RESUMO
Integrating multiple functionalities into a single entity is highly important, especially when a broad spectrum of application is required. In the present work, we synthesized a novel manganese-based MOF (denoted as UoZ-6) that functions as a cold/hot-adapted and recyclable oxidase nanozyme (Km 0.085 mM) further developed for ratiometric-based colorimetric and color tonality visual-mode detection of nitrite in water and food. Nitrite ions promote the diazotization process of the oxTMB product, resulting in a decay in the absorbance signal at 652 nm and the emergence of a new signal at 461 nm. The dual-absorbance ratiometric platform for nitrite ion detection functions effectively across a wide temperature range (0 °C to 100 °C), offering a linear detection range of 5-45 µM with a detection limit of 0.15 µM using visual-mode. This approach is sensitive, reliable, and selective, making it effective for detecting nitrite ions in processed meat and water.
Assuntos
Colorimetria , Nitritos , Nitritos/análise , Colorimetria/métodos , Estruturas Metalorgânicas/química , Oxirredutases/química , Oxirredutases/metabolismo , Limite de Detecção , Temperatura Baixa , Temperatura Alta , Contaminação de Alimentos/análise , CorRESUMO
To better understand the migration behavior of plastic fragments in the environment, development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary. However, most of the studies had focused only on colored plastic fragments, ignoring colorless plastic fragments and the effects of different environmental media (backgrounds), thus underestimating their abundance. To address this issue, the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis (PLS-DA), extreme gradient boost, support vector machine and random forest classifier. The effects of polymer color, type, thickness, and background on the plastic fragments classification were evaluated. PLS-DA presented the best and most stable outcome, with higher robustness and lower misclassification rate. All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm. A two-stage modeling method, which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background, was proposed. The method presented an accuracy higher than 99% in different backgrounds. In summary, this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.
Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Plásticos , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Monitoramento Ambiental/métodos , Plásticos/análise , Análise dos Mínimos Quadrados , Análise Discriminante , CorRESUMO
Herein, we describe the design and development of a new cell-permeable aggregation-induced emission (AIE) active 3-ethoxysalicylaldimine-based symmetrical azine molecule HDBE. The synthesized compound underwent comprehensive investigation of different spectroscopic methods, like NMR, mass and single crystal X-ray diffraction analysis. The fluorophore HDBE exhibited the bright orange colour AIE behaviour in THF-H2O mixture. The drastic enhancement of emission was achieved upon adding the water to the THF solution of HDBE, with a concentration of 90%. Along with the dynamic light scattering (DLS) and quantum yield measurements, the formation of aggregates was also verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Further, HDBE demonstrated excited state intramolecular proton transfer (ESIPT) characteristics in different polarity of solvents, which was corroborated by absorption, emission and lifetime spectroscopical investigations. The detailed scrutiny of X-ray structure of HDBE displayed the two strong intramolecular hydrogen bonding interactions, while solid-state fluorescent spectra showed dual emission that corresponds to enol and keto form confirming the ESIPT feature. Further, the synthesized AIE molecule was non-toxic and cell-permeable, making it easy to label as a biomarker in live HeLa cells via fluorescent bioimaging. These studies offer a quick and easy way to develop both AIE and ESIPT-coupled molecules for live cell bioimaging applications.
Assuntos
Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Células HeLa , Imagem Óptica , Estrutura Molecular , Cor , Prótons , Sobrevivência Celular/efeitos dos fármacosRESUMO
The impact of premade beef patty (BBP) with red onion skin powder (OSP) at 0, 1, 2, and 3% levels on color, lipid, and protein oxidative stability, and infection degree of microorganisms during cold storage was investigated. The objective was to determine the effect of color by L*, a*, b*, and the content of MetMb. The inhibitory effect of OSP on the oxidation of lipid and protein was studied based on TBARS and the carbonyl content of protein in samples at different storage times. TVB-N content was used to characterize the degree of infection of microorganisms and their effect on meat quality. The results showed that the addition of OSP reduced the pH, L *, a*, and b * values of BBP, and improved the hardness, springiness, gumminess, and cohesiveness of BBP, but had no significant effect on the chewiness of BBP (p > 0.05). After 12 days of storage, the carbonyl group and TBARS content in the BBP supplemented with 3%OSP was significantly lower than that in the control group (p < 0.05). Furthermore, the addition of OSP significantly inhibited the TVB-N increase during beef patty storage. These results indicated that OSP has a good research prospect as a natural antioxidant or preservative.
