Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Mar Drugs ; 20(4)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35447934

RESUMO

Freshwater clam extract (FCE) is a functional food that regulates the immune system and has been demonstrated in numerous studies to display desirable anti-tumor necrosis factor-alpha (TNF-α) responses. In addition, excess TNF-α production is positively associated with type 2 diabetes. However, few longitudinal clinical studies evaluating the efficiency and toxicity of FCE are available. This article reports that patients with prediabetes who received FCE had a desirable outcome of a reduction in serum TNF-α for a long period. This was a double-blind, randomized, parallel clinical trial conducted using FCE intervention and placebo groups, and 36 patients with prediabetes were enrolled. Two grams of FCE or placebo was consumed daily for 180 consecutive days. The serum of the participants was collected at four time points (0M: before the intervention; 3M: after 3 months of intervention; 6M: after 6 months of intervention; 12M: 6 months after cessation of intervention at 6M). A serum TNF-α concentration higher than 4.05 pg/mL was defined as a cut-off value. FCE reduced serum TNF-α in all participants at 6M and 12M. Moreover, FCE significantly suppressed serum TNF-α concentrations at 6M and 12M and inhibited TNF-α release with time series in subjects with elevated TNF-α values. FCE intervention effectively reduced serum TNF-α and persistently sustained the effects for half a year in patients with prediabetes. Gas chromatography-mass spectrometry (GS-MS) analysis revealed that the major components of FCE were phytosterols and fatty acids, which exerted anti-inflammatory and anti-TNF-α abilities. Hence, FCE has the potential to be developed as a natural treatment for prediabetic patients in Taiwan.


Assuntos
Corbicula , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Animais , Corbicula/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Água Doce , Humanos , Extratos Vegetais , Estado Pré-Diabético/tratamento farmacológico , Taiwan , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
2.
Appl Environ Microbiol ; 88(7): e0232821, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285714

RESUMO

The Asian clam Corbicula fluminea is a keystone zoobenthos in freshwater ecosystems. However, its associated microbiome is not well understood. We investigated the bacterial communities of this clam and its surrounding environment, including sediment and water simultaneously, in a large lake by means of 16S rRNA gene sequencing. Approximately two-thirds of the bacterial operational taxonomic units (OTUs) associated with clams were observed in the surrounding environment and mostly from particle-associated samples. The associated bacterial communities were site specific and more similar to environmental bacteria from the same site than those at other sites, suggesting a local environmental influence on host bacteria. However, the significant differences in bacterial diversities and compositions between the clam and the environment also indicated strong host selection pressure on bacteria from the surrounding environment. Bacteria affiliated with Firmicutes, Spirochaetes, Tenericutes, Bacteroidetes, Epsilonbacteraeota, Patescibacteria, and Fusobacteria were found to be significantly enriched in the clams in comparison to their local environment. Oligotyping analyses of the core-associated bacterial OTUs also demonstrated that most of the core OTUs had lower relative abundances and occurrence frequencies in environmental samples. The core bacterial OTUs were found to play an important role in maintaining the stability of the bacterial community network. These core bacteria included the two most abundant taxa Romboutsia and Paraclostridium with the potential function of fermenting polysaccharides for assisting host clams in food digestion. Overall, we demonstrate that clam-associated bacteria were spatially dynamic and site specific, which were mainly structured both by local environments and host selection. IMPORTANCE The Asian clam Corbicula fluminea is an important benthic clam in freshwater ecosystems due to its high population densities and high filtering efficiency for particulate organic matter. While the associated microbiota is believed to be vital for host living, our knowledge about the compositions, sources, and potential functions is still lacking. We found that C. fluminea offers a unique ecological niche for specific lake bacteria. We also observed high intrahabitat variation in the associated bacterial communities. Such variations were driven mainly by local environments, followed by host selection pressure. While the local microbes served as a source of the clam-associated bacteria, host selection resulted in enrichments of bacterial taxa with the potential for assisting the host in organic matter digestion. These results significantly advance our current understanding of the origins and ecological roles of the microbiota associated with a keynote clam in freshwater ecosystems.


