Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
1.
Sci Rep ; 12(1): 8611, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597818

RESUMO

Bees are important pollinators in wild and agricultural ecosystems, and understanding the factors driving their global declines is key to maintaining these pollination services. Learning, which has been a focus of previous ecotoxicological studies in bees, may play a key role in driving colony fitness. Here we move beyond the standard single-stressor approach to ask how multiple stressors, an agrochemical (sulfoxaflor, a relatively new insecticide) and a parasite (Crithidia bombi, a prevalent gut parasite of bumblebees), impact learning in the bumblebee Bombus terrestris. We developed a modified version of the classic proboscis extension reflex assay to assess the combined effects of acute oral sulfoxaflor exposure and infection by C. bombi on olfactory learning of bumblebee workers. We found no evidence that either sulfoxaflor, C. bombi, or their combination had any significant effect on bumblebee olfactory learning, despite their known negative impacts on other aspects of bumblebee health. This suggests that losses in cognitive ability, as measured here, are unlikely to explain the impacts of sulfoxaflor and its interactions with other stressors on bumblebees. Our novel methodology provides a model system within which to test interactive effects of other key stressors on bee health.


Assuntos
Parasitos , Trypanosoma , Animais , Abelhas , Crithidia , Ecossistema , Piridinas , Compostos de Enxofre
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210160, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491606

RESUMO

Certain diets can benefit bee health by reducing pathogens, but the mechanism(s) driving these medicinal effects are largely unexplored. Recent research found that sunflower (Helianthus annuus) pollen reduces the gut pathogen Crithidia bombi in the common eastern bumblebee (Bombus impatiens). Here, we tested the effects of sunflower pollen and infection on two bee immune metrics to determine whether sunflower pollen diet drives changes in host immunity that can explain this medicinal effect. Bees were infected with C. bombi or not and given either sunflower or wildflower pollen. Subsequently, bees received a benign immune challenge or were left naive to test the induced and constitutive immune responses, respectively. We measured haemolymph phenoloxidase activity, involved in the melanization cascade, and antibacterial activity. Sunflower pollen reduced C. bombi infection, but we found no significant pollen diet effect on either immune measure. Phenoloxidase activity was also not affected by C. bombi infection status; however, uninfected bees were more likely to have measurable constitutive antibacterial activity, while infected bees had higher induced antibacterial activity. Overall, we found that sunflower pollen does not significantly affect the immune responses we measured, suggesting that the mechanisms underlying its medicinal effect do not involve these bee immune parameters. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Helianthus , Animais , Antibacterianos , Abelhas , Crithidia/fisiologia , Monofenol Mono-Oxigenase , Pólen
3.
Ecology ; 103(7): e3730, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35416294

RESUMO

The spread of parasites is one of the primary drivers of population decline of both managed and wild bees. Several bee parasites are transmitted by the shared use of flowers, turning floral resources into potential disease hotspots. However, we know little about how floral morphology and floral species identity affect different steps of the transmission process. Here, we used the gut parasite Crithidia bombi and its primary host, bumble bees (Bombus spp.), to examine whether floral traits or species identity better predict three basic steps of parasite transmission on flowers: feces deposition on flowers, survival of the parasite on flowers, and acquisition by a new host. We also identified which traits and/or species were most strongly associated with each step in the transmission process. We found that both trait- and species-based models fit the data on deposition of feces and survival of C. bombi on flowers, but that species-based models provided a better fit compared with trait-based ones. However, trait-based models were better at predicting the acquisition of C. bombi on flowers. Although different species tended to support higher fecal deposition or parasite survival, we found that floral shape provided explanatory power for each of the transmission steps. When we assessed overall transmission potential, floral shape had the largest explanatory effect, with wider, shorter flowers promoting higher transmission. Taken together, our results highlight the importance of flower species identity and floral traits in disease transmission dynamics of bee parasites, and floral shape as an important predictor of overall transmission potential. Identifying traits associated with transmission potential may help us create seed mix that presents lower parasite transmission risk for bees for use in pollinator habitat.


