Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
1.
Comput Math Methods Med ; 2022: 7722951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669365

RESUMO

Objectives: This study is aimed at investigating the analgesic effect of the administration of Corydalis decumbens (CD) in a mouse model of postherpetic neuralgia (PHN) and at elucidating its mechanism of analgesic action. Methods: Adult Kunming (KM) mice were randomly divided into control, CD, and vehicle-treated groups. Neuropathic pain was induced with a single intraperitoneal injection of resiniferatoxin (RTX). Thermal hyperalgesia was assessed with a hot/cold plate test, and mechanical allodynia was evaluated using von Frey filaments. The activation states of astrocytes, microglia, and the mitogen-activated protein kinase (MAPK) pathway in the spinal cord were determined by immunofluorescence staining and Western blot analysis of Iba-1, GFAP, phospho-p38, and phospho-Jun N-terminal kinase (JNK). Results: RTX diminished thermal sensitivity and gradually increased sensitivity to tactile stimulation. The expression of Iba-1, GFAP, phospho-p38 MAPK, and phospho-JNK was upregulated in the RTX-induced postherpetic neuralgia mouse model. Systemic treatment with CD significantly ameliorated thermal sensitivity and mechanical hyperalgesia and was accompanied by a reduction in the expression of Iba-1 and GFAP and reduced phosphorylation of p38 and JNK. Conclusions: This study suggests that CD is effective at ameliorating mechanical hyperalgesia in PHN mice and that its mechanism of action may involve modulation of MAPK phosphorylation and glial cell activation. Thus, CD may be a promising alternative therapy for PHN.


Assuntos
Corydalis , Neuralgia Pós-Herpética , Neuralgia , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Neuralgia/tratamento farmacológico , Neuralgia Pós-Herpética/terapia , Ratos , Ratos Sprague-Dawley
2.
Zhongguo Zhong Yao Za Zhi ; 47(11): 3049-3058, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35718529

RESUMO

This study aims to explore anti-obesity and lipid-lowering mechanism of Corydalis Bungeanae Herba(CB) based on intestinal microflora and metabolomics. Specifically, high-fat high-sugar diet(HFHS, 10 weeks) was used to induce obesity in rats. Then the model rats were randomized into the model group, low-dose(0.18 g·kg~(-1)), medium-dose(0.9 g·kg~(-1)), and high-dose(1.8 g·kg~(-1)) CBH groups, and orlistat group(0.03 g·kg~(-1)), 12 in each group. Rats which received normal diet were used as control. The body weight and feed intake of rats were recorded every week. After 6 weeks of administration, rats were killed and gastric emptying and small intestinal propulsion were examined. Enzyme-linked immunosorbent assay(ELISA) was employed to analyze serum indexes, and liver and perirenal fat were collected for haematoxilin-eosin(HE) staining. Rat feces and serum were gathered for 16 S rDNA sequencing and metabolomics analysis and Spearman's correlation analysis was performed to explore the correlation between differential microflora and differential metabolites. The result showed that CBH extract decreased body weight, feed intake, and serum cholecystokinin(CCK), triglyceride(TG), and total cholesterol(TC), delayed gastric emptying, and reduced fat accumulation in liver and perirenal adiposity as compared with rats in the model group. In addition, Lachnospiraceae and Sutterellaceaecan significantly decreased in the model group, but CBH extract up-regulated their abundance. Moreover, the abundance of Prevotellaceae was significantly raised by HFHS, but CBH decreased it. Glutaric acid, glyceric acid, hippuric acid, malic acid, glyceric acid, oxoglutaric acid, fumaric acid/succinic acid, oxoglutaric acid/isocitric acid, D-glucuronic acid, cholic acid were the main deferentially expressed metabolites and significantly correlated with Sutterellaceae and Prevotellaceae. These key metabolites and microbiota mainly involved in tricarboxylic acid(TCA) cycle, glucose metabolism, amino acid metabolism, and energy metabolism. This study proved that CBH can efficiently improve body weight and blood lipids, reduce adipocyte volume, and positively regulate the intestinal microflora and serum metabolites, thereby achieving the anti-obesity and lipid-owering effect.