Assuntos
Corbicula , Microbiota , Poluentes Químicos da Água , Animais , Bactérias/genética , Lagos , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
3.
Chemosphere ; 297: 134242, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35259357

RESUMO

Graphene oxide (GO), a frequently utilized graphene family nanomaterial, is inevitably released into the aquatic environment and interacts with organic pollutants, including perfluorooctane sulfonate (PFOS), a well-known persistent organic pollutant. To determine the adverse effects of GO chronic exposure on PFOS bioaccumulation and toxicity, adult freshwater bivalves, namely Asian clams (Corbicula fluminea) were treated for 28 days with PFOS (500 ng/L) and different concentrations of GO (0.2, 1, 5 mg/L) as PFOS single and GO single exposure groups, as well as PFOS-GO mixture exposure groups. Our results demonstrated that the bioaccumulation of PFOS was significantly enhanced by co-exposure in gills and visceral masses, which was 1.64-2.91 times higher in gills than in visceral masses. Both single, as well as co-exposure, caused a significant reduction in clams' siphoning behavior, compared to the controls. Further, the co-exposure significantly increased the production of reactive oxygen species (ROS), exacerbating malondialdehyde (MDA) content, enhancing superoxide dismutase (SOD) and catalase (CAT), while decreasing glutathione reductase (GR) and glutathione S-transferase (GST) enzymatic activities in clam tissues. And co-exposure significantly altered the expressions of se-gpx, sod, cyp30, hsp40, and hsp22 genes (associated with oxidative stress and xenobiotic metabolism) both in gills and visceral masses. Moreover, co-exposure caused significant histopathological changes such as cilia degradation in the gills, expansion of tubule lumens in digestive glands, and oocyte shrinkage in gonads. Finally, the enhanced integrated biomarker response (EIBR) index revealed that co-exposure to 500 ng/L PFOS + 1 mg/L/5 mg/L GO was the most stressful circumstance. Overall, our findings suggested that the presence of GO increased PFOS bioaccumulation in tissues, inducing multifaceted negative implications at molecular and behavioral levels through oxidative stress generation in Asian clams.


Assuntos
Corbicula , Grafite , Poluentes Químicos da Água , Ácidos Alcanossulfônicos , Animais , Corbicula/metabolismo , Fluorcarbonetos , Água Doce , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Chemosphere ; 297: 134090, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35216982

RESUMO

Chromium has two main oxidation states, Cr(III) and Cr(VI), that can occur simultaneously in natural waters. Current consensus holds that Cr(VI) is of high ecotoxicological concern, but regards Cr(III) as poorly bioavailable and relatively non-toxic. In this work, the effects and bioaccumulation of Cr(III), Cr(VI) and their mixture were studied using the freshwater clam Corbicula fluminea as a model organism. Mixture exposures were carried out using solutions isotopically enriched in 50Cr(III) or 53Cr(VI), allowing to quantify the contribution of each redox form to total Cr accumulation in the clams. Following exposure to individual redox forms, Cr(III) accumulated preferentially in the digestive glands and Cr(VI) in the gills of C. fluminea. In mixture exposures, both redox forms accumulated mainly in the gills; the concentration of Cr(III) in the digestive glands being much lowered compared with individual exposures. Both oxidation states affected the expression of biomarkers related to energy reserves, cellular damage and mitochondrial functioning, as well as the expression of mRNA for detoxification genes. The observed effects differed between gills and digestive glands. The present study suggests that Cr(III) is a bioavailable and biologically active elemental species deserving more consideration by the ecotoxicological community.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Bioacumulação , Cromo/análise , Corbicula/metabolismo , Água Doce , Poluentes Químicos da Água/análise
5.
Chemosphere ; 296: 134037, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183583

RESUMO

Microplastics have been detected in several aquatic organisms, especially bivalves such as clams, oysters, and mussels. To understand the ecotoxicological implication of microplastic accumulation in biota, it is crucial to investigate effects at the physiological level to identify knowledge gaps regarding the threat posed to the environment and assist decision-makers to set the necessary priorities. Typically, xenobiotics elicit an overproduction of reactive oxygen species in organisms, resulting in oxidative stress and cellular damage when not combated by the antioxidative system. Therefore, the present study aimed to establish the impacts of microplastic particles and fibres on the freshwater basket clam Corbicula javanicus. We measured the oxidative stress responses following microplastic exposure as the specific activities of the antioxidative enzymes glutathione S-transferase and catalase. When exposed to polyester fibres from the fleece jackets, the enzyme activities increased in the clams, while the enzyme activities decreased with high-density polyethylene microplastic fragments from bottle caps. All the exposures showed that the adverse effects on the antioxidative response system were elicited, indicating the negative ecotoxicological implications of microplastic pollution.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Água Doce , Microplásticos , Estresse Oxidativo , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Chemosphere ; 291(Pt 1): 132700, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34710454