Assuntos
Parasitos , Animais , Abelhas , Crithidia , Ecossistema , Flores/anatomia & histologia , Fenótipo , Polinização
4.
J Econ Entomol ; 115(2): 688-692, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35244163

RESUMO

Little is known about how simultaneous antagonistic interactions on plants and pollinators affect pollination services, even though herbivory can alter floral traits and parasites can change pollinator learning, perception, or behavior. We investigated how a common herbivore and bumble bee (Bombus spp.) parasite impact pollination in tomatoes (Solanum lycopersicum L.) (Solanales: Solanaceae). We exposed half the plants to low-intensity herbivory by the specialist Manduca sexta L. (Lepidoptera: Sphigidae), and observed bumble bee visits and time spent on flowers of damaged and control plants. Following observations, we caught the foraging bees and assessed infection by the common gut parasite, Crithidia bombi Lipa & Triggiani (Trypanosomatida: Trypanosomatidae). Interestingly, we found an interactive effect between herbivory and Crithidia infection; bees with higher parasite loads spent less time foraging on damaged plants compared to control plants. However, bees did not visit higher proportions of flowers on damaged or control plants, regardless of infection status. Our study demonstrates that multiple antagonists can have synergistic negative effects on the duration of pollinator visits, such that the consequences of herbivory may depend on the infection status of pollinators. If pollinator parasites indeed exacerbate the negative effects of herbivory on pollination services, this suggests the importance of incorporating bee health management practices to maximize crop production.


Assuntos
Himenópteros , Lycopersicon esculentum , Doenças Parasitárias , Animais , Abelhas , Crithidia/fisiologia , Flores , Herbivoria , Plantas , Polinização
5.
Proc Biol Sci ; 289(1968): 20211909, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35105241

RESUMO

Commercial bumblebees have become popular models to understand stressors and solutions for pollinator health, but few studies test whether results translate to other pollinators. Consuming sunflower pollen dramatically reduces infection by the gut parasite Crithidia bombi in commercially reared Bombus impatiens. We assessed the effect of sunflower pollen on infection in wild B. impatiens, Bombus griseocollis, Bombus bimaculatus and Bombus vagans. We also asked how pollen diet (50% sunflower pollen versus wildflower pollen) and infection (yes/no) affected performance in wild B. impatiens microcolonies. Compared to controls, sunflower pollen dramatically reduced Crithidia infection in commercial and wild B. impatiens, had similar but less dramatic effects in B. bimaculatus and B. vagans, and no effect in B. griseocollis. Bombus impatiens, B. bimaculatus and B. vagans are in the same subgenus, suggesting that responses to sunflower pollen may be phylogenetically conserved. In microcolonies, 50% sunflower pollen reduced infection compared to wildflower pollen, but also reduced reproduction. Sunflower pollen could control Crithidia infections in B. impatiens and potentially close relatives, but may hinder reproduction if other resources are scarce. We caution that research using managed bee species, such as B. impatiens, be interpreted carefully as findings may not relate to all bee species.


Assuntos
Helianthus , Parasitos , Animais , Abelhas , Crithidia/fisiologia , Dieta , Pólen
6.
Environ Entomol ; 51(2): 378-384, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35021185