Assuntos
Corydalis , Microbioma Gastrointestinal , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Metabolômica , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos
3.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2257-2265, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531743

RESUMO

Through literature research and standard retrieval, Corydalis-derived medicinal materials, the origins, and related standards were summarized. Finally, 27 medicinal materials were screened out, involving 71 species(varieties). Among them, only 11 are recorded in Chinese Pharmacopoeia(2020), National Standard for Chinese Patent Drugs·Tibetan Medicine, Tibetan Medicine Standards, and other local standards, including Corydalis Bungeanae Herba and Corydalis Herba. The names and original plants of the medicinal materials are different in different standards, and the phenomena of "same medicinal material with different names" and "same name for different medicinal materials" are prominent. Most standards only include the traits, microscopic identification, and physico-chemical property identification, with unsound quality criteria. Thus, efforts should be made to strengthen the sorting of Corydalis medicinal plants, herbal textual research, and investigation of the resources and utilization. Moreover, via modern techniques, the chemical components and medicinal material basis of different original plants should be explored and sound quality standards should be established to improve the safety and quality of Corydalis-derived medicinal materials. Summarizing Corydalis medicinal plants, Corydalis-derived medicinal materials, and related standards, this study is expected to provide a reference for the standard formulation, quality evaluation, expansion of drug sources, and rational development and utilization of Corydalis resources.


Assuntos
Corydalis , Medicamentos de Ervas Chinesas , Plantas Medicinais , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Medicina Tradicional Tibetana , Plantas Medicinais/química , Padrões de Referência
4.
Phytochemistry ; 200: 113240, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35597315

RESUMO

Six undescribed isoquinolines, including one rarely reported N-benzyl isoquinoline together with sixteen known ones were isolated from C. tomentella. Their planar structures and absolute configurations were elucidated by extensive analyses of UV, IR, NMR, HRESIMS, DP4+ probability analysis as well as ECD calculations. Biological evaluations revealed that 3,4-2H-tomentelline C (6) showed significant cytotoxicity (IC50 = 7.42 µM) against the HepG2 cell line while (1'R, 2'S)-coptichine B (3) exhibited stronger antibacterial activities.


Assuntos
Alcaloides , Corydalis , Alcaloides/química , Antibacterianos/farmacologia , Corydalis/química , Isoquinolinas/química , Estrutura Molecular
5.
Biomed Pharmacother ; 151: 113132, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623174

RESUMO

Corydalis saxicola Bunting (Yanhuanglian), distributed in Southwest China, is mainly used for treatment of hepatitis, oral mucosal erosion, conjunctivitis, dysentery, acute abdominal pain and hemorrhoids in the folk. Corydalis saxicola Bunting Total Alkaloids (CSBTA) are the active ingredients extracted from the root of C. saxicola bunting. Non-alcoholic steatohepatitis (NASH) is the hinge between steatosis and cirrhosis in the spectrum of Non-alcoholic fatty liver disease (NAFLD), which has become one of the most common chronic liver diseases in the world. CSBTA can reduce tumors and brain diseases through anti-inflammatory and antioxidant pathways. Our study was designed to clarify the effects of CSBTA on the HFHC (High fat and high carbohydrate drinking) diet induced mice. In our research, A HFHC diet induced NASH mice model was applied to investigate the effects of CSBTA in vivo and obeticholic acid (OA) was set as positive control. Moreover, the underlying mechanisms were explored by palmitic acid (PA) and lipopolysaccharide (LPS) stimulated HepG2 cells in vitro. The in vivo study illustrated that CSBTA could alleviate mice away from the onset of NASH, and reduce intrahepatocellular lipid accumulation and hepatocyte inflammation under high fat condition. Further in vitro analysis confirmed that CSBTA attenuated inflammation and hepatic lipid accumulation by improving hepatic PI3K/Akt and suppressing hepatic TLR4/NF-κB pathways. In summary, this study demonstrated that CSBTA might be a promising compound for the treatment of NAFLD.