RESUMO

Activated carbon (AC) amendment is considered as one of the alternatives for managing and remediating mercury (Hg) contaminated sediments because of its high sorptive capacity and potential to immobilize the contaminant. For this study, the underlying mechanisms that control the reduction of Hg bioavailability in AC-amended estuarine sediments were investigated in box microcosm set-ups with 28-day Asian clam bioassay experiments. The application of diffusive gradients in thin film technique (DGT) revealed that the total mercury and methylmercury levels in sediment pore water decreased by 60%-75% in 1%-3% AC-amended sediments. This decrease subsequently led to a linear reduction in the Hg body burden in Asian clams, even at 1% sorbent mixing. These observations implied that AC amendment reduced the net flux of Hg into the pore water and overlying water, resulting in reduced Hg bioaccumulation in benthic organisms. The addition of AC to sediment also led to reduced dissolved organic carbon and several biogeochemical indicators (HS-, Mn, and Fe) in the pore water. Furthermore, the 16 S rRNA gene amplicon sequencing analysis revealed noticeable alterations in the microbial communities after AC amendment. The predominant phylum was Firmicutes in control sediment, Bacteroidetes in 1% AC-amended sediment, and Proteobacteria in both 2% and 3% AC-amended sediment samples. The genera-level analysis showed that the relative abundance of the Hg-methylators decreased as the level of AC amendment increased. These observations suggested that AC amendment decreased Hg bioavailability not only by physicochemical sorption but also by changing geochemical species and shifting the microbial community composition.


Assuntos
Corbicula , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Carvão Vegetal , Sedimentos Geológicos , Mercúrio/análise , Poluentes Químicos da Água/análise
7.
Environ Sci Pollut Res Int ; 29(16): 23700-23711, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34811616

RESUMO

Antibiotic toxicity and antibiotic resistance have become significant challenges to human health. However, the potential ecotoxicity of sediment-associated antibiotics remains unknown. In this study, biochemical responses, histological changes, and behavioral responses of Corbicula fluminea exposed to sediment-associated ciprofloxacin (CIP) were systemically investigated. Special attention was paid to the influence of different substrate types. Biochemical analyses revealed that the balance of the antioxidant system was disrupted, eventually leading to oxidative damage to the gills and digestive gland with increasing CIP concentration. Severe histopathological changes appeared along with the oxidative damage. An enlargement of the tubule lumen and thinning of the epithelium in the digestive gland were observed under exposure to high CIP concentrations (0.5 and 2.5 µg/g CIP). In a behavioral assay, the filtration rate of C. fluminea in high concentration exposure groups was clearly inhibited. Moreover, from the integrated biomarker response (IBR) index, the toxicity response gradients of the digestive gland (no substrate--NOS > Sand > Sand and kaolinite clay-- SKC > Sand, kaolinite clay, and organic matter--SCO) and gills (NOS > SCO > SKC > Sand) were different among substrate exposure groups. The most serious histopathological damage and highest siphoning inhibition were observed in the NOS group. The changes in the morphological structure of digestive gland cells in C. fluminea were similar in the other three substrate groups. The inhibition of the filtration rate in the higher concentration groups decreased in the order Sand > SKC > SCO.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Ciprofloxacina/análise , Brânquias/metabolismo , Humanos , Estresse Oxidativo , Poluentes Químicos da Água/análise
8.
J Sci Food Agric ; 102(2): 716-723, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34171123

