and DFNB1 large deletions. Although several GJB2 cis-regulatory elements (CREs) have been described, GJB2 gene regulation remains not well understood. We investigated the endogenous effect of these CREs with CRISPR (clustered regularly interspaced short palindromic repeats) disruptions and observed GJB2 expression. To decipher the GJB2 regulatory landscape, we used the 4C-seq technique and defined new chromatin contacts inside the DFNB1 locus, which permit DNA loops and long-range regulation. Moreover, through ChIP-PCR, we determined the involvement of the MEIS1 transcription factor in GJB2 expression. Taken together, the results of our study enable us to describe the 3D DFNB1 regulatory landscape.


Assuntos
Cromatina , Conexina 26 , Conexinas , Surdez , Proteína Meis1 , Cromatina/genética , Cromatina/metabolismo , Conexina 26/genética , Conexina 26/metabolismo , Conexinas/genética , Conexinas/metabolismo , Surdez/genética , Surdez/metabolismo , Humanos , Mutação , Proteína Meis1/genética , Proteína Meis1/metabolismo
6.
Oncol Rep ; 48(3)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894130

RESUMO

Liver cancer stem cells (LCSCs) are responsible for liver cancer recurrence, metastasis, and drug resistance. Previous studies by the authors demonstrated that upregulated expression of connexin 32 (Cx32) reversed doxorubicin resistance and reduced invasion and metastasis of liver cancer cells. However, the role of Cx32 in expansion of LCSCs remains unclear. A total of 85 patients were enrolled in the present study and followed­up for 5 years. The expression of Cx32 in hepatocellular carcinoma (HCC) tissues and corresponding paracancerous tissues were detected by immunohistochemistry (IHC). Cx32 was silenced in HepG2 cells and overexpressed in HCCLM3 cells and the stemness of liver cells was examined by detecting the expression of LCSC markers (EpCAM, CD133, Nanog, Oct4, Sox9, c­Myc), sphere formation, and xenograft tumorigenesis. Finally, the effect of the phosphoinositide 3­kinase (PI3K)/protein kinase B (Akt) pathway on Cx32­regulated LCSC expansion was investigated. Cx32 was downregulated in LCSCs and HCC tissues, and predicted poor prognosis in patients with HCC. Overexpression of Cx32 in HCCLM3 cells significantly inhibited LCSC expansion, tumorigenesis, and phosphoinositide 3­kinase/protein kinase B (PI3K/Akt) pathway activity. By contrast, silencing of Cx32 in HepG2 cells upregulated expansion of LCSCs and PI3K/Akt pathway activity. Modulating the activity of the PI3K/Akt pathway by SC­79 and LY294002 in HepG2 and HCCLM3 cells, respectively, confirmed that Cx32 could affect the expansion of LCSCs through PI3K/Akt signaling. In conclusion, the present study demonstrated that Cx32 regulated the expansion of LCSCs, and increased expression of Cx32 significantly inhibited the expansion of LCSCs, suggesting that Cx32 may be an optimal target for intervention of HCC.


Assuntos
Carcinoma Hepatocelular , Conexinas , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/patologia , Conexinas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
7.
Genes (Basel) ; 13(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35885949

RESUMO

PURPOSE: This study aimed to evaluate the associations of GJD2 (rs634990, rs524952) and RASGRF1 (rs8027411, rs4778879, rs28412916) gene polymorphisms with refractive errors. METHODS: The study included 373 subjects with refractive errors (48 myopia, 239 myopia with astigmatism, 14 hyperopia, and 72 hyperopia with astigmatism patients) and 104 ophthalmologically healthy subjects in the control group. A quantitative real-time polymerase chain reaction (qPCR) method was chosen for genotyping. Statistical calculations and analysis of results were performed with IBM SPSS Statistics 27 software. RESULTS: The correlations in monozygotic (MZ) twin pairs were higher compared to DZ pairs, indicating genetic effects on hyperopia and astigmatism. The heritability (h2) of hyperopia and astigmatism was 0.654 for the right eye and 0.492 for the left eye. The GJD2 rs634990 TT genotype increased the incidence of hyperopia with astigmatism by 2.4-fold and the CT genotype decreased the incidence of hyperopia with astigmatism by 0.51-fold (p < 0.05). The GJD2 rs524952 AT genotype reduced the incidence of hyperopia with astigmatism by 0.53-fold (p < 0.05). Haplotype analysis of SNPs in the GJD2 gene revealed two statistically significant haplotypes: ACTAGG for rs634990 and TTTAGA for rs524952, which statistically significantly reduced the incidence of hyperopia and hyperopia with astigmatism by 0.41-fold (95% CI: 0.220-0.765) and 0.383-fold (95% CI: 0.199-0.737), respectively (p < 0.05). It was also found that, in the presence of haplotypes ACTAGG for rs634990 and TATAGA for rs524952, the possibility of hyperopia was reduced by 0.4-fold (p < 0.05). CONCLUSIONS: the heritability of hyperopia and hyperopia with astigmatism was 0.654-0.492, according to different eyes in patients between 20 and 40 years. The GJD2 rs634990 was identified as an SNP, which has significant associations with the co-occurrence of hyperopia and astigmatism. Patients with the GJD2 gene rs634990 TT genotype were found to have a 2.4-fold higher risk of develop hyperopia with astigmatism.


