Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Science ; 382(6671): eabo7201, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943932

RESUMO

We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Descoberta de Drogas , SARS-CoV-2 , Humanos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Simulação de Acoplamento Molecular , Inibidores de Protease de Coronavírus/síntese química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Relação Estrutura-Atividade , Cristalografia por Raios X
3.
Bioorg Chem ; 140: 106830, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683544

RESUMO

Global coronavirus disease 2019 (COVID-19) pandemic still threatens human health and public safety, and the development of effective antiviral agent is urgently needed. The SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) are vital proteins in viral replication and promising therapeutic targets. Additionally, PLpro also modulates host immune response by cleaving ubiquitin and interferon-stimulated gene product 15 (ISG15) from ISGylated host proteins. In this report, we identified [1,2]selenazolo[5,4-c]pyridin-3(2H)-one and benzo[d]isothiazol-3(2H)-one as attractive scaffolds of PLpro and Mpro inhibitors. The representative compounds 6c and 7e exhibited excellent PLpro inhibition with percent inhibition of 42.9% and 44.9% at 50 nM, respectively. The preliminary enzyme kinetics experiment and fluorescent labelling experiment results determined that 6c was identified as a covalent PLpro inhibitor, while 7e was a non-covalent inhibitor. Molecular docking and dynamics simulations revealed that 6c and 7e bound to Zn-finger domain of PLpro. Compounds 6c and 7e were also identified to potent Mpro inhibitors, and they exhibited potent antiviral activities in SARS-CoV-2 infected Vero E6 cells, with EC50 value of 3.9 µM and 7.4 µM, respectively. In addition, the rat liver homogenate half-life of 6c and 7e exceeded 24 h. These findings suggest that 6c and 7e are promising led compounds for further development of PLpro/Mpro dual-target antiviral drugs.


Assuntos
COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Protease de Coronavírus , Animais , Humanos , Ratos , Antivirais/farmacologia , Corantes , Endopeptidases , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , SARS-CoV-2 , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores
4.
J Biol Chem ; 299(7): 104886, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37271339

RESUMO

The effect of mutations of the catalytic dyad residues of SARS-CoV-2 main protease (MProWT) on the thermodynamics of binding of covalent inhibitors comprising nitrile [nirmatrelvir (NMV), NBH2], aldehyde (GC373), and ketone (BBH1) warheads to MPro is examined together with room temperature X-ray crystallography. When lacking the nucleophilic C145, NMV binding is ∼400-fold weaker corresponding to 3.5 kcal/mol and 13.3 °C decrease in free energy (ΔG) and thermal stability (Tm), respectively, relative to MProWT. The H41A mutation results in a 20-fold increase in the dissociation constant (Kd), and 1.7 kcal/mol and 1.4 °C decreases in ΔG and Tm, respectively. Increasing the pH from 7.2 to 8.2 enhances NMV binding to MProH41A, whereas no significant change is observed in binding to MProWT. Structures of the four inhibitor complexes with MPro1-304/C145A show that the active site geometries of the complexes are nearly identical to that of MProWT with the nucleophilic sulfur of C145 positioned to react with the nitrile or the carbonyl carbon. These results support a two-step mechanism for the formation of the covalent complex involving an initial non-covalent binding followed by a nucleophilic attack by the thiolate anion of C145 on the warhead carbon. Noncovalent inhibitor ensitrelvir (ESV) exhibits a binding affinity to MProWT that is similar to NMV but differs in its thermodynamic signature from NMV. The binding of ESV to MProC145A also results in a significant, but smaller, increase in Kd and decrease in ΔG and Tm, relative to NMV.


Assuntos
COVID-19 , Inibidores de Protease de Coronavírus , SARS-CoV-2 , Humanos , Carbono , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Lactamas , Leucina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
5.
J Mol Model ; 29(5): 138, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055578

RESUMO

CONTEXT: In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. METHODS: In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.