RESUMO

BACKGROUND: The prevalence of diabetes mellitus worldwide has increased in recent decades. Maintaining the level of blood glucose is the most basic and important issue for diabetics. This study aimed to investigate the hypoglycemic activity of a combination of hypoglycemic peptide-enriched hydrolysates of Corbicula fluminea (ACH) and Chlorella sorokiniana (PCH). RESULTS: Combined supplementation of ACH and PCH synergistically inhibited α-glucosidase and DPP4 activities in vitro. After 4 weeks of treatment with ACH and/or PCH, the plasma glucose concentration and insulin, homeostasis model assessment-estimated insulin resistance (HOMA-IR), total cholesterol (TC) and triglyceride (TG) levels significantly decreased. The hypoglycemic peptides in ACH and PCH were purified and assayed for α-glucosidase and DPP4 activity. The hypoglycemic peptides in ACH and PCH effectively decreased α-glucosidase and DPP4 activities. In silico assays showed that these two peptide types have different docking poses, which determined their inhibitory effect against α-glucosidase and DPP4 activity. CONCLUSION: Combined treatment with hypoglycemic peptide-enriched ACH and PCH could modulate blood glucose by synergistically inhibiting α-glucosidase and DPP4 activities. © 2021 Society of Chemical Industry.


Assuntos
Chlorella/química , Corbicula/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Hipoglicemiantes/administração & dosagem , Peptídeos/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Sinergismo Farmacológico , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hipoglicemiantes/química , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
9.
Sci Total Environ ; 803: 150090, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525724

RESUMO

The increasing global demand for rare earth elements (REEs) has led to their recognition as emerging contaminants; however, the effect that biota have on the cycling of these elements at the watershed scale is not currently well understood. In this study, water samples and field freshwater clams Corbicula fluminea were concurrently collected along watershed gradients, and concentration profiles of 14 naturally occurring REEs were measured in operationally defined water fractions and soft tissues of the freshwater clams. Moreover, Post Archean Australian Shale (PAAS) normalized REE patterns, fractionation indices, and anomalous values were determined to further extract characteristic features. As a result, both the water and biological samples had variable REE compositions, with higher concentrations of light REEs (LREEs) than middle REEs (MREEs) and heavy REEs (HREEs), while decreasing concentrations were generally observed as filter pore size decreased, implying that large colloidal and particulate fractions were important carriers of REEs. The spatial distribution patterns of REEs revealed a clear site effect among profiles, with variability more pronounced among watersheds and with peaks in sites from a small watershed near the hotspots of the mining area, and then exhibited a decreasing trend with distance from there. Meanwhile, significant bioaccumulation of REEs was observed potentially reflecting different degrees of contamination gradients among the watersheds. The PAAS-normalized distribution patterns tended to be slightly enriched in MREEs, producing a peculiar "roof-shaped" feature and characteristic fractionation. Remarkably, bio-concentration factors (BCFs) highlighted the importance of large colloidal and particulate phases in assessing biologically available REEs for filter-feeding species. Collectively, our study strongly favored that accumulation patterns and fractionation characteristics of REEs in C. fluminea can serve as a reliable indicator of geochemical behavior, providing a promising biomonitoring tool to quantitatively denote different degrees of REE contamination and assess possible impacts in mining watersheds.


Assuntos
Corbicula , Metais Terras Raras , Poluentes Químicos da Água , Animais , Austrália , Monitoramento Ambiental , Metais Terras Raras/análise , Água , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 813: 152617, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34963588

RESUMO

Microplastic, a well-documented emerging contaminant, is widespread in aquatic environments resulting from the production and fragmentation of large plastics items. The knowledge about the chronic toxic effects and behavioral toxicity of microplastics, particularly on freshwater benthic macroinvertebrates, is limited. In this study, adult Asian clams (Corbicula fluminea) were exposed to gradient microplastic solutions for 42 days to evaluate behavioral toxicity and chronic biotoxicity. The results showed that microplastics caused behavior toxicity, oxidative stress, and tissue damage in high-concentration treatments. Siphoning, breathing, and excretion was significantly inhibited (p < 0.05) at high-concentration treatments, suggesting that high-concentration microplastics induced behavioral toxicity in C. fluminea. Malondialdehyde content, superoxide dismutase, catalase, and glutathione reductase activities were significantly enhanced (p < 0.05) and the acetylcholinesterase was significantly inhibited (p < 0.05) throughout the exposure period in high-concentration treatments. Enzymes associated with energy supply were significantly higher at high-concentration microplastics treatments on D7 and D21. However, they recovered to a normal level on D42. The instability of the enzymes indicated that high-concentration microplastics induced oxidative stress and disorder in neurotransmission and energy supply. The gills of C. fluminea in treatments underwent cilia degeneration, which indicated that microplastics caused tissue damage in the gills. The analysis of integrated biomarker response values revealed that high-concentration microplastics led to long-term effects on the health of C. fluminea. In conclusion, continuous exposure to microplastics (10 mg L-1) would damage physical behavior and the antioxidant system of C. fluminea.