Assuntos
Cor , Armazenamento de Alimentos , Cebolas , Oxirredução , Cebolas/química , Animais , Bovinos , Armazenamento de Alimentos/métodos , Pós , Lipídeos/química , Carne Vermelha/análise , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Temperatura Baixa , Conservação de Alimentos/métodosRESUMO
Rosa damascena Mill., commonly known as the King Flower, is a fragrant and important species of the Rosaceae family. It is widely used in the perfumery and pharmaceutical industries. The scent and color of the flowers are significant characteristics of this ornamental plant. This study aimed to investigate the relative expression of MYB1, CCD1, FLS, PAL, CER1, GT1, ANS and PAR genes under two growth stages (S1 and S2) in two morphs. The CCD1 gene pathway is highly correlated with the biosynthesis of volatile compounds. The results showed that the overexpression of MYB1, one of the important transcription factors in the production of fragrance and color, in the Hot pink morph of sample S2 increased the expression of PAR, PAL, FLS, RhGT1, CCD1, ANS, CER1, and GGPPS. The methyl jasmonate (MeJA) stimulant had a positive and cumulative effect on gene expression in most genes, such as FLS in ACC.26 of the S2 sample, RhGT1, MYB1, CCD1, PAR, ANS, CER1, and PAL in ACC.1. To further study, a comprehensive analysis was performed to evaluate the relationship between the principal volatile compounds and colors. Our data suggest that the rose with pink flowers had a higher accumulation content of flavonoids and anthocyanin. To separate essential oil compounds, GC/MS analysis identified 26 compounds in four samples. The highest amount of geraniol, one of the main components of damask rose, was found in the Hot pink flower, 23.54%, under the influence of the MeJA hormone.
Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Odorantes , Rosa , Rosa/genética , Rosa/metabolismo , Flores/genética , Flores/metabolismo , Odorantes/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Genes de Plantas , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , CorRESUMO
This study improves the Logistic chaotic system and combines it with the hyperchaotic Chen system to create a dual chaotic system. The algorithm encrypts images in three stages. In the first stage, a plaintext-related key generation scheme is designed to generate the parameters and initial values of the dual chaotic system. In the second stage, the chaotic sequences generated by the dual chaotic system are used for dynamic DNA encoding and computation. In the third stage, the chaotic sequences generated by the improved Logistic chaotic system are used to perform row-column permutations, completing the scrambling. The security analysis of the encrypted images shows that the algorithm described in this paper is robust and secure, capable of resisting most known attacks. The algorithm is fast in encryption, provides high-quality image reconstruction, and is suitable for scenarios with high comprehensive performance and image quality requirements.
Assuntos
Algoritmos , Cor , Segurança Computacional , DNA , Processamento de Imagem Assistida por Computador , DNA/genética , Processamento de Imagem Assistida por Computador/métodos , Dinâmica não LinearRESUMO
Color discrimination is fundamental to human behavior. We find bananas by coarsely searching for yellow but then differentiate nuances of yellow to pick the best exemplars. How does the brain adjust the resolution of color selectivity to our changing needs? Here, we analyze the brain magnetic response in the human visual cortex to show that color selectivity is adaptively set by coarse- and fine-resolving processes running in parallel at different hierarchical levels. Those include a gain enhancement in the higher-lever cortex of color units tuned away from the target to resolve very similar colors and a coarsely resolving gain enhancement in the mid-level cortex of units tuned to the target. Our findings suggest that attention operates on a form of multiresolution representation of color at different levels in the visual hierarchy, which keeps selectivity adaptive to a changing resolution context.