RESUMO

Neonicotinoid insecticides are the most commonly used insecticide in the world and can have significant sub-lethal impacts on beneficial insects, including bumblebees, which are important pollinators of agricultural crops and wild-flowers. This has led to bans on neonicotinoid use in the EU and has resulted in repeated calls for the agrochemical regulatory process to be modified. For example, there is increasing concern about 1) the underrepresentation of wild bees, such as bumblebees, in the regulatory process, and 2) the failure to determine how agrochemicals, such as neonicotinoids, interact with other commonly occurring environmental stressors, such as parasites. Here, we modify an OECD approved lethal dose (LD50) experimental design and coexpose bumblebees (Bombus terrestris) to the neonicotinoid thiamethoxam and the highly prevalent trypanosome parasite Crithidia bombi, in a fully crossed design. We found no difference in the LD50 of thiamethoxam on bumblebees that had or had not been inoculated with the parasite (Crithidia bombi). Furthermore, thiamethoxam dosage did not appear to influence the parasite intensity of surviving bumblebees, and there was no effect of either parasite or insecticide on sucrose consumption. The methodology used demonstrates how existing ring-tested experimental designs can be effectively modified to include other environmental stressors such as parasites. Moving forward, the regulatory process should implement methodologies that assess the interactions between agrochemicals and parasites on non-Apis bees and, in cases when this is not practical, should implement post-regulatory monitoring to better understand the real-world consequences of agrochemical use.


Assuntos
Himenópteros , Inseticidas , Agroquímicos , Animais , Abelhas , Crithidia , Inseticidas/toxicidade , Dose Letal Mediana , Neonicotinoides/toxicidade , Tiametoxam
7.
Parasitology ; 149(4): 562-567, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067238

RESUMO

Several bee parasites are transmitted through flowers, and some of them can infect multiple host species. Given the shared use of flowers by bee species, parasites can potentially encounter multiple host species, which could affect the evolution of parasite virulence. We used the trypanosomatid parasite Crithidia bombi and its host, the common eastern bumble bee (Bombus impatiens), to explore the effect of infecting an alternative host, the alfalfa leaf-cutter bee (Megachile rotundata), on parasite infectivity and ability to replicate. We conducted a serial passage experiment on primary and alternative hosts, assessing infectivity and intensity of infection during five passes. Parasite cells from each pass through the alternative host were also used to infect a group of primary hosts. We found that serial passes through the alternative host increased infectivity, but there was no effect on intensity of infection. Interestingly, both the probability and intensity of infection on the primary host increased after serial passage through the alternative host. This increase in intensity of infection could be due to maladaptation after selection of new C. bombi strains has occurred in the alternative host. This study suggests that host switching has the potential to affect the adaptation of bee parasites to their hosts.


Assuntos
Parasitos , Animais , Abelhas , Crithidia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Prevalência
8.
J Insect Physiol ; 137: 104356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35016876

RESUMO

Host diet can have a profound effect on host-pathogen interactions, including indirect effects on pathogens mediated through host physiology. In bumble bees (Bombus impatiens), the consumption of sunflower (Helianthus annuus) pollen dramatically reduces infection by the gut protozoan pathogen Crithidia bombi. One hypothesis for the medicinal effect of sunflower pollen is that consumption changes host gut physiological function, causing rapid excretion that flushes C. bombi from the system. We tested the effect of pollen diet and C. bombi infection on gut transit properties using a 2x2 factorial experiment in which bees were infected with C. bombi or not and fed sunflower or wildflower pollen diet. We measured several non-mutually exclusive physiological processes that underlie the insect excretory system, including gut transit time, bi-hourly excretion rate, the total number of excretion events and the total volume of excrement. Sunflower pollen significantly reduced gut transit time in uninfected bees, and increased the total number of excretion events and volume of excrement by 66 % and 68 %, respectively, in both infected and uninfected bees. Here we show that a sunflower pollen diet can affect host physiology gut function, causing more rapid and greater excretion. These results provide important insight into a mechanism that could underlie the medicinal effect of sunflower pollen for bumble bees.


Assuntos
Helianthus , Animais , Abelhas , Crithidia/fisiologia , Dieta , Interações Hospedeiro-Patógeno , Pólen
9.
Int J Parasitol ; 52(1): 65-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416272

RESUMO

The remodelling of flagella into attachment structures is a common and important event in the trypanosomatid life cycle. Lotmaria passim and Crithidia mellificae can parasitize Apis mellifera, and as a result they might have a significant impact on honeybee health. However, there are details of their life cycle and the mechanisms underlying their pathogenicity in this host that remain unclear. Here we show that both L. passim promastigotes and C. mellificae choanomastigotes differentiate into haptomonad stages covering the ileum and rectum of honeybees. These haptomonad cells remain attached to the host surface via zonular hemidesmosome-like structures, as revealed by transmission electron microscopy. This work describes for the first known time the haptomonad morphotype of these species and their hemidesmosome-like attachments in A. mellifera, a key trait used by other trypanosomatid species to proliferate in the insect host hindgut.