Assuntos
Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Simulação de Dinâmica Molecular , SARS-CoV-2 , Humanos , Endopeptidases , Simulação de Acoplamento Molecular , Farmacóforo , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia
6.
Biomolecules ; 12(12)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36551182

RESUMO

The recent global health emergency caused by the coronavirus disease 2019 (COVID-19) pandemic has taken a heavy toll, both in terms of lives and economies. Vaccines against the disease have been developed, but the efficiency of vaccination campaigns worldwide has been variable due to challenges regarding production, logistics, distribution and vaccine hesitancy. Furthermore, vaccines are less effective against new variants of the SARS-CoV-2 virus and vaccination-induced immunity fades over time. These challenges and the vaccines' ineffectiveness for the infected population necessitate improved treatment options, including the inhibition of the SARS-CoV-2 main protease (Mpro). Drug repurposing to achieve inhibition could provide an immediate solution for disease management. Here, we used structure-based virtual screening (SBVS) to identify natural products (from NP-lib) and FDA-approved drugs (from e-Drug3D-lib and Drugs-lib) which bind to the Mpro active site with high-affinity and therefore could be designated as potential inhibitors. We prioritized nine candidate inhibitors (e-Drug3D-lib: Ciclesonide, Losartan and Telmisartan; Drugs-lib: Flezelastine, Hesperidin and Niceverine; NP-lib: three natural products) and predicted their half maximum inhibitory concentration using DeepPurpose, a deep learning tool for drug-target interactions. Finally, we experimentally validated Losartan and two of the natural products as in vitro Mpro inhibitors, using a bioluminescence resonance energy transfer (BRET)-based Mpro sensor. Our study suggests that existing drugs and natural products could be explored for the treatment of COVID-19.


Assuntos
Antivirais , Produtos Biológicos , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , SARS-CoV-2 , Humanos , Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Losartan/química , Losartan/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores
7.
J Mol Biol ; 434(16): 167706, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35809383

RESUMO

New variants of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) emerged and spread rapidly all over the world, which strongly supports the need for pharmacological options to complement vaccine strategies. Main protease (Mpro or 3CLpro) is a critical enzyme in the life cycle of SARS-CoV-2 and appears to be highly conserved among different genera of coronaviruses, making it an ideal target for the development of drugs with broad-spectrum property. PF-07304814 developed by Pfizer is an intravenously administered inhibitor targeting SARS-CoV-2 Mpro. Here we showed that PF-07304814 displays broad-spectrum inhibitory activity against Mpros from multiple coronaviruses. Crystal structures of Mpros of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-NL63 bound to the inhibitor PF-07304814 revealed a conserved ligand-binding site, providing new insights into the mechanism of inhibition of viral replication. A detailed analysis of these crystal structures complemented by comprehensive comparison defined the key structural determinants essential for inhibition and illustrated the binding mode of action of Mpros from different coronaviruses. In view of the importance of Mpro for the medications of SARS-CoV-2 infection, insights derived from the present study should accelerate the design of pan-coronaviral main protease inhibitors that are safer and more effective.


Assuntos
Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Indóis , Leucina , Pirrolidinonas , SARS-CoV-2 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Desenho de Fármacos , Humanos , Indóis/química , Indóis/farmacologia , Leucina/química , Leucina/farmacologia , Ligantes , Ligação Proteica , Pirrolidinonas/química , Pirrolidinonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
8.
J Mol Biol ; 434(16): 167720, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839840

RESUMO

Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.


Assuntos
ADP-Ribosilação , Adenosina/análogos & derivados , Inibidores de Protease de Coronavírus , Poli(ADP-Ribose) Polimerases , SARS-CoV-2 , ADP-Ribosilação/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Adenosina Difosfato Ribose/química , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Humanos , Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
9.
J Biomol Struct Dyn ; 40(17): 7940-7948, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784944

RESUMO

In response to the current pandemic caused by the novel SARS-CoV-2, we design new compounds based on Lopinavir structure as an FDA-approved antiviral agent which is currently under more evaluation in clinical trials for COVID-19 patients. This is the first example of the preparation of Lopinavir isosteres from the main core of Lopinavir conducted to various heterocyclic fragments. It is proposed that main protease inhibitors play an important role in the cycle life of coronavirus. Thus, the protease inhibition effect of synthesized compounds was studied by molecular docking method. All of these 10 molecules, showing a good docking score compared. Molecular dynamics (MD) simulations also confirmed the stability of the best-designed compound in Mpro active site.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Cisteína Endopeptidases/química , Dipeptídeos , Etilenos , Humanos , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
10.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615263