Assuntos
Corbicula , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Microplásticos , Plásticos/toxicidade , Poliestirenos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
Sci Rep ; 11(1): 15021, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294825

RESUMO

The Asian Clam (Corbicula fluminea) is a valuable commercial and medicinal bivalve, which is widely distributed in East and Southeast Asia. As a natural nutrient source, the clam is rich in protein, amino acids, and microelements. The genome of C. fluminea has not yet been characterized; therefore, genome-assisted breeding and improvements cannot yet be implemented. In this work, we present a de novo chromosome-scale genome assembly of C. fluminea using PacBio and Hi-C sequencing technologies. The assembled genome comprised 4728 contigs, with a contig N50 of 521.06 Kb, and 1,215 scaffolds with a scaffold N50 of 70.62 Mb. More than 1.51 Gb (99.17%) of genomic sequences were anchored to 18 chromosomes, of which 1.40 Gb (92.81%) of genomic sequences were ordered and oriented. The genome contains 38,841 coding genes, 32,591 (83.91%) of which were annotated in at least one functional database. Compared with related species, C. fluminea had 851 expanded gene families and 191 contracted gene families. The phylogenetic tree showed that C. fluminea diverged from Ruditapes philippinarum, ~ 228.89 million years ago (Mya), and the genomes of C. fluminea and R. philippinarum shared 244 syntenic blocks. Additionally, we identified 2 MITF members and 99 NLRP members in C. fluminea genome. The high-quality and chromosomal Asian Clam genome will be a valuable resource for a range of development and breeding studies of C. fluminea in future research.


Assuntos
Cromossomos , Corbicula/classificação , Corbicula/genética , Estudos de Associação Genética , Genoma , Genômica , Animais , Biologia Computacional/métodos , Genômica/métodos , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Sequências Repetitivas de Ácido Nucleico
12.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205146

RESUMO

The objective of the present study was to investigate the proximate composition, antiradical properties and hepatoprotective activity of three species of shellfish, Corbicula japonica, Spisula sachalinensis, and Anadara broughtonii, from the coastal areas of Far East Russia. Biologically active peptides such as taurine (3.74 g/100 g protein) and ornithine (2.12 g/100 g protein) have been found in the tissues of A. broughtonii. C. japonica contains a high amount of ornithine (5.57 g/100 g protein) and taurine (0.85 g/100 g protein). The maximum DPPH and ABTS radical scavenging activity (36.0 µg ascorbic acid/g protein and 0.68 µmol/Trolox equiv/g protein, respectively) was determined for the tissue of C. japonica. The protein and peptide molecular weight distribution of the shellfish tissue water extracts was investigated using HPLC. It was found that the amount of low molecular weight proteins and peptides were significantly and positively correlated with radical scavenging activity (Pearson's correlation coefficient = 0.96), while the amount of high molecular weight proteins negatively correlated with radical scavenging activity (Pearson's correlation coefficient = -0.86). Hepatoprotective activity, measured by the survival rate of HepG2 hepatocytes after cotreatment with t-BHP, was detected for C. japonica. The highest protection (95.3 ± 2.4%) was achieved by the cold water extract of C. japonica at the concentration of 200 mg/mL. Moreover, oral administration of hot water extract of C. japonica to rats before the treatment with CCl4 exhibited a markedly protective effect by lowering serum levels of ALT and AST, inhibiting the changes in biochemical parameters of functional state of rat liver, including MDA, SOD, GSH and GST.