Assuntos
Astigmatismo , Hiperopia , Miopia , Erros de Refração , Astigmatismo/epidemiologia , Conexinas , Humanos , Hiperopia/epidemiologia , Hiperopia/genética , Miopia/genética , Erros de Refração/genética
8.
BMC Med Genomics ; 15(1): 142, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761346

RESUMO

PURPOSE: Genetic testing is widely used in diagnosing genetic hearing loss in patients. Other than providing genetic etiology, the benefits of genetic testing in pediatric patients with hearing loss are less investigated. METHODS: From 2018-2020, pediatric patients who initially presented isolated hearing loss were enrolled. Comprehensive genetic testing, including GJB2/SLC26A4 multiplex amplicon sequencing, STRC/OTOA copy number variation analysis, and exome sequencing, were hierarchically offered. Clinical follow-up and examinations were performed. RESULTS: A total of 80 pediatric patients who initially presented isolated hearing loss were considered as nonsyndromic hearing loss and enrolled in this study. The definitive diagnosis yield was 66% (53/80) and the likely diagnosis yield was 8% (6/80) through comprehensive genetic testing. With the aid of genetic testing and further clinical follow-up and examinations, the clinical diagnoses and medical management were altered in eleven patients (19%, 11/59); five were syndromic hearing loss; six were nonsyndromic hearing loss mimics. CONCLUSION: Syndromic hearing loss and nonsyndromic hearing loss mimics are common in pediatric patients who initially present with isolated hearing loss. The comprehensive genetic testing provides not only a high diagnostic yield but also valuable information for clinicians to uncover subclinical or pre-symptomatic phenotypes, which allows early diagnosis of SHL, and leads to precise genetic counseling and changes the medical management.


Assuntos
Surdez , Perda Auditiva , Criança , Conexina 26/genética , Conexinas/genética , Variações do Número de Cópias de DNA , Surdez/genética , Testes Genéticos , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação
9.
Int J Mol Med ; 50(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35762312

RESUMO

Connexins (Cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, Cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of Cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between Cxs and angiogenesis have sparked interest in Cx­mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between Cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of Cxs and Cx­mediated angiogenesis, with a focus on therapeutic implications.


Assuntos
Conexinas , Neoplasias , Comunicação Celular , Diferenciação Celular , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/terapia
10.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682927

RESUMO

The aim of this study was to determine the effects of altered ganglioside composition on the expression of Cx37, Cx40, Cx43, Cx45, and Panx1 in different kidney regions of St8sia1 gene knockout mice (St8sia1 KO) lacking the GD3 synthase enzyme. Experiments were performed in twelve male 6-month-old mice: four wild-type (C57BL/6-type, WT) and eight St8sia1 KO mice. After euthanasia, kidney tissue was harvested, embedded in paraffin wax, and processed for immunohistochemistry. The expression of connexins and Panx1 was determined in different regions of the kidney: cortex (CTX.), outer stripe of outer medulla (O.S.), inner stripe of outer medulla (IN.S.), and inner medulla (IN.MED.). We determined significantly lower expression of Cx37, Cx40, Cx45, and Panx1 in different parts of the kidneys of St8sia1 KO mice compared with WT. The most consistent decrease was found in the O.S. where all markers (Cx 37, 40, 45 and Panx1) were disrupted in St8si1 KO mice. In the CTX. region, we observed decrease in the expression of Cx37, Cx45, and Panx1, while reduced expression of Cx37 and Panx1 was more specific to IN.S. The results of the present study suggest that deficiency of GD3 synthase in St8sia1 KO mice leads to disruption of renal Cx expression, which is probably related to alteration of ganglioside composition.