Assuntos
Crithidia , Trypanosomatina , Animais , Abelhas
10.
Proc Biol Sci ; 288(1964): 20211517, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34847766

RESUMO

Host temperature and gut chemistry can shape resistance to parasite infection. Heat and acidity can limit trypanosomatid infection in warm-blooded hosts and could shape infection resistance in insects as well. The colony-level endothermy and acidic guts of social bees provide unique opportunities to study how temperature and acidity shape insect-parasite associations. We compared temperature and pH tolerance between three trypanosomatid parasites from social bees and a related trypanosomatid from poikilothermic mosquitoes, which have alkaline guts. Relative to the mosquito parasites, all three bee parasites had higher heat tolerance that reflected body temperatures of hosts. Heat tolerance of the honeybee parasite Crithidia mellificae was exceptional for its genus, implicating honeybee endothermy as a plausible filter of parasite establishment. The lesser heat tolerance of the emerging Lotmaria passim suggests possible spillover from a less endothermic host. Whereas both honeybee parasites tolerated the acidic pH found in bee intestines, mosquito parasites tolerated the alkaline conditions found in mosquito midguts, suggesting that both gut pH and temperature could structure host-parasite specificity. Elucidating how host temperature and gut pH affect infection-and corresponding parasite adaptations to these factors-could help explain trypanosomatids' distribution among insects and invasion of mammals.


Assuntos
Parasitos , Trypanosomatina , Animais , Abelhas , Temperatura Corporal , Crithidia , Concentração de Íons de Hidrogênio , Mamíferos , Trypanosomatina/parasitologia
11.
Environ Entomol ; 50(6): 1358-1369, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34532731

RESUMO

As part of a quantitative survey of Maine's bumble bee fauna (Butler et al. 2021), we compared and contrasted genetic diversity, parasite and pathogen burdens, and pesticide exposure of the relatively common Bombus ternarius Say, 1937 and the spatially rare Bombus terricola Kirby, 1837. We recorded 11 Bombus species at 40 survey sites across three Maine ecoregions, and B. ternarius was the most common species, while B. terricola was spatially rare. Nonmetric multidimensional scaling indicated that B. terricola was associated with higher elevation sites in Maine, while B. ternarius was more broadly distributed in the state. Pollinator networks constructed for each bee indicated B. ternarius foraged on more plant species than B. terricola, but that there was considerable overlap (73%) in plant species visited. Genetic diversity was greater in the spatially restricted B. terricola, whereas the widely distributed B. ternarius was characterized by greater genetic differentiation among regions. Bombus terricola had higher molecular marker levels of the microsporidian fungi Nosema spp. and the trypanosome Crithidia spp., and both species had high levels of Trypanosoma spp. exposure. No Western Honey Bee (Apis mellifera, Linnaeus, 1758) viruses were detected in either species. Pesticides were not detected in pollen samples collected from workers of either species, and B. ternarius worker tissue samples exhibited only trace levels of diflubenzuron.


Assuntos
Himenópteros , Praguicidas , Animais , Abelhas/genética , Crithidia , Maine , Pólen
12.
Sci Rep ; 11(1): 15852, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349198

RESUMO

Flowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that may be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees, Crithidia bombi, can infect Eristalis tenax flower flies. We also investigated the potential for two confirmed solitary bee hosts of C. bombi, Osmia lignaria and Megachile rotundata, as well as two flower fly species, Eristalis arbustorum and E. tenax, to transmit the parasite at flowers. We found that C. bombi did not replicate (i.e., cause an active infection) in E. tenax flies. However, 93% of inoculated flies defecated live C. bombi in their first fecal event, and all contaminated fecal events contained C. bombi at concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate that Eristalis flower flies are not hosts of C. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or dilute C. bombi in bee communities, though current theoretical work suggests that unless present in large populations, the effects of mechanical vectors will be smaller than hosts.