Assuntos
Alcaloides , Corydalis , Hepatopatia Gordurosa não Alcoólica , Alcaloides/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Corydalis/metabolismo , Dieta , Inflamação/metabolismo , Lipídeos/farmacologia , Fígado , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Phytochemistry ; 199: 113209, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35430251

RESUMO

Eleven undescribed isoquinoline alkaloids corybungines A-K including a protoberberine-type alkaloid, an isoquinoline alkaloid with a unique 6-norprotoberberine skeleton, one 13,14-seco-protoberberine-type alkaloid, two 1a,14-seco-protoberberine-type alkaloids with a 4-(hydroxymethyl)phenoxy moiety and six aporphine alkaloids, together with seven known alkaloids, have been isolated from the whole herb extract of Corydalis bungeana Turcz. Their structures and absolute configurations were elucidated based on an analysis of spectroscopic data and electronic circular dichroism (ECD) spectra. (R)-stephanine displayed high antagonistic activity against the dopamine D2 receptor with an IC50 value of 0.85 ± 0.09 µM in CHO-D2 cells. Additionally, corybungines D, F, H, (R)-roemerine, (R)-vireakine and (R)-tuduranine showed moderate D2 antagonism (IC50 5.20-26.07 µM). The preliminary structure-activity relationships (SARs) of aporphine alkaloids were discussed.


Assuntos
Alcaloides , Aporfinas , Corydalis , Alcaloides/química , Alcaloides/farmacologia , Aporfinas/farmacologia , Dicroísmo Circular , Corydalis/química , Isoquinolinas/química , Isoquinolinas/farmacologia , Estrutura Molecular , Receptores de Dopamina D2
7.
Plant J ; 111(1): 217-230, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476217

RESUMO

Species belonging to the order Ranunculales have attracted much attention because of their phylogenetic position as a sister group to all other eudicot lineages and their ability to produce unique yet diverse benzylisoquinoline alkaloids (BIAs). The Papaveraceae family in Ranunculales is often used as a model system for studying BIA biosynthesis. Here, we report the chromosome-level genome assembly of Corydalis tomentella, a species of Fumarioideae, one of the two subfamilies of Papaveraceae. Based on comparisons of sequenced Ranunculalean species, we present clear evidence of a shared whole-genome duplication (WGD) event that has occurred before the divergence of Ranunculales but after its divergence from other eudicot lineages. The C. tomentella genome enabled us to integrate isotopic labeling and comparative genomics to reconstruct the BIA biosynthetic pathway for both sanguinarine biosynthesis shared by papaveraceous species and the cavidine biosynthesis that is specific to Corydalis. Also, our comparative analysis revealed that gene duplications, especially tandem gene duplications, underlie the diversification of BIA biosynthetic pathways in Ranunculales. In particular, tandemly duplicated berberine bridge enzyme-like genes appear to be involved in cavidine biosynthesis. In conclusion, our study of the C. tomentella genome provides important insights into the occurrence of WGDs during the early evolution of eudicots, as well as into the evolution of BIA biosynthesis in Ranunculales.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Papaveraceae , Alcaloides/genética , Alcaloides/metabolismo , Benzilisoquinolinas/metabolismo , Corydalis/genética , Corydalis/metabolismo , Evolução Molecular , Papaveraceae/genética , Papaveraceae/metabolismo , Filogenia , Ranunculales
8.
Bioorg Med Chem ; 60: 116705, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35286954

RESUMO

Isoquinoline alkaloid displays significant anti-gastric cancer effects due to its unique structure, which is attracting more and more attention for the development of anti-gastric cancer drugs. In this study, we explore the active components against gastric cancer from the Tibetan Medicine Corydalis hendersonii Hemsl, which is rich in isoquinoline alkaloids. 14 compounds including 2 previously undescribed natural products were obtained. Interestingly, an new active compound displays potent anti-gastric cancer activity. After accomplishing the total syntheses of the active compound and its derivatives, the anti-gastric cancer activity of the active compound was further investigated. In vitro experiments revealed that the active compound significantly attenuated the proliferative capacity, caused G2/M phase arrest, inhibited the cell migration and invasion, and induced cell apoptosis. Mechanistically, the active compound could increase the Bax/Bcl-2 ratio, elevate cytochrome c in the cytosol, and activate caspase-9/3, along with inactivating the upstream PI3K/Akt/mTOR signaling pathway. In addition, the active compound could also cause gastric cancer cell death by inhibiting topoisomerase I activity. More importantly, the anti-gastric cancer activity of the active compound was confirmed in MGC-803 xenograft nude mice in vivo. This work not only promotes the exploitation of Corydalis hendersonii Hemsl., but also provides some experience for discovering new entities from natural sources.