RESUMO

To control the COVID-19 pandemic, antivirals that specifically target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently required. The 3-chymotrypsin-like protease (3CLpro) is a promising drug target since it functions as a catalytic dyad in hydrolyzing polyprotein during the viral life cycle. Bioactive peptides, especially food-derived peptides, have a variety of functional activities, including antiviral activity, and also have a potential therapeutic effect against COVID-19. In this study, the hemp seed trypsinized peptidome was subjected to computer-aided screening against the 3CLpro of SARS-CoV-2. Using predictive trypsinized products of the five major proteins in hemp seed (i.e., edestin 1, edestin 2, edestin 3, albumin, and vicilin), the putative hydrolyzed peptidome was established and used as the input dataset. To select the Cannabis sativa antiviral peptides (csAVPs), a predictive bioinformatic analysis was performed by three webserver screening programs: iAMPpred, AVPpred, and Meta-iAVP. The amino acid composition profile comparison was performed by COPid to screen for the non-toxic and non-allergenic candidates, ToxinPred and AllerTOP and AllergenFP, respectively. GalaxyPepDock and HPEPDOCK were employed to perform the molecular docking of all selected csAVPs to the 3CLpro of SARS-CoV-2. Only the top docking-scored candidate (csAVP4) was further analyzed by molecular dynamics simulation for 150 nanoseconds. Molecular docking and molecular dynamics revealed the potential ability and stability of csAVP4 to inhibit the 3CLpro catalytic domain with hydrogen bond formation in domain 2 with short bonding distances. In addition, these top ten candidate bioactive peptides contained hydrophilic amino acid residues and exhibited a positive net charge. We hope that our results may guide the future development of alternative therapeutics against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Cannabis , Inibidores de Protease de Coronavírus , Peptídeos , SARS-CoV-2 , Humanos , Cannabis/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias/prevenção & controle , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/isolamento & purificação
11.
J Mol Model ; 27(11): 341, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731296

RESUMO

From the beginning of pandemic, more than 240 million people have been infected with a death rate higher than 2%. Indeed, the current exit strategy involving the spreading of vaccines must be combined with progress in effective treatment development. This scenario is sadly supported by the vaccine's immune activation time and the inequalities in the global immunization schedule. Bringing the crises under control means providing the world population with accessible and impactful new therapeutics. We screened a natural product library that contains a unique collection of 2370 natural products into the binding site of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). According to the docking score and to the interaction at the active site, three phenylethanoid glycosides (forsythiaside A, isoacteoside, and verbascoside) were selected. In order to provide better insight into the atomistic interaction and test the impact of the three selected compounds at the binding site, we resorted to a half microsecond-long molecular dynamics simulation. As a result, we are showing that forsythiaside A is the most stable molecule and it is likely to possess the highest inhibitory effect against SARS-CoV-2 Mpro. Phenylethanoid glycosides also have been reported to have both protease and kinase activity. This kinase inhibitory activity is very beneficial in fighting viruses inside the body as kinases are required for viral entry, metabolism, and/or reproduction. The dual activity (kinase/protease) of phenylethanoid glycosides makes them very promising anit-COVID-19 agents.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Glicosídeos/farmacologia , Antivirais/química , Sítios de Ligação , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/química , Avaliação Pré-Clínica de Medicamentos , Glucosídeos/química , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Glicosídeos/química , Glicosídeos/metabolismo , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacologia
13.
Nat Commun ; 12(1): 6055, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663813

RESUMO

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/administração & dosagem , Indóis/administração & dosagem , Leucina/administração & dosagem , Pirrolidinonas/administração & dosagem , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/efeitos adversos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Alanina/administração & dosagem , Alanina/efeitos adversos , Alanina/análogos & derivados , Alanina/farmacocinética , Animais , COVID-19/virologia , Chlorocebus aethiops , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/enzimologia , Inibidores de Protease de Coronavírus/efeitos adversos , Inibidores de Protease de Coronavírus/farmacocinética , Modelos Animais de Doenças , Desenho de Fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Células HeLa , Humanos , Indóis/efeitos adversos , Indóis/farmacocinética , Infusões Intravenosas , Leucina/efeitos adversos , Leucina/farmacocinética , Camundongos , Pirrolidinonas/efeitos adversos , Pirrolidinonas/farmacocinética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Células Vero
14.
Mar Drugs ; 19(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356816

RESUMO

The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolites from the genus were screened using molecular docking calculations. Promising diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro inhibitors with ΔGbinding < -33.0 kcal/mol. Binding energy and structural analyses of the most potent Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates that 340 has a higher binding affinity against Mpro than darunavir with ΔGbinding values of -43.8 and -34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway enrichment analysis combined with reactome mining revealed that 340 has the capability to re-modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.