Assuntos
Conexinas , Rim , Animais , Conexinas/genética , Conexinas/metabolismo , Gangliosídeos/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/metabolismo
11.
Front Biosci (Landmark Ed) ; 27(6): 168, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35748244

RESUMO

BACKGROUND: Recently, we provided evidence that a single nucleotide polymorphism (SNP), rs41266431, on the gap junction protein alpha 4 (GJA4) gene, acts as a modifier for clinical disease severity in patients with cystic fibrosis (CF). These features are very similar to those of variants of the mannose-binding lectin (MBL). This study aimed to clarify whether the clinical disease phenotype associated with GJA4 variants is independent of MBL variants. METHODS: One hundred and twelve patients with homozygous F508del (mean age, 27.6 years; m/f, 61/51) were recruited from the CF centers of Bonn, Frankfurt, and Amsterdam. A sequence analysis was performed for GJA4 and MBL. The clinical phenotype was assessed over three years using pulmonary function tests, body mass index, Pseudomonas aeruginosa colonization, diabetes mellitus, survival to end-stage lung disease, and inflammatory markers. RESULTS: A clinically relevant SNP of GJA4 was identified by sequence analysis. Pulmonary function (FVC% pred, mean 78/85; p < 0.055) and survival to end-stage lung disease were lower (p < 0.043) for this variant (rs41266431) in carriers homozygous for the G variant (n = 82/112; 73%) than in other carriers. Serum MBL (820/372 ng/mL, p < 0.001) was significantly higher in "MBL-sufficient" genotypes (n = 79/112; 71%) than in "MBL-insufficient" genotypes, and a trend for a significant difference in BMI percentiles (35.2/23.8; p < 0.059) was observed. For the MBL-sufficient genotype (median age at death, 38/26 years), there was a trend for better survival (p < 0.076). There was no augmentation by gene-gene interaction between MBL and GJA4 variants for any outcome parameter. CONCLUSIONS: The clinical disease phenotype associated with GJA4 variants is independent of MBL variants. MBL-sufficient variants were associated with superior BMI and a trend for better survival than MBL insufficient variants.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Conexinas/genética , Fibrose Cística/genética , Genótipo , Humanos , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/genética , Testes de Função Respiratória
12.
Cell Death Dis ; 13(6): 545, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688810

RESUMO

Mutations in the GJB2 gene (encoding Connexin26(Cx26)) are the most common cause of hereditary deafness, accounting for about a quarter of all cases. Sensory epithelial damage is considered to be one of the main causes of deafness caused by GJB2 gene mutation. Dexamethasone (DEX) is widely used in the treatment of a variety of inner ear diseases including sudden sensorineural hearing loss (SSNHL), noise-induced hearing loss (NIHL), and deafness caused by ototoxic drugs. Whether DEX has a direct therapeutic effect on hereditary deafness, especially GJB2-related deafness, remains unclear. In this study, we revealed that DEX can effectively prevent hair cell death caused by oxidative stress in cochlear explants. Additionally, two distinct Cx26-null mouse models were established to investigate whether systemic administration of DEX alleviate the cochlear sensory epithelial injury or deafness in these models. In a specific longitudinally Cx26-null model that does not cause deafness, systemic administration of DEX prevents the degeneration of outer hair cells (OHCs) induced by Cx26 knockout. Similarly, in a targeted-Deiter's cells (DCs) Cx26-null mouse model that causes deafness, treatment with DEX can almost completely prevent OHCs loss and alleviates auditory threshold shifts at some frequencies. Additionally, we observed that DEX inhibited the recruitment of CD45-positive cells in the targeted-DCs Cx26-null mice. Taken together, our results suggest that the protective effect of dexamethasone on cochlear sensory epithelial damage and partially rescue auditory function may be related to the regulation of inner ear immune response in Cx26 deficiency mouse models.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Animais , Cóclea/metabolismo , Conexina 26/metabolismo , Conexinas/genética , Conexinas/metabolismo , Surdez/genética , Dexametasona/farmacologia , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos , Camundongos Knockout
13.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682601