Assuntos
Antioxidantes/farmacologia , Arcidae/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Corbicula/química , Hepatócitos/citologia , Frutos do Mar/análise , Spisula/química , terc-Butil Hidroperóxido/efeitos adversos , Administração Oral , Animais , Antioxidantes/química , Tetracloreto de Carbono/efeitos adversos , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Peso Molecular , Ornitina/isolamento & purificação , Ratos , Federação Russa , Frutos do Mar/classificação , Taurina/isolamento & purificação
13.
Environ Pollut ; 287: 117617, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174666

RESUMO

Intestines contain a large number of microorganisms that collectively play a vital role in regulating physiological and biochemical processes, including digestion, water balance, and immune function. In this study, we explored the effects of ammonia stress on intestinal inflammation, the antioxidant system, and the microbiome of the Asian clam (Corbicula fluminea). Exposure to varying ammonia concentrations (10 and 25 mg N/L) and exposure times (7 and 14 days) resulted in damage to C. fluminea intestinal tissue, according to histological analysis. Furthermore, intestinal inflammatory responses and damage to the antioxidant system were revealed through qPCR, ELISA, and biochemical analysis experiments. Inflammatory responses were more severe in the treatment group exposed to a lower concentration of ammonia. High-throughput 16S rDNA sequencing showed that ammonia stress under different conditions altered intestinal bacterial diversity and microbial community composition, particularly impacting the dominant phylum Proteobacteria and genus Aeromonas. These results indicate that ammonia stress can activate intestinal inflammatory reactions, damage the intestinal antioxidant system, and alter intestinal microbial composition, thereby impeding intestinal physiological function and seriously threatening the health of C. fluminea.


Assuntos
Corbicula , Microbiota , Poluentes Químicos da Água , Amônia/toxicidade , Animais , Intestinos , Poluentes Químicos da Água/toxicidade
14.
Sci Total Environ ; 789: 147887, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051493

RESUMO

Plastic pollution has become a global environmental threat, and its potential to affect the bioavailability and toxicity of pharmaceuticals to aquatic organism are of growing concern. However, little is known regarding the combined toxicity of micro/nano-plastics and pharmaceuticals to benthic organisms in sediments. Thus, we employed a freshwater benthic bivalve, Corbicula fluminea (C. fluminea), to investigate the individual and co-toxicity of model plastics, microscopic fluorescent polystyrene (PS) (PS nano-plastic (PS-NP) and PS micro-plastic (PS-MP), 80 nm and 6 µm, respectively) and the common antibiotic ciprofloxacin (CIP) in formulated sediments. Our results suggest that oxidative damage and neurotoxicity were confirmed to occur in C. fluminea in all the treatments. The oxidative damage in the digestive glands reduced the clam ability to scavenge free radicals, causing severe tissue damage to the digestive glands of C. fluminea. Filtration rates of C. fluminea were significantly decreased in a concentration-dependent manner across all the treatments, which might be due to the inhibition of acetylcholinesterase activities. Interactions between CIP and micro/nano-plastic were observed, whereby the presence of PS decreased the toxicity of CIP in the digestive glands but aggravated the C. fluminea siphoning inhibition rate in the nano-plastic co-treatments group; in addition, the CIP toxicity to C. fluminea decreased because that the concentration of free dissolved CIP was lowered by micro/nano-PS. Taken together, the current study could contribute greatly to evaluating the ecological risk of CIP and PS in aquatic environments and sheds light on potential issues of food safety caused by both emerging pollutants.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Ciprofloxacina/toxicidade , Água Doce , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
ACS Nano ; 15(6): 9469-9481, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33988023

RESUMO

With the wide application of plastics in daily life, nanoplastics (NPs) are ubiquitous in freshwater environments. However, to date, few studies have focused on the mechanism underlying the toxicity of NPs, and the differences between this mechanism and that governing the toxicity of MPs have also not been thoroughly characterized. In this study, the genotoxicity, intestinal damage, and intestinal flora in Corbicula fluminea exposed to micro/nanoplastics were investigated through RNA sequencing, histopathology, and 16S rRNA sequencing, respectively. Significant differences in differentially expressed genes (DEGs) were observed between MP and NP exposure groups. It was observed that NPs preferentially elicited the process related to cellular components and triggered the apoptosis through the mitochondrial pathway in various tissues, especially in indirectly contacted tissues, while MPs induced the innate immune response and activated the complement and coagulation cascades (complement system) pathway. Both MPs and NPs can induce an inflammatory response and cause epithelial damage in the intestines, and they can notably change the gut microbial community structure. However, the abundance of pathogenic bacteria (e.g., Mycoplasma) was observed to increase only in the MP-treated group, which exacerbated intestinal damage. Unlike MPs, the effect of NPs on the intestinal microflora was highly limited, while NPs elicited more severe damage to the intestinal mucosal barrier. The results of this study may help to elucidate the toxicity mechanisms governing the responses of bivalves to MPs and NPs and to evaluate the detriment of MPs and NPs to the benthic ecosystem.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Ecossistema , Água Doce , Microplásticos , Plásticos , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/toxicidade
16.
Environ Manage ; 68(1): 117-125, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914093