Assuntos
Antozoários/química , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Diterpenos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , SARS-CoV-2/enzimologia , SARS-CoV-2/patogenicidade , Relação Estrutura-Atividade
15.
Int J Biol Macromol ; 188: 137-146, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364941

RESUMO

COVID-19 is a disease caused by SARS-CoV-2, which has led to more than 4 million deaths worldwide. As a result, there is a worldwide effort to develop specific drugs for targeting COVID-19. Papain-like protease (PLpro) is an attractive drug target because it has multiple essential functions involved in processing viral proteins, including viral genome replication and removal of post-translational ubiquitination modifications. Here, we established two assays for screening PLpro inhibitors according to protease and anti-ISGylation activities, respectively. Application of the two screening techniques to the library of clinically approved drugs led to the discovery of tanshinone IIA sulfonate sodium and chloroxine with their IC50 values of lower than 10 µM. These two compounds were found to directly interact with PLpro and their molecular mechanisms of binding were illustrated by docking and molecular dynamics simulations. The results highlight the usefulness of the two developed screening techniques for locating PLpro inhibitors.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Reposicionamento de Medicamentos , SARS-CoV-2/enzimologia , Antivirais/química , Sítios de Ligação , Cloroquinolinóis/química , Cloroquinolinóis/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Inibidores de Protease de Coronavírus/química , Ensaios de Triagem em Larga Escala/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenantrenos/química , Fenantrenos/farmacologia , SARS-CoV-2/efeitos dos fármacos
16.
Molecules ; 26(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34500664

RESUMO

This study aims to identify and isolate the secondary metabolites of Zingiber officinale using GC-MS, preparative TLC, and LC-MS/MS methods, to evaluate the inhibitory potency on SARS-CoV-2 3 chymotrypsin-like protease enzyme, as well as to study the molecular interaction and stability by using docking and molecular dynamics simulations. GC-MS analysis suggested for the isolation of terpenoids compounds as major compounds on methanol extract of pseudostems and rhizomes. Isolation and LC-MS/MS analysis identified 5-hydro-7, 8, 2'-trimethoxyflavanone (9), (E)-hexadecyl-ferulate (1), isocyperol (2), N-isobutyl-(2E,4E)-octadecadienamide (3), and nootkatone (4) from the rhizome extract, as well as from the leaves extract with the absence of 9. Three known steroid compounds, i.e., spinasterone (7), spinasterol (8), and 24-methylcholesta-7-en-3ß-on (6), were further identified from the pseudostem extract. Molecular docking showed that steroids compounds 7, 8, and 6 have lower predictive binding energies (MMGBSA) than other metabolites with binding energy of -87.91, -78.11, and -68.80 kcal/mole, respectively. Further characterization on the single isolated compound by NMR showed that 6 was identified and possessed 75% inhibitory activity on SARS-CoV-2 3CL protease enzyme that was slightly different with the positive control GC376 (77%). MD simulations showed the complex stability with compound 6 during 100 ns simulation time.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Gengibre/química , Extratos Vegetais/farmacologia , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/isolamento & purificação , Inibidores de Protease de Coronavírus/uso terapêutico , Cristalografia por Raios X , Ensaios Enzimáticos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Pirrolidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Ácidos Sulfônicos/farmacologia
17.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502033

RESUMO

The novel coronavirus disease, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), rapidly spreading around the world, poses a major threat to the global public health. Herein, we demonstrated the binding mechanism of PF-07321332, α-ketoamide, lopinavir, and ritonavir to the coronavirus 3-chymotrypsin-like-protease (3CLpro) by means of docking and molecular dynamic (MD) simulations. The analysis of MD trajectories of 3CLpro with PF-07321332, α-ketoamide, lopinavir, and ritonavir revealed that 3CLpro-PF-07321332 and 3CLpro-α-ketoamide complexes remained stable compared with 3CLpro-ritonavir and 3CLpro-lopinavir. Investigating the dynamic behavior of ligand-protein interaction, ligands PF-07321332 and α-ketoamide showed stronger bonding via making interactions with catalytic dyad residues His41-Cys145 of 3CLpro. Lopinavir and ritonavir were unable to disrupt the catalytic dyad, as illustrated by increased bond length during the MD simulation. To decipher the ligand binding mode and affinity, ligand interactions with SARS-CoV-2 proteases and binding energy were calculated. The binding energy of the bespoke antiviral PF-07321332 clinical candidate was two times higher than that of α-ketoamide and three times than that of lopinavir and ritonavir. Our study elucidated in detail the binding mechanism of the potent PF-07321332 to 3CLpro along with the low potency of lopinavir and ritonavir due to weak binding affinity demonstrated by the binding energy data. This study will be helpful for the development and optimization of more specific compounds to combat coronavirus disease.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Lactamas/farmacologia , Leucina/farmacologia , Nitrilas/farmacologia , Prolina/farmacologia , Antivirais/uso terapêutico , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/uso terapêutico , Humanos , Lactamas/uso terapêutico , Leucina/uso terapêutico , Lopinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas/uso terapêutico , Prolina/uso terapêutico , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
18.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299333