Assuntos
Alcaloides , Corydalis , Neoplasias Gástricas , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Apoptose , Corydalis/química , Humanos , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
9.
Biomed Pharmacother ; 149: 112798, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35286964

RESUMO

Identification of bioactive principles from natural products is considered a challenging task in drug discovery. Recently, ligand fishing has been growing in interest as a sustainable strategy. In this study, a yeast-based drug discovery strategy was investigated to screen and fish active ingredients from natural products. Human monoacylglycerol lipase (MAGL) was first displayed on the cell wall of Pichia pastoris. The expression of MAGL on the cell surface was confirmed by immunofluorescence analysis. The activity toward 7-HCA which was consistent with free enzymes in solution. Recombinant yeast strains were used to screen the potential inhibitors from traditional Chinese medicines. Preliminary screening showed that the extracts of 12 herbs showed inhibition on MAGL activity, among which Corydalis Rhizoma had the highest inhibition rate of 60.66 ± 2.44%. Recombinant yeast fishing combined with HPLC-Q-TOF-MS/MS analysis was further used to identify the potential MAGL inhibitors. Finally, dehydrocorydaline (DHC) in Corydalis Rhizoma was determined as a ligand to MAGL with the IC50 value at 154.7 µΜ. Corydalis Rhizoma has been used as a pain reliever in TCM. Intraperitoneal injection of 7 mg kg- 1 DHC in chronic constriction injury model rats significantly attenuated the mechanical allodynia and thermal hyperalgesia. Meanwhile, 2-arachidonoylglycerol, the major MAGL substrate in the brain, was significantly increased both in the hippocampus and striatum. In conclusion, yeast-based ligand fishing combined with HPLC-Q-TOF-MS/MS is a powerful strategy for drug discovery in complex mixtures and DHC from Corydalis Rhizoma was confirmed with high inhibitory activity to MAGL either in vitro or in vivo .


Assuntos
Produtos Biológicos , Corydalis , Animais , Produtos Biológicos/farmacologia , Corydalis/metabolismo , Inibidores Enzimáticos/farmacologia , Ligantes , Monoacilglicerol Lipases , Monoglicerídeos , Ratos , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
10.
Fitoterapia ; 159: 105175, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35296435

RESUMO

Four new isoquinoline alkaloids including a benzophenanthridine alkaloid (1), a morphine derivative (2), a narceine-type alkaloid (3) and a simple isoquinoline alkaloid (4), a new amide alkaloid (5) and a new phthalic acid derivative (6), together with eleven known alkaloids (7-17) were obtained from the whole herbs extract of Corydalis bungeana Turcz. Their structures and absolute configurations were elucidated by extensive spectroscopic data analysis including HRESIMS, NMR and electronic circular dichroism (ECD) and ECD calculation. Compounds 1-17 were evaluated for dopamine D2 receptor activity in CHO-D2 cells. Among them, 16 showed the highest antagonistic activity on the D2 receptor with an IC50 value of 2.04 ± 0.01 µM. Compounds 14 and 15 exhibited moderate antagonism with IC50 values of 13.66 ± 2.28 and 31.72 ± 2.52 µM, respectively.