RESUMO

Suppression of established populations of invasive alien species can be a complex and expensive process, which is frequently unsuccessful. The Asian clam, Corbicula fluminea (Müller, 1774), is considered a high impact invader that can adversely alter freshwater ecosystems and decrease their socioeconomic value. To date, C. fluminea continues to spread and persist within freshwater environments worldwide, despite repeated management attempts to prevent dispersal and suppress established populations. As extensive C. fluminea beds can often become exposed during low-water conditions, the direct application of hot or cold thermal shock treatments has been proposed as suitable mechanism for their control. Further, mechanical substrate disturbance may enhance the efficacy of thermal shock treatments by facilitating exposures to multiple layers of buried clams. In the present study, we advanced these methods by assessing combined applications of both hot and cold thermal shock treatments for control of C. fluminea, using steam spray (≥100 °C; 350 kPa), low- or high-intensity open-flame burns (~1000 °C) and dry ice (-78 °C). In a direct comparison of raking combined with hot thermal shock applications, both steam and high-intensity open-flame treatments tended to be most effective, especially following multiple applications. In addition, when hot thermal treatments are followed by a final cold shock (i.e. dry ice), steam treatments tended to be most effective. Further, when dry ice was applied either alone or prior to an application of a hot shock treatment, substantial if not complete C. fluminea mortality was observed. Overall, this study demonstrated that combined applications of hot and cold thermal shock treatments, applied following the disruption of the substrate, can substantially increase C. fluminea mortality compared to separate hot or cold treatments.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Ecossistema , Espécies Introduzidas , Fumaça , Água
17.
Environ Pollut ; 284: 117182, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901982

RESUMO

The effect of low concentration Cd stress on bivalves is unclear. In this study, Asian clams (Corbicula fluminea) were continuously exposed to 0, 0.05, 0.10, and 0.20 mg/L Cd for 14 d (exposure phase) and to artificial freshwater for 7 d (depuration phase). A total of 16 variables were measured to explore the toxic effects on C. fluminea. All physiological characteristics were significantly inhibited in the treatments (p < 0.05), and the negative effects of Cd did not return to normal levels in the short term. Tissue damage was found in the feet and gills of C. fluminea in all the treatments. On the 7th day (D7), enzyme activity in all the treatments was significantly higher (p < 0.05) than in the control group. Acetylcholinesterase, superoxide dismutase, and catalase activities were enhanced on D14 in all the treatments. However, only glutathione S-transferase activity was significantly higher in all the treatments (p < 0.05) than in the control group on D21. The instability of the enzymes indicated that the adaptability of C. fluminea became stronger throughout the experiment. In each group, the maximum bioaccumulation of Cd followed the order: 0.20 mg/L > 0.05 mg/L > 0.10 mg/L, which might be caused by the filtration capacity of C. fluminea in the 0.05-mg/L group, which was higher than that of the 0.10-mg/L group. Thus, low Cd concentrations effect the physiological characteristics, tissue health, and antioxidant system of C. fluminea and may require a long recovery time to be restored to normal levels.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Água Doce , Brânquias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Sci Pollut Res Int ; 28(27): 36626-36639, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33694118