RESUMO

In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Nevertheless, there is a growing interest towards the development of novel anti-covid drugs. In this scenario, the main protease (Mpro) represents an appealing target, being the enzyme responsible for the cleavage of polypeptides during the viral genome transcription. With the aim of sharing new insights for the design of novel Mpro inhibitors, our research group developed a machine learning approach using the support vector machine (SVM) classification. Starting from a dataset of two million commercially available compounds, the model was able to classify two hundred novel chemo-types as potentially active against the viral protease. The compounds labelled as actives by SVM were next evaluated through consensus docking studies on two PDB structures and their binding mode was compared to well-known protease inhibitors. The best five compounds selected by consensus docking were then submitted to molecular dynamics to deepen binding interactions stability. Of note, the compounds selected via SVM retrieved all the most important interactions known in the literature.


Assuntos
Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , SARS-CoV-2/efeitos dos fármacos , Máquina de Vetores de Suporte , Antivirais/farmacologia , COVID-19/virologia , Inibidores de Protease de Coronavírus/metabolismo , Bases de Dados de Produtos Farmacêuticos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas , Aprendizado de Máquina Supervisionado , Proteínas não Estruturais Virais/metabolismo , Proteases Virais/metabolismo
19.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500548

RESUMO

The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (-16.8 ± 0.02 kcal/mol, -12.3 ± 0.03 kcal/mol and -13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2. Cyanovirin-N was observed to interact with the crucial residues involved in the attachment of the human ACE2 receptor. Analysis of the binding affinities calculated employing the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) approach revealed that all forms of energy, except the polar solvation energy, favourably contributed to the interactions of cyanovirin-N with the viral proteins. With particular emphasis on cyanovirin-N, the current work presents evidence for the potential inhibition of SARS-CoV-2 by cyanobacterial proteins, and offers the opportunity for in vitro and in vivo experiments to deploy the cyanobacterial proteins as valuable therapeutics against COVID-19.


Assuntos
Antivirais/farmacologia , Proteínas de Bactérias/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/farmacologia , Antivirais/uso terapêutico , Proteínas de Bactérias/uso terapêutico , Proteínas de Bactérias/ultraestrutura , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/ultraestrutura , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/uso terapêutico , Inibidores de Protease de Coronavírus/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Difração de Raios X
20.
Fitoterapia ; 152: 104909, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33894315

RESUMO

3-Chymotrypsin-like protease (3CLpro) is a virally encoded main proteinase that is pivotal for the viral replication across a broad spectrum of coronaviruses. This study aims to discover the naturally occurring SARS-CoV-2 3CLpro inhibitors from herbal constituents, as well as to investigate the inhibitory mechanism of the newly identified efficacious SARS-CoV-2 3CLpro inhibitors. Following screening of the inhibitory potentials of eighty herbal products against SARS-CoV-2 3CLpro, Ginkgo biloba leaves extract (GBLE) was found with the most potent SARS-CoV-2 3CLpro inhibition activity (IC50 = 6.68 µg/mL). Inhibition assays demonstrated that the ginkgolic acids (GAs) and the bioflavones isolated from GBLE displayed relatively strong SARS-CoV-2 3CLpro inhibition activities (IC50 < 10 µM). Among all tested constituents, GA C15:0, GA C17:1 and sciadopitysin displayed potent 3CLpro inhibition activities, with IC50 values of less than 2 µM. Further inhibition kinetic studies and docking simulations clearly demonstrated that two GAs and sciadopitysin strongly inhibit SARS-CoV-2 3CLprovia a reversible and mixed inhibition manner. Collectively, this study found that both GBLE and the major constituents in this herbal product exhibit strong SARS-CoV-2 3CLpro inhibition activities, which offer several promising leading compounds for developing novel anti-COVID-19 medications via targeting on 3CLpro.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/farmacologia , Ginkgo biloba/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Inibidores de Protease de Coronavírus/uso terapêutico , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Estrutura Molecular , Fitoterapia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , SARS-CoV-2/enzimologia , Salicilatos/farmacologia , Salicilatos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...