Assuntos
Crithidia/fisiologia , Dípteros/fisiologia , Fezes/parasitologia , Flores/parasitologia , Insetos Vetores/parasitologia , Animais , Polinização
13.
Turkiye Parazitol Derg ; 45(2): 83-87, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34103282

RESUMO

Objective: The relationship between drug resistance and the expression of hexokinase (HK) has been indicated in leishmaniasis. According to the prolonged treatment period in cutaneous leishmaniasis (CL) patients co-infected with Crithidia in Iran, this study aims to investigate the expression of HK in the proteome of Leishmania major and Crithidia using a proteomic approach. Methods: A total of 205 samples were removed from the lesions of patients in Fars province, Iran, for the characterization of L. major and Crithidia using polymerase chain reaction (PCR). After protein extraction, two-dimensional gel electrophoresis was employed for protein separation. Several spots were isolated for HK determination in the proteomes of L. major and Crithidia using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS). Results: The PCR results showed 5 positive cases for Crithidia and 96 positive cases for L. major. MALDI TOF/TOF MS indicated HK as a common protein in the proteome of L. major and Crithidia. HK was up-regulated in the Crithidia proteome in comparison with the L. major proteome. Conclusion: Since a relationship between HK expression and drug resistance has been indicated in leishmaniasis, the overexpression of HK in Crithidia might be related to the increased duration of the treatment period in CL patients co-infected with Crithidia.


Assuntos
Crithidia/metabolismo , Hexoquinase/metabolismo , Leishmania major/metabolismo , Proteoma/metabolismo , Coinfecção/tratamento farmacológico , Coinfecção/parasitologia , Crithidia/enzimologia , Crithidia/isolamento & purificação , Resistência a Medicamentos , Infecções por Euglenozoa/tratamento farmacológico , Infecções por Euglenozoa/parasitologia , Humanos , Irã (Geográfico) , Leishmania major/enzimologia , Leishmania major/isolamento & purificação , Proteômica
14.
Ecology ; 102(8): e03429, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34105776

RESUMO

Trait variation can have important consequences for the outcomes of species interactions. Even though some traits vary as much within species as across related species, models and empirical studies typically do not consider the role of intraspecific trait variation for processes such as disease transmission. For example, many pollinator species are in decline because of a variety of stressors including pathogens, but the role of intraspecific trait variation in mediating disease dynamics is rarely considered. For example, pollinator body size could affect pathogen transmission via differences in resistance, foraging behavior and physiology. We tested effects of body size on pollinator pathogen transmission using the common eastern bumble bee Bombus impatiens in field tents, introducing an infected "donor" microcolony of large or small workers with an uninfected average-sized "recipient" microcolony and allowing bees to forage for 9-16 d. Small donor bees had nearly 50% higher infection intensity (cells/0.02  µL) than large donor bees, but large donor bees were twice as likely to transmit Crithidia bombi to recipient bees. Both behavioral and physiological mechanisms may underlie this apparent paradox. Compared to small bees, large bees foraged more and produced more feces; simulations showed that foraging and defecation rates together had stronger effects on transmission than did donor infection intensity. Thus, effects of bee size on contact rates and pathogen supply may play significant roles in disease transmission, demonstrating the multifaceted impacts of traits on transmission dynamics.