Assuntos
Percepção de Cores , Córtex Visual , Humanos , Córtex Visual/fisiologia , Percepção de Cores/fisiologia , Masculino , Feminino , Adulto , Estimulação Luminosa , Imageamento por Ressonância Magnética , Mapeamento Encefálico , CorRESUMO
Soyabean is an incredibly significant component of Chinese agricultural product, and categorizing soyabean seeds allows for a better understanding of the features, attributes, and applications of many species of soyabean. This enables farmers to choose appropriate seeds for sowing in order to increase production and quality. As a result, this thesis provides a method for classifying soybean seeds that uses hyperspectral RGB picture reconstruction. Firstly, hyperspectral images of seven varieties of soybean, H1, H2, H3, H4, H5, H6 and H7, were collected by hyperspectral imager, and by using the principle of the three base colours, the R, G and B bands which have more characteristic information are selected to reconstruct the images with different texture and colour characteristics to generate a new dataset for seed segmentation, and finally, a comparison is made with the classification effect of the seven models. The experimental results in ResNet34 show that the classification accuracy of the dataset before and after RGB reconstruction increases from 88.87% to 91.75%, demonstrating that RGB image reconstruction can strengthen image features; ResNet18, ResNet34, ResNet50, ResNet101, CBAM-ResNet34, SENet-ResNet34, and SENet-ResNet34-DCN models have classification accuracies of 72.25%, 91.75%, 89%, 88.48%, 92.28%, 92.80%, and 94.24%, respectively.SENet-ResNet34-DCN achieves the greatest classification accuracy results, with a model loss of roughly 0.3. The proposed SENet-ResNet34-DCN model is the most effective at classifying soybean seeds. By classifying and optimally selecting seed varieties, agricultural production can become more scientific, efficient, and sustainable, resulting in higher returns for farmers and contributing to global food security and sustainable development.
Assuntos
Glycine max , Imageamento Hiperespectral , Sementes , Glycine max/classificação , Imageamento Hiperespectral/métodos , Processamento de Imagem Assistida por Computador/métodos , CorRESUMO
Corn snakes are emerging models for animal colouration studies. Here, we focus on the Terrazzo morph, whose skin pattern is characterized by stripes rather than blotches. Using genome mapping, we discover a disruptive mutation in the coding region of the Premelanosome protein (PMEL) gene. Our transcriptomic analyses reveal that PMEL expression is significantly downregulated in Terrazzo embryonic tissues. We produce corn snake PMEL knockouts, which present a comparable colouration phenotype to Terrazzo and the subcellular structure of their melanosomes and xanthosomes is also similarly impacted. Our single-cell expression analyses of wild-type embryonic dorsal skin demonstrate that all chromatophore progenitors express PMEL at varying levels. Finally, we show that in wild-type embryos PMEL-expressing cells are initially uniformly spread before forming aggregates and eventually blotches, as seen in the adults. In Terrazzo embryos, the aggregates fail to form. Our results provide insights into the mechanisms governing colouration patterning in reptiles.
Assuntos
Pigmentação da Pele , Animais , Pigmentação da Pele/genética , Serpentes/embriologia , Serpentes/genética , Serpentes/metabolismo , Melanossomas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Cromatóforos/metabolismo , Fenótipo , Embrião não Mamífero/metabolismo , Análise de Célula Única/métodos , Cor , Pele/metabolismo , Pele/embriologia , Pele/citologiaRESUMO
Cell-cell interactions are essential for the proper functioning of multicellular organisms. For example, T cells interact with antigen-presenting cells (APCs) through specific T-cell receptor (TCR)-antigen interactions during an immune response. Fluorescence-activated droplet sorting (FADS) is a high-throughput technique for efficiently screening cellular interaction events. Unfortunately, current droplet sorting instruments have significant limitations, most notably related to analytical throughput and complex operation. In contrast, commercial fluorescence-activated cell sorters offer superior speed, sensitivity, and multiplexing capabilities, although their use as droplet sorters is poorly defined and underutilized. Herein, we present a universally applicable and simple-to-implement workflow for generating double emulsions and performing multicolor cell sorting using a commercial FACS instrument. This workflow achieves a double emulsion detection rate exceeding 90%, enabling multicellular encapsulation and high-throughput immune cell activation sorting for the first time. We anticipate that the presented droplet sorting strategy will benefit cell biology laboratories by providing access to an advanced microfluidic toolbox with minimal effort and cost investment.