RESUMO

Laguna de Bay, the largest and nationally significant freshwater lake ecosystem in the Philippines, has been increasingly subjected to anthropogenic pressures over the years. Domestic, agricultural, and industrial activities in the surrounding areas have contributed directly and indirectly to the deterioration of the lake's overall ecological health and integrity. This study assessed the chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), lead (Pb), and cadmium (Cd) contamination in Asiatic clam, Corbicula fluminea, using quadrupole inductively coupled plasma-mass spectrometry. Estimated daily consumption of Asiatic clam was determined through a social survey. The data from analytical analysis and social surveys were utilized to calculate the target hazard quotient (THQ) to determine the potential health risks of consuming heavy metal-enriched clams to fishing households. Results from the Knowledge, Attitude, and Practices (KAP) survey indicated that the majority of the respondents have an acceptable level of knowledge on the hazards posed by the intake of contaminated clams but disapproved the banning of its collection and consumption. Sampled households with high consumption rates in all municipalities except Victoria were also found to be exposed to imminent health risk due to the high toxicity level of As based on their THQ values. Overall, one-third of the fishing households exposed to elevated health risk based on their total target hazard quotient (TTHQ) values already warrant a concern. The potential human health risks validate the worsening condition of Laguna de Bay. Integrative and holistic management of the lake through collaborative efforts of various stakeholders and institutions is necessary, to restore the health of the ecosystem and safeguard the health of the public.


Assuntos
Corbicula , Metais Pesados , Poluentes Químicos da Água , Animais , Baías , Cidades , Ecossistema , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Filipinas , Medição de Risco , Poluentes Químicos da Água/análise
19.
Food Chem ; 354: 129565, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33756323

RESUMO

Polyunsaturated phospholipids are abundant in clam (Corbicula fluminea) but difficult to be fully extracted. Herein, graphene/fibrous silica (G/KCC-1) nanohybrids were synthesized, characterized, and applied for solid-phase extraction (SPE) of phospholipids in clam. The effectiveness of G/KCC-1 SPE was verified by hydrophilic interaction chromatography mass spectrometry (HILIC-MS) based lipidomics and statistical analysis. The ions of PE 16:0/18:1 (m/z 716.4), PC 16:0/20:5 (m/z 824.6) and etc. were regarded as the main difference among the crude lipids, acetone washed extract, and eluate of G/KCC-1 SPE. Finally, this method was validated in terms of linearity (R2 0.9965 to 0.9981), sensitivity (LOD 0.19-0.51 µg·mL-1 and LOQ 0.48 - 1.47 µg·mL-1), and precision (RSDintra-day ≤ 7.16% and RSDinter-day ≤ 7.30%). In conclusion, the G/KCC-1 SPE and HILIC-MS method was shown to be accurate and efficient in selective extracting and phenotyping phospholipids in C. fluminea.


Assuntos
Cromatografia Líquida , Corbicula/metabolismo , Grafite/química , Lipidômica/métodos , Espectrometria de Massas , Dióxido de Silício/química , Extração em Fase Sólida , Animais , Interações Hidrofóbicas e Hidrofílicas , Fenótipo , Alimentos Marinhos/análise
20.
Ecotoxicol Environ Saf ; 208: 111603, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396123

RESUMO

Chlorothalonil (CLT) is a broad spectrum, and non-systemic fungicide applied in foliar structures to prevent and treat pathogens. This compound reaches to aquatic environments and affects the biota. In this context, the main goal of this study was to assess the effects of CLT at biochemical, tissular, and individual levels of biological organization using the invasive bivalve Corbicula largillierti as a bioindicator species. Clams were exposed to different sublethal concentrations (0, 10, 20 and 50 µg. L-1 CLT) for 96 h. At biochemical level, the enzymatic activity (Glutathione-s-Transferase, Catalase, Acetyl-, Butiryl- and Carboxyl-esterases) and lipid peroxidation were measured in gills and the visceral mass. Also, the digestive gland morphometry through quantitative histological indexes was registered at the tissular level. Finally, filtering activity and burial behavior at the individual level were measured. At the highest CLT concentration, the most significant changes were observed in enzymatic activity (except for butyrylcholinesterase), lipid peroxidation and in digestive gland morphometry. It was also registered increases of the filtering activity and the latency time to burial. Most of the biomarkers assessed showed significant responses under CLT exposure. Therefore, taking into account that C. largillierti was affected by CLT, it can be expected that other species could be in a potential risk if this fungicide is present in freshwater systems.


Assuntos
Corbicula/efeitos dos fármacos , Monitoramento Ambiental/métodos , Água Doce/química , Fungicidas Industriais/toxicidade , Nitrilas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Corbicula/enzimologia , Relação Dose-Resposta a Droga , Fungicidas Industriais/análise , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Nitrilas/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...