Assuntos
Alcaloides , Corydalis , Alcaloides/química , Alcaloides/farmacologia , Amidas , Corydalis/química , Antagonistas dos Receptores de Dopamina D2 , Isoquinolinas/química , Isoquinolinas/farmacologia , Estrutura Molecular , Receptores de Dopamina D2
11.
Org Biomol Chem ; 20(7): 1396-1400, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35106527

RESUMO

(±)-Corysaxicolaine A (1), isolated from the aerial parts of Corydalis saxicola for the first time, is a pair of novel dimeric alkaloids, each of which is directly coupled by the rare 6, 12' C-C σ-bond between benzophenanthridine and protoberberine. The enantiomeric separation was achieved using chiral chromatography. Their structures, including stereochemistry, were clarified by carrying out extensive spectroscopic techniques and an electronic circular dichroism (ECD) calculation. (-)-Corysaxicolaine A was observed to exhibit an apparent cytotoxic effect against T24 cells with an IC50 value of 9.45 µM.


Assuntos
Corydalis
12.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164225

RESUMO

Excessive release of glutamate induces excitotoxicity and causes neuronal damage in several neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for preventing and treating neurological disorders. Dehydrocorydaline (DHC), an active alkaloid compound isolated from Corydalis yanhusuo, possesses neuroprotective capacity. The present study investigated the effect of DHC on glutamate release using a rat brain cortical synaptosome model. Our results indicate that DHC inhibited 4-aminopyridine (4-AP)-evoked glutamate release and elevated intrasynaptosomal calcium levels. The inhibitory effect of DHC on 4-AP-evoked glutamate release was prevented in the presence of the vesicular transporter inhibitor bafilomycin A1 and the N- and P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC but not the intracellular inhibitor of Ca2+ release dantrolene or the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157. Moreover, the inhibitory effect of DHC on evoked glutamate release was prevented by the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting data in synaptosomes also showed that DHC significantly decreased the level of ERK1/2 phosphorylation and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. Together, these results suggest that DHC inhibits presynaptic glutamate release from cerebrocortical synaptosomes by suppressing presynaptic voltage-dependent Ca2+ entry and the MAPK/ERK/synapsin I signaling pathway.


Assuntos
Alcaloides/farmacologia , Cálcio/metabolismo , Córtex Cerebral/efeitos dos fármacos , Corydalis/química , Ácido Glutâmico/metabolismo , Tecido Nervoso/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Córtex Cerebral/metabolismo , Masculino , Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Fitoterapia ; 157: 105127, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033607

RESUMO

One new xanthone, griseophenexanthone A (1), one new benzophenone, digriseophene A (2), and 14 previously reported compounds were isolated from the culture of Penicillium sp. ct-28, an endophytic fungus of Corydlis tomentella. The structures of the isolated compounds were identified by an extensive analysis of HRESIMS, 1D and 2D NMR. MTT assay showed that six xanthones (1 and 3-7) significantly inhibited cell proliferation in four cancer cell lines, with IC50 values ranging from 18.12 ± 2.42 to 85.55 ± 7.66 µM. Our results showed that slight structural changes led to obvious activity differences among these compounds. We also investigated the effects of the six xanthones on cell cycle and apoptosis in human hepatoma HepG2 cells. Compound 7 caused cell cycle arrest at G1 phase, compounds 5 and 6 caused cell cycle arrest at S phase, whereas compounds 1, 3 and 4 had no effects on cell cycle distribution. All six xanthones induced apoptosis in dose-dependent manners in HepG2 cells accompanied by degradation of PARP and activation of caspase 3. The structure-activity relationship analysis revealed that the effects of these xanthones on cell cycle and apoptosis in HepG2 cells were closely related to the substituent groups on their skeleton. Our studies provide novel insights for the structural optimization of xanthones in the development of new anticancer drugs.


Assuntos
Benzofenonas/toxicidade , Proliferação de Células/efeitos dos fármacos , Corydalis/microbiologia , Penicillium/química , Xantonas/toxicidade , Apoptose/efeitos dos fármacos , Benzofenonas/química , Benzofenonas/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/química , Xantonas/isolamento & purificação
14.
Phytochemistry ; 194: 113023, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839130

RESUMO

Six undescribed protoberberine derivatives including two pairs of enantiomers, named yanhusanines G-L, along with fifteen reported protoberberine alkaloids, were isolated from the tubers of Corydalis yanhusuo. Among them, yanhusanines H-L feature a unique 13,13a-seco skeleton which is rare in nature. Their structural elucidations were achieved by extensive spectroscopic analysis and quantum chemistry calculations. A biogenetic route for yanhusanines H-L was proposed. Bioassay results showed that yanhusanine J exhibited potent inhibitory effect against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells (IC50 = 2.25 ± 1.32 µM). Western blot analysis demonstrated that yanhusanine J exerted its anti-inflammatory effect via suppressing the nuclear factor kappa B (NF-κB) pathway, together with the decrease of the inflammatory factors TNF-α, IL-6 and IL-1ß. Furthermore, molecular simulation docking indicated that yanhusanine J had strong interaction with the active site of the inducible nitric oxide synthase (iNOS) protein.