RESUMO

The expression pattern of Connexins (Cx) 37, 40, 43, 45 and Pannexin 1 (Pnx1) was analyzed immunohistochemically, as well as semi-quantitatively and quantitatively in histological sections of developing 8th- to 12th-week human eyes and postnatal healthy eye, in retinoblastoma and different uveal melanomas. Expressions of both Cx37 and Cx43 increased during development but diminished in the postnatal period, being higher in the retina than in the choroid. Cx37 was highly expressed in the choroid of retinoblastoma, and Cx43 in epitheloid melanoma, while they were both increasingly expressed in mixoid melanoma. In contrast, mild retinal Cx40 expression during development increased to strong in postnatal period, while it was significantly higher in the choroid of mixoid melanoma. Cx45 showed significantly higher expression in the developing retina compared to other samples, while it became low postnatally and in all types of melanoma. Pnx1 was increasingly expressed in developing choroid but became lower in the postnatal eye. It was strongly expressed in epithelial and spindle melanoma, and particularly in retinoblastoma. Our results indicate importance of Cx37 and Cx40 expression in normal and pathological vascularization, and Cx43 expression in inflammatory response. Whereas Cx45 is involved in early stages of eye development, Pnx1might influence cell metabolism. Additionally, Cx43 might be a potential biomarker of tumor prognosis.


Assuntos
Melanoma , Neoplasias da Retina , Retinoblastoma , Carcinogênese/metabolismo , Corioide/metabolismo , Conexina 26/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Humanos , Melanoma/metabolismo , Retina/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo
14.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743148

RESUMO

Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 µM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 µM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 µM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.


Assuntos
Conexinas/metabolismo , Hiperalgesia , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7 , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , N-Metilaspartato/metabolismo , Nociceptividade , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/metabolismo
15.
Acta Neuropathol Commun ; 10(1): 81, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642047

RESUMO

The International Society for the Study of Vascular Anomalies (ISSVA) has defined four vascular lesions in the central nervous system (CNS): arteriovenous malformations, cavernous angiomas (also known as cerebral cavernous malformations), venous malformations, and telangiectasias. From a retrospective central radiological and histopathological review of 202 CNS vascular lesions, we identified three cases of unclassified vascular lesions. Interestingly, they shared the same radiological and histopathological features evoking the cavernous subtype of angioleiomyomas described in the soft tissue. We grouped them together with four additional similar cases from our clinicopathological network and performed combined molecular analyses. In addition, cases were compared with a cohort of 5 soft tissue angioleiomyomas. Three out 6 CNS lesions presented the same p.Gly41Cys GJA4 mutation recently reported in hepatic hemangiomas and cutaneous venous malformations and found in 4/5 soft tissue angioleiomyomas of our cohort with available data. Most DNA methylation profiles were not classifiable using the CNS brain tumor (version 12.5), and sarcoma (version 12.2) classifiers. However, using unsupervised t-SNE analysis and hierarchical clustering analysis, 5 of the 6 lesions grouped together and formed a distinct epigenetic group, separated from the clusters of soft tissue angioleiomyomas, other vascular tumors, inflammatory myofibroblastic tumors and meningiomas. Our extensive literature review identified several cases similar to these lesions, with a wide variety of denominations. Based on radiological and histomolecular findings, we suggest the new terminology of "dural angioleiomyomas" (DALM) to designate these lesions characterized by a distinct DNA methylation pattern and frequent GJA4 mutations.


Assuntos
Angiomioma , Conexinas , Hemangioma , Angiomioma/genética , Conexinas/genética , Metilação de DNA , Hemangioma/genética , Humanos , Mutação , Estudos Retrospectivos
16.
Front Immunol ; 13: 870679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514966