Assuntos
Crithidia , Animais , Abelhas , Tamanho Corporal , Fenótipo
15.
J Invertebr Pathol ; 182: 107583, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781766

RESUMO

The use of commercially reared bumble bees in agricultural environments has been recognized as a potential threat to wild pollinators due to competition, genetic contamination, and most notably, disease transmission. Higher parasite prevalence near greenhouses where managed bumble bees are used has been linked to parasite spillover from managed to wild bees. However, pathogen transmission is not unidirectional, and can also flow from wild to managed bees. These newly infected managed bees can subsequently re-infect (other) wild bees, in a process known as spillback, which is an alternative explanation for the increased parasite prevalence near greenhouses. Reducing parasite prevalence in managed bees is key to controlling host-parasite dynamics in cases of spillover; in spillback, producing managed bees that are resilient to infection is important. Here we establish that the managed bumble bee Bombus terrestris can acquire parasites from their foraging environment, which is the major infection route for Apicystis spp. and Crithidia spp., but not for Nosema spp.. Managed B. terrestris were found to have a higher prevalence of Crithdia and a higher load of Apicystis than local wild conspecifics, showing that for these parasites, spillback is a possible risk scenario.


Assuntos
Apicomplexa/fisiologia , Abelhas/microbiologia , Abelhas/parasitologia , Crithidia/fisiologia , Interações Hospedeiro-Parasita , Nosema/fisiologia , Animais , Criação de Abelhas
16.
Parasitology ; 148(4): 435-442, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33256872

RESUMO

Pathogens and lack of floral resources interactively impair global pollinator health. However, epidemiological and nutritional studies aimed at understanding bee declines have historically focused on social species, with limited evaluations of solitary bees. Here, we asked whether Crithidia bombi, a trypanosomatid gut pathogen known to infect bumble bees, could infect the solitary bees Osmia lignaria (females) and Megachile rotundata (males), and whether nutritional stress influenced infection patterns and bee survival. We found that C. bombi was able to infect both solitary bee species, with 59% of O. lignaria and 29% of M. rotundata bees experiencing pathogen replication 5­11 days following inoculation. Moreover, access to pollen resulted in O. lignaria living longer, although it did not influence M. rotundata survival. Access to pollen did not affect infection probability or resulting pathogen load in either species. Similarly, inoculating with the pathogen did not drive survival patterns in either species during the 5­11-day laboratory assays. Our results demonstrate that solitary bees can be hosts of a known bumble bee pathogen, and that access to pollen is an important contributing factor for bee survival, thus expanding our understanding of factors contributing to solitary bee health.


Assuntos
Abelhas/parasitologia , Crithidia/fisiologia , Animais , Abelhas/classificação , Abelhas/fisiologia , Dieta/veterinária , Feminino , Masculino , Polinização , Fatores Sexuais
17.
Environ Microbiol ; 23(1): 478-483, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225560

RESUMO

Assessing the extent of parasite diversity requires the application of appropriate molecular tools, especially given the growing evidence of multiple parasite co-occurrence. Here, we compared the performance of a next-generation sequencing technology (Ion PGM ™ System) in 12 Bombus terrestris specimens that were PCR-identified as positive for trypanosomatids (Leishmaniinae) in a previous study. These bumblebees were also screened for the occurrence of Nosematidae and Neogregarinorida parasites using both classical protocols (either specific PCR amplification or amplification with broad-range primers plus Sanger sequencing) and Ion PGM sequencing. The latter revealed higher parasite diversity within individuals, especially among Leishmaniinae (which were present as a combination of Lotmaria passim, Crithidia mellificae and Crithidia bombi), and the occurrence of taxa never reported in these hosts: Crithidia acanthocephali and a novel neogregarinorida species. Furthermore, the complementary results produced by the different sets of primers highlighted the convenience of using multiple markers to minimize the chance of some target organisms going unnoticed. Altogether, the deep sequencing methodology offered a more comprehensive way to investigate parasite diversity than the usual identification methods and provided new insights whose importance for bumblebee health should be further analysed.