Assuntos
Corydalis , Anti-Inflamatórios/farmacologia , Alcaloides de Berberina
15.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946576

RESUMO

Corydalis yanhusuo extract (YHS) has been used for centuries across Asia for pain relief. The extract is made up of more than 160 compounds and has been identified as alkaloids, organic acids, volatile oils, amino acids, alcohols, and sugars. However, the most crucial biological active constituents of YHS are alkaloids; more than 80 have been isolated and identified. This review paper aims to provide a comprehensive review of the phytochemical and pharmacological effects of these alkaloids that have significant ties to analgesia.


Assuntos
Alcaloides/uso terapêutico , Analgésicos/uso terapêutico , Corydalis/química , Medicamentos de Ervas Chinesas/uso terapêutico , Dor/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Alcaloides/química , Alcaloides/isolamento & purificação , Analgésicos/química , Analgésicos/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
16.
Zhongguo Zhong Yao Za Zhi ; 46(19): 5020-5026, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738397

RESUMO

The chemical constituents in the ethyl acetate extract of Corydalis tomentella was isolated and purified with normal and reversed phase silica gel column chromatography, Sephadex LH-20, MCI, and semi-preparative HPLC. The compound structures were identified based on spectroscopic experiments and reported papers. Finally, eighteen compounds(1-18) were obtained from C. tomentella, including 17 alkaloids and 1 terpenoid. Among them, compound 1(tomentellaine A) was a novel alkaloid. Compounds 2-5, 7-14, and 16-18 were isolated from this plant for the first time.


Assuntos
Alcaloides , Corydalis , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Extratos Vegetais
17.
Plant Physiol Biochem ; 168: 507-515, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34757301

RESUMO

Benzylisoquinoline alkaloids (BIAs) are compounds naturally found in plants and can have significant value in clinical settings. Metabolic engineering and synthetic biology are both promising approaches for the heterologous acquisition of benzylisoquinoline alkaloids. (S)-N-methylcoclaurine 3'-hydroxylase (NMCH), a member of the CYP80 family of CYP450, is the penultimate catalytic enzyme that forms the central branch-point intermediate (S)-reticuline and plays a key role in the biosynthesis of BIAs. In this study, an NMCH gene was cloned from Corydalis yanhusuo, while in vitro reactions demonstrated that CyNMCH can catalyze (S)-N-methylcoclaurine to produce (S)-3'-hydroxy-N-methylcoclaurine. The Km and Kcat of CyNMCH were estimated and compared with those identified in Eschscholzia californica and Coptis japonica. This newly discovered CyNMCH will provide alternative genetic resources for the synthetic biological production of benzylisoquinoline alkaloids and provides a foundation to help analyze the biosynthetic pathway of BIAs biosynthesis in C. yanhusuo.


Assuntos
Alcaloides , Benzilisoquinolinas , Corydalis , Coptis , Sistema Enzimático do Citocromo P-450 , Proteínas de Plantas
18.
J Chromatogr A ; 1660: 462674, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34781045