RESUMO

Many immunological diseases can be treated by regulating neurobehavior, in which extracellular ATP is a vital member of endogenous danger-associated molecular pattern signaling molecule that plays a crucial part in innate neuro-related immunity. It is actively released through pannexin (Panx) and connexin (Cx) hemichannels from activated or stressed cells during inflammation, injury, or apoptosis. In addition to participating in ATP release, Panxs and Cxs also have crucial immune functions. In this study, pannexin1, three connexin32 isoforms and connexin43 were identified and characterized in spotted sea bass (Lateolabrax maculatus), which were named LmPanx1, LmCx32.2, LmCx32.3, LmCx32.7, and LmCx43. Their similar topological structures were discovered by sequence analysis: a relatively unconserved C-terminal region and four highly conserved transmembrane (TM) domains, and so on. Each extracellular (ECL) region of Panx1 has two conserved cysteine residues. Unlike Panx1, each ECL region of Cx32 and Cx43 contains three conserved cysteine residues, forming two conserved motifs: CX6CX3C motif in ECL1 and CX4CX5C motif in ECL2. Furthermore, Panx1 and Cx43 share similar genomic organization and synteny with their counterparts in selected vertebrates. Cx32 and CX43 were located in the same locus in fish, but diverged into two loci from amphibian. Moreover, despite varying expression levels, the identified genes were constitutively expressed in all examined tissues. All genes were upregulated by PAMP [lipopolysaccharide and poly(I:C)] stimulation or bacterial infection in vivo and in vitro, but they were downregulated in the brain at 6 or 12 h after stimulation. Especially, the three LmCx32 isoforms and LmCx43 were upregulated by ATP stimulation in primary head kidney leukocytes; however, downregulation of LmCx32.3 and LmCx43 expression were noted at 12 h. Conversely, ATP treatment inhibited the expression of LmPanx1. Importantly, we showed that the spotted sea bass Panx1, Cx43, and Cx32 were localized on the cellular membrane and involved in inflammation-induced ATP release. Taken together, our results demonstrated that Panx1, Cx32, and Cx43 are important neuro-related immune response genes involved in inflammation-induced ATP release.


Assuntos
Bass , Doenças dos Peixes , Trifosfato de Adenosina/metabolismo , Animais , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Cisteína , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata/genética , Inflamação/genética
17.
Elife ; 112022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543322

RESUMO

Human myelin disorders are commonly studied in mouse models. Since both clades evolutionarily diverged approximately 85 million years ago, it is critical to know to what extent the myelin protein composition has remained similar. Here, we use quantitative proteomics to analyze myelin purified from human white matter and find that the relative abundance of the structural myelin proteins PLP, MBP, CNP, and SEPTIN8 correlates well with that in C57Bl/6N mice. Conversely, multiple other proteins were identified exclusively or predominantly in human or mouse myelin. This is exemplified by peripheral myelin protein 2 (PMP2), which was specific to human central nervous system myelin, while tetraspanin-2 (TSPAN2) and connexin-29 (CX29/GJC3) were confined to mouse myelin. Assessing published scRNA-seq-datasets, human and mouse oligodendrocytes display well-correlating transcriptome profiles but divergent expression of distinct genes, including Pmp2, Tspan2, and Gjc3. A searchable web interface is accessible via www.mpinat.mpg.de/myelin. Species-dependent diversity of oligodendroglial mRNA expression and myelin protein composition can be informative when translating from mouse models to humans.


Like the electrical wires in our homes, the processes of nerve cells ­ the axons, thin extensions that project from the cell bodies ­ need to be insulated to work effectively. This insulation takes the form of layers of a membrane called myelin, which is made of proteins and fats and produced by specialized cells called oligodendrocytes in the brain and the spinal cord. If this layer of insulation becomes damaged, the electrical impulses travelling along the nerves slow down, affecting the ability to walk, speak, see or think. This is the cause of several illnesses, including multiple sclerosis and a group of rare genetic diseases known as leukodystrophies. A lot of the research into myelin, oligodendrocytes and the diseases caused by myelin damage uses mice as an experimental model for humans. Using mice for this type of research is appropriate because of the ethical and technical limitations of experiments on humans. This approach can be highly effective because mice and humans share a large proportion of their genes. However, there are many obvious physical differences between the two species, making it important to determine whether the results of experiments performed in mice are applicable to humans. To do this, it is necessary to understand how myelin differs between these two species at the molecular level. Gargareta, Reuschenbach, Siems, Sun et al. approached this problem by studying the proteins found in myelin isolated from the brains of people who had passed away and donated their organs for scientific research. They used a technique called mass spectrometry, which identifies molecules based on their weight, to produce a list of proteins in human myelin that could then be compared to existing data from mouse myelin. This analysis showed that myelin is very similar in both species, but some proteins only appear in humans or in mice. Gargareta, Reuschenbach, Siems, Sun et al. then compared which genes are turned on in the oligodendrocytes making the myelin. The results of this comparison reflected most of the differences and similarities seen in the myelin proteins. Despite the similarities identified by Gargareta, Reuschenbach, Siems, Sun et al., it became evident that there are unexpected differences between the myelin of humans and mice that will need to be considered when applying results from mice research to humans. To enable this endeavor, Gargareta, Reuschenbach, Siems, Sun et al. have created a searchable web interface of the proteins in myelin and the genes expressed in oligodendrocytes in the two species.