Assuntos
Emulsões , Citometria de Fluxo , Citometria de Fluxo/métodos , Emulsões/química , Humanos , Corantes Fluorescentes/química , Linfócitos T/citologia , Cor , Separação Celular/métodos , AnimaisRESUMO
MAIN CONCLUSION: Microscopic analyses and chemical profiling demonstrate that the white rind phenotype in melon fruit is associated with the accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters. Serving as an indicator of quality, the rind (or external) color of fruit directly affects consumer choice. A fruit's color is influenced by factors such as the levels of pigments and deposited epicuticular waxes. The latter produces a white-grayish coating often referred to as "wax bloom". Previous reports have suggested that some melon (Cucumis melo L.) accessions may produce wax blooms, where a dominant white rind color trait was genetically mapped to a major locus on chromosome 7 and suggested to be inherited as a single gene named Wi. We here provide the first direct evidence of the contribution of epicuticular waxes to the dominant white rind trait in melon fruit. Our light and electron microscopy and gas chromatography-mass spectrometry (GC-MS) comparative analysis of melon accessions with white or green rinds reveals that the rind of melon fruit is rich in epicuticular waxes. These waxes are composed of various biochemical classes, including fatty acids, fatty alcohols, aldehydes, fatty amides, n-alkanes, tocopherols, triterpenoids, and wax esters. We show that the dominant white rind phenotype in melon fruit is associated with increased accumulation of n-alkanes, fatty alcohols, aldehydes and wax esters, which are linked with the deposition of crystal-like wax platelets on their surfaces. Together, this study broadens the understanding of natural variation in an important quality trait of melon fruit and promotes the future identification of the causative gene for the dominant white rind trait.
Assuntos
Frutas , Ceras , Ceras/metabolismo , Ceras/química , Frutas/genética , Frutas/metabolismo , Fenótipo , Pigmentação/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Cucumis melo/genética , Cucumis melo/metabolismo , Cor , BrancosRESUMO
Withering and spreading, though slightly differing in their parameters, share the same aim of moisture reduction in tea leaves, and they have a strong impact on the physical and chemical properties of tea. Even though researchers tend to pay close attention to the characteristic crafts of different teas, increasing investigations begin to focus on the withering process due to its profound effects on the composition and content of quality-related compounds. This review provides an overview of tea withering process to address questions comprehensively during withering. Hence, it is expected in this review to figure out factors that affect withering results, the way withering influences the physical and chemical properties of withered leaves and tea quality, and intelligent technologies and devices targeted at withering processes to promote the modernization of the tea industry. Herein, several key withering parameters, including duration, temperature, humidity, light irradiation, airflow, and more, are tailored to different tea types, demanding further exploration of advanced withering devices and real-time monitoring systems. The development of real-time monitoring technology enables objective and real-time adjustment of withering status in order to optimize withering results. Tea quality, including taste, aroma, and color quality, is first shaped during withering due to the change of composition and content of quality-related metabolites through (non)enzymatic reactions, which are easily influenced by the factors above. A thorough understanding of withering is key to improving tea quality effectively and scientifically.
Assuntos
Camellia sinensis , Manipulação de Alimentos , Folhas de Planta , Chá , Chá/química , Manipulação de Alimentos/métodos , Camellia sinensis/química , Folhas de Planta/química , Paladar , CorRESUMO
With recent advances in multi-color super-resolution light microscopy, it is possible to simultaneously visualize multiple subunits within biological structures at nanometer resolution. To optimally evaluate and interpret spatial proximity of stainings on such an image, colocalization analysis tools have to be able to integrate prior knowledge on the local geometry of the recorded biological complex. We present MultiMatch to analyze the abundance and location of chain-like particle arrangements in multi-color microscopy based on multi-marginal optimal unbalanced transport methodology. Our object-based colocalization model statistically addresses the effect of incomplete labeling efficiencies enabling inference on existent, but not fully observable particle chains. We showcase that MultiMatch is able to consistently recover existing chain structures in three-color STED images of DNA origami nanorulers and outperforms geometry-uninformed triplet colocalization methods in this task. MultiMatch generalizes to an arbitrary number of color channels and is provided as a user-friendly Python package comprising colocalization visualizations.
Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Cor , Algoritmos , DNA/química , DNA/metabolismo , Microscopia/métodos , SoftwareRESUMO
Borosilicate glass was developed to enhance the mechanical behavior and smoothness of dental zirconia as an alternative to conventional glaze. This study assessed the mechanical and optical properties of 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) coated with borosilicate glass or a commercial glaze fired for an extended period of time. Disc-shaped 3Y-TZP zirconia specimens (Zpex, Tosoh) were sintered at 1550°C for 2 hours. The specimens were divided into three groups: as-sintered (control, C); commercial glaze (G); and borosilicate glass (SL). The glaze and borosilicate glass were applied over the zirconia and fired for 20 minutes at 950°C and 1200°C, respectively. Biaxial flexural strength, fractography, X-ray diffraction (XRD), roughness (Ra and Rz), fracture toughness (Vickers indentation method), color difference (∆E00), and translucency (TP00) analyses were conducted. The t-test or the one-way ANOVA and Tukey's tests were used to analyze the data (α = 0.05). Flexural strength data were subjected to the Weibull analysis. The SL group exhibited the highest flexural strength (1025.8 MPa), whereas the C (859.41 MPa) and G (816.0 MPa) groups exhibited similar values. The SL group also had the highest characteristic strength. The fracture origin in all groups was on the zirconia surface. XRD analysis revealed that the specimens from the SL group contained tetragonal, cubic, and monoclinic phases. The SL group presented the lowest surface roughness. Fracture toughness in the SL group was lower than in the C group, but similar to that observed in the G group. The translucency and color differences observed in the G and SL groups were similar. Borosilicate glass enhanced the flexural strength of 3Y-TZP, promoted the smoothest surface, and exhibited optical properties similar to those of the glaze.
Assuntos
Vidro , Teste de Materiais , Propriedades de Superfície , Difração de Raios X , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Vidro/química , Análise de Variância , Fatores de Tempo , Resistência à Flexão , Silicatos/química , Reprodutibilidade dos Testes , Valores de Referência , Estatísticas não Paramétricas , Cor , Fenômenos Ópticos , Testes de Dureza , Materiais Dentários/químicaRESUMO
The information contained in population genomic data can tell us much about the past ecology and evolution of species. We leveraged detailed phenotypic and genomic data of nearly all living kakapo to understand the evolution of its feather color polymorphism. The kakapo is an endangered and culturally significant parrot endemic to Aotearoa New Zealand, and the green and olive feather colorations are present at similar frequencies in the population. The presence of such a neatly balanced color polymorphism is remarkable because the entire population currently numbers less than 250 birds, which means it has been exposed to severe genetic drift. We dissected the color phenotype, demonstrating that the two colors differ in their light reflectance patterns due to differential feather structure. We used quantitative genomics methods to identify two genetic variants whose epistatic interaction can fully explain the species' color phenotype. Our genomic forward simulations show that balancing selection might have been pivotal to establish the polymorphism in the ancestrally large population, and to maintain it during population declines that involved a severe bottleneck. We hypothesize that an extinct apex predator was the likely agent of balancing selection, making the color polymorphism in the kakapo a "ghost of selection past."
Assuntos
Plumas , Papagaios , Pigmentação , Seleção Genética , Animais , Pigmentação/genética , Nova Zelândia , Papagaios/genética , Polimorfismo Genético , Fenótipo , Cor , Comportamento PredatórioRESUMO
PURPOSE: Resins composites are widely used in modern dentistry because of their aesthetic and physical properties. However, discoloration of anterior tooth restorations is a common complaint. Understanding the factors affecting the colour stability of resin composites can lead to longer-lasting repairs. This study aimed to evaluate and compare the colour changes of nanocomposite-based bulk-fill and universal resin composites after immersion in coffee using various polishing systems. MATERIALS AND METHODS: A total of 160 samples were prepared using four different composite groups, with 40 pieces for each combined group. Based on the finishing procedure, the samples were divided into four subgroups for each composite group. Three different polishing procedures were applied to the samples according to the manufacturer's instructions. The control group was not subjected to any treatment. Initial colour measurements were performed using a VITA Easyshade V spectrophotometer. After the initial measurements, the samples were immersed in a Nescafe coffee solution for seven days, followed by colour measurements. Data were analysed using the Kolmogorov-Smirnov test and two-way analysis of variance. Tukey's honest significant difference (HSD) test was used to determine differences between subgroups. RESULTS: The results indicate that bulk-fill resins exhibit more discolouration than universal composites; however, this difference was not statistically significant. The resin group with the smallest discolouration was Ceram X, and the most effective polishing method was Twist polishing. CONCLUSION: Final surface polishing significantly reduced the composites' discolouration. These findings support the selection of appropriate materials and polishing techniques to achieve aesthetic outcomes and colour stability in dental restorations.