RESUMO

Silica-based positively-charged stationary phase bonding phenylaminopropyl (named PHN) was found to produce symmetrical peak shape and higher sample loading for basic compounds. In this work, firstly, surface charge property of the PHN was evaluated by ζ-potential and retention of NO3-. A considerable amount of pH-dependent positive charges was confirmed more than that on CSH Phenyl-Hexyl, a commercial positively-charged phenyl stationary phase. Then chromatographic evaluation of standard alkaloids revealed that PHN could offer better peak shape and higher column efficiency at lower pH, and it functioned well under a wide range of buffer ionic strength. The PHN also showed different selectivity for basic compounds compared to the CSH Phenyl-Hexyl. Furthermore, it provided superior peak shape for high sample mass, demonstrating potential applications of this stationary phase in a preparative scale. These results can be explained by the strong charge intensity of the PHN stationary phase. Finally, the PHN was applied to separate a fraction from rhizomes of Corydalis decumbens, and purify dehydrocorybulbine from Corydalis yanhusuo W.T. Wang. Our study indicated the advantages and potential applications of the phenylaminopropyl bonded PHN stationary phase for basic compound separation.


Assuntos
Alcaloides , Corydalis , Dióxido de Silício
19.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3058-3065, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34467696

RESUMO

In this study, the compound search was completed through SciFinder and CNKI databases, and the drug-like properties were screened in FAFdrugs4 and SEA Search Server databases. In addition, based on the target sets related to acute myocardial ischemia(AMI) searched in disease target databases such as OMIM database, GeneCards database and DrugBank, a network diagram of chemical component-target-pathway-disease was established via Cytoscape to predict the potential active components of Corydalis Herba, a traditional Tibetan herbal medicine which derived from the aerial parts of Corydalis hendersonii and C. mucronifera against AMI. A protein-protein interaction(PPI) network was constructed through the STRING database and the core targets in the network were predicted. And the enrichment analyses of core targets were completed by DAVID database and R software. Furthermore, a molecular docking method was used to verify the binding of the components with core targets using softwares such as Autodock Vina. The present results showed that there were 60 compounds related to AMI in Corydalis Herba, involving 73 potential targets. The GO functional enrichment analysis obtained 282 biological processes(BP), 49 cell components(CC) and 78 molecular functions(MF). KEGG was enriched into 85 pathways, including alcoholism pathway, endocrine resistance pathway, calcium signaling pathway, cAMP signaling pathway, vascular endothelial growth factor signaling pathway and adrenergic signaling transduction pathway of myocardial cells. The results of network topology analysis showed that the key components of anti-AMI of Corydalis Herba might be tetrahydropalmatine, etrahydrocolumbamine, N-trans-feruloyloctopamine, N-cis-p-coumaroyloctopamine, N-trans-p-coumaroylnoradrenline and N-trans-p-coumaroyloctopamine, and their core targets might be CDH23, SCN4 B and NFASC. The results of molecular docking showed that the key components of Corydalis Herba had stable binding activity with the core targets. This study provides reference for further elucidation of the pharmacological effects of Corydalis Herba against AMI, subsequent clinical application, and development.


Assuntos
Corydalis , Medicamentos de Ervas Chinesas , Isquemia Miocárdica , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Tibetana , Simulação de Acoplamento Molecular , Isquemia Miocárdica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular
20.
Int J Biol Macromol ; 189: 678-689, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34390750

RESUMO

Thaumatin-like proteins (TLPs, osmotins) form a protein family which shares a significant sequence homology to the sweet-tasting thaumatin from the plant Thaumatococcus daniellii. TLPs are not sweet-tasting and are involved in response to biotic stresses and developmental processes. Recently it has been shown using a proteomic approach that the tuber extract from Corydalis cava (Papaveraceae) contains a TLP protein. The aim of this work was to characterize the structure and expression of TLP from C. cava tubers. The results obtained using a PCR approach with degenerate primers demonstrated a coding sequence of a novel protein, named CcTLP1. It consists of 225 aa, has a predicted molecular weight of 24.2 kDa (NCBI GenBank accession no. KJ513303) and has 16 strictly conserved cysteine residues, which form 8 disulfide bridges and stabilize the 3D structure. CcTLP1 may be classified into class IX of plant TLPs. The highest CcTLP1 expression levels were shown by qPCR in the stem of the plant compared to other organs and in the medium-size plants compared to other growth phases. The results confirm that CcTLP1 is expressed during plant growth and development until flowering, with a possible defensive function against different stress conditions.


Assuntos
Corydalis/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Corydalis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Modelos Moleculares , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos , Espectrometria de Massas em Tandem , Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...