Assuntos
Bainha de Mielina , Proteoma , Animais , Conexinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteína Proteolipídica de Mielina , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Proteoma/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Transcriptoma
18.
Commun Biol ; 5(1): 472, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585187

RESUMO

The molecular mechanisms of excitation/inhibition imbalances promoting seizure generation in epilepsy patients are not fully understood. Evidence suggests that Pannexin1 (Panx1), an ATP release channel, modulates the excitability of the brain. In this report, we performed electrophysiological, behavioral, and molecular phenotyping experiments on zebrafish larvae bearing genetic or pharmacological knockouts of Panx1a and Panx1b channels, each homologous to human PANX1. When Panx1a function is lost, or both channels are under pharmacological blockade, seizures with ictal-like events and seizure-like locomotion are reduced in the presence of pentylenetetrazol. Transcriptome profiling by RNA-seq demonstrates a spectrum of distinct metabolic and cell signaling states which correlate with the loss of Panx1a. Furthermore, the pro- and anticonvulsant activities of both Panx1 channels affect ATP release and involve the purinergic receptor P2rx7. Our findings suggest a subfunctionalization of Panx1 enabling dual roles in seizures, providing a unique and comprehensive perspective to understanding seizure mechanisms in the context of this channel.


Assuntos
Conexinas , Receptores Purinérgicos P2X7 , Proteínas de Xenopus , Trifosfato de Adenosina/metabolismo , Animais , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Convulsões/genética , Convulsões/metabolismo , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Peixe-Zebra
19.
Genes (Basel) ; 13(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35627190

RESUMO

The quality and developmental capacity of oocytes derived from in vitro maturation (IVM) remain unsatisfactory, which greatly impairs the efficiency and application of embryo technologies. The present experiment was designed to investigate the effect of the supplementation of EGF, IGF-1, and Cx37 in an IVM medium on the maturation quality and development ability of bovine oocytes. The cytoplasmic maturation events of oocytes and the quality of in vitro fertilization (IVF) blastocysts were examined to investigate the relative mechanisms. Our results showed that the nuclear maturation and blastocyst development after the IVF of oocytes treated with 25 µg/mL Cx37 or the combination of 50 ng/mL EGF and 100 ng/mL IGF-1 were significantly increased compared to those of the control group (p < 0.05). Furthermore, the blastocyst rate, and blastocyst total cell number and survival rate after vitrification of the EGF+IGF-1+Cx37 group, were significantly higher than those of the control group (p < 0.05), but lower than those of the FSH+LH+EGF+IGF-1+Cx37 group (p < 0.05). The transzonal projection (TZP) intensity, glutathione (GSH) level, and mitochondrial function of the EGF+IGF-1+Cx37 group were significantly higher than that of the control group, and lower than those of the FSH+LH+EGF+IGF-1+Cx37 group, in contrast to the results of the reactive oxygen species (ROS) levels. In conclusion, our results showed that the supplementation of 50 ng/mL EGF, 100 ng/mL IGF-1, and 25 µg/mL Cx37 in the IVM of bovine oocytes significantly improved their quality and developmental ability by increasing the TZP, mitochondrial function, and GSH level.


Assuntos
Fator de Crescimento Epidérmico , Vitrificação , Animais , Blastocisto , Bovinos , Conexinas , Meios de Cultura/farmacologia , Suplementos Nutricionais , Fator de Crescimento Epidérmico/farmacologia , Fertilização In Vitro , Hormônio Foliculoestimulante , Fator de Crescimento Insulin-Like I/farmacologia , Oócitos
20.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628472

RESUMO

Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.


Assuntos
COVID-19 , Conexinas , COVID-19/tratamento farmacológico , Conexinas/genética , Conexinas/metabolismo , Reposicionamento de Medicamentos , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Inflamação , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro , Ritonavir
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...