Assuntos
Café , Cor , Resinas Compostas , Polimento Dentário , Nanocompostos , Resinas Compostas/química , Nanocompostos/química , Polimento Dentário/métodos , Polimento Dentário/instrumentação , Teste de Materiais , Propriedades de Superfície , Espectrofotometria , HumanosRESUMO
Protein grass hay (PGH) was used as a new feed source for lambs to study its effect on fattening performance and meat quality. Fifty-six male lambs were allotted to four experimental groups and fed for eight weeks either alfalfa hay (AH)-based diet (control) or diets in which AH was replaced with 33 %, 66 %, or 99 % PGH. The inclusion of PGH did not affect final body weight, dry matter intake, average daily gain, feed conversion ratio, or carcass weight. Moreover, substituting AH with PGH at any level did not influence the ruminal fermentation or serum biochemical parameters, meat color, water holding capacity, shear force, or amino acid profile. However, relative liver weight was increased with 66 % substitutions. Furthermore, replacing 99 % AH with PGH decreased the meat's pH at 24 h. Higher levels of C18:3n-3, C20:5n-3, and total n-3 PUFA and a lower ratio of n-6: n-3 PUFA were also observed in meat from lambs fed PGH at 99 %. These findings suggest that PGH could be incorporated into the lamb's diet up to 99 % without compromising fattening performance and body health while improving their meat n-3 PUFA deposition.
Assuntos
Ração Animal , Dieta , Poaceae , Carne Vermelha , Carneiro Doméstico , Animais , Masculino , Ração Animal/análise , Dieta/veterinária , Carne Vermelha/análise , Proteínas Alimentares/análise , Fenômenos Fisiológicos da Nutrição Animal , Rúmen/metabolismo , Medicago sativa , Concentração de Íons de Hidrogênio , Ácidos Graxos Ômega-3/análise , Fígado/metabolismo , Fígado/química , Aminoácidos/análise , Fermentação , Cor , Músculo Esquelético/químicaRESUMO
The high protein content of several microalgae species makes them an excellent addition to various food products, increasing their nutritional value. In this study, vegan basil pesto was designed and enriched with 1% and 2% Arthrospira platensis (spirulina). The pesto obtained was characterized by increased protein content (up to 40% more) and had a rich mineral composition, including up to three times more iron and 25% more calcium, among others. The increase of spirulina addition in the pesto also increased the content of polyphenols (up to 50% more) and flavonoids (up to 39% more). The fortified products had higher antioxidant activity against ABTS (up to 484.56 ± 2.16 µM Trolox/g) and DPPH (up to 392.41 ± 13.58 µM Trolox/g). The addition of spirulina will affect the hardness of the sauce, while in the other texture parameters (adhesiveness, springiness, and cohesion), there were no significant differences between the control and spirulina-fortified pesto. Although the pesto with spirulina was significantly darker in color (ΔE 8.83 and 12.05), consumers still rated it highly. All quality parameters of pesto with a 1% spirulina addition were rated the highest, contributing to the highest overall rating of the product (4.56). An increase in spirulina addition to 2% resulted in a decrease in the overall pesto rating (4.01), but still remains a good result compared to the control (4.22).
Assuntos
Antioxidantes , Alimentos Fortificados , Valor Nutritivo , Spirulina , Spirulina/química , Humanos , Antioxidantes/análise , Antioxidantes/farmacologia , Paladar , Veganos , Adulto , Cor , Feminino , Masculino , Polifenóis/análise , Polifenóis/farmacologia , Ocimum basilicum/químicaRESUMO
Although deterioration of silicone maxillofacial prostheses is severely accentuated in smoking patients, the phenomenon has not been systematically studied. To address a gap in the literature concerning the stability of maxillofacial prostheses during service, in this contribution, the effect of cigarette smoke on the aspect and physical properties of M511 silicone elastomer was evaluated. The aspect, surface, and overall properties of the silicone material, pigmented or not, were followed by AFM, color measurements, FTIR, water contact angle measurements, TGA-DTG and DSC, hardness and compression stress-strain measurements. The types of the contaminants adsorbed were assessed by XRF, ESI-MS, MALDI-MS, and NMR spectral analyses. Important modifications in color, contact angle, surface roughness, local mechanical properties, and thermal properties were found in the silicone material for maxillofacial prostheses after exposure to cigarettes smoke. The presence of lead, nicotine, and several other organic compounds adsorbed into the silicone material was emphasized. Slight decrease in hardness and increase in Young's modulus was found. The combined data show important impact of cigarette smoke on the silicone physical properties and could indicate chemical transformations by secondary cross-linking. To our knowledge, this is the first study making use of complementary physical methods to assess the effect of cigarette smoke on the aspect and integrity of silicone materials for maxillofacial prostheses.