Assuntos
Abelhas/parasitologia , Biodiversidade , Parasitos/isolamento & purificação , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/isolamento & purificação , Crithidia/genética , Crithidia/isolamento & purificação , Primers do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Parasitos/classificação , Parasitos/genética , Reação em Cadeia da Polimerase , Trypanosomatina/classificação , Trypanosomatina/genética , Trypanosomatina/isolamento & purificação
18.
Molecules ; 25(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167520

RESUMO

The kinetoplastids are protozoa characterized by the presence of a distinctive organelle, called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease) and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected diseases affect millions of people across the globe, but drug treatment is hampered by the challenges of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections. The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of geographical origin. The mode of action of propolis depends on the organism it is acting on and includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.


Assuntos
Abelhas , Leishmania/efeitos dos fármacos , Própole/farmacologia , Trypanosoma/efeitos dos fármacos , Animais , Produtos Biológicos/farmacologia , Crithidia/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas , Flavonoides/farmacologia , Geografia , Humanos , Macrófagos/efeitos dos fármacos , Metabolômica , Mitocôndrias/efeitos dos fármacos , Nanotecnologia
19.
J Chem Ecol ; 46(10): 978-986, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32876829

RESUMO

Herbivory can induce chemical changes throughout plant tissues including flowers, which could affect pollinator-pathogen interactions. Pollen is highly defended compared to nectar, but no study has examined whether herbivory affects pollen chemistry. We assessed the effects of leaf herbivory on nectar and pollen alkaloids in Nicotiana tabacum, and how herbivory-induced changes in nectar and pollen affect pollinator-pathogen interactions. We damaged leaves of Nicotiana tabacum using the specialist herbivore Manduca sexta and compared nicotine and anabasine concentrations in nectar and pollen. We then pooled nectar and pollen by collection periods (within and after one month of flowering), fed them in separate experiments to bumble bees (Bombus impatiens) infected with the gut pathogen Crithidia bombi, and assessed infections after seven days. We did not detect alkaloids in nectar, and leaf damage did not alter the effect of nectar on Crithidia counts. In pollen, herbivory induced higher concentrations of anabasine but not nicotine, and alkaloid concentrations rose and then fell as a function of days since flowering. Bees fed pollen from damaged plants had Crithidia counts 15 times higher than bees fed pollen from undamaged plants, but only when pollen was collected after one month of flowering, indicating that both damage and time since flowering affected interaction outcomes. Within undamaged treatments, bees fed late-collected pollen had Crithidia counts 10 times lower than bees fed early-collected pollen, also indicating the importance of time since flowering. Our results emphasize the role of herbivores in shaping pollen chemistry, with consequences for interactions between pollinators and their pathogens.


Assuntos
Abelhas/parasitologia , Crithidia/fisiologia , Flores/química , Herbivoria , Interações Hospedeiro-Parasita , Tabaco/química , Anabasina/análise , Animais , Comportamento Alimentar/fisiologia , Manduca/fisiologia , Nicotina/análise , Folhas de Planta/química , Néctar de Plantas/química , Pólen/química , Polinização , Fatores de Tempo
20.
Int J Parasitol ; 50(13): 1117-1124, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32822679

RESUMO

The trypanosomatids Crithidia mellificae and Lotmaria passim are very prevalent in honey bee colonies and potentially contribute to colony losses that currently represent a serious threat to honey bees. However, potential pathogenicity of these trypanosomatids remains unclear and since studies of infection are scarce, there is little information about the virulence of their different morphotypes. Hence, we first cultured C. mellificae and L. passim (ATCC reference strains) in six different culture media to analyse their growth rates and to obtain potentially infective morphotypes. Both C. mellificae and L. passim grew in five of the media tested, with the exception of M199. These trypanosomatids multiplied fastest in BHI medium, in which they reached a stationary phase after around 96 h of growth. Honey bees inoculated with either Crithidia or Lotmaria died faster than control bees and their mortality was highest when they were inoculated with 96 h cultured L. passim. Histological and Electron Microscopy analyses revealed flagellated morphotypes of Crithidia and Lotmaria in the lumen of the ileum, and adherent non-flagellated L. passim morphotypes covering the epithelium, although no lesions were evident. These data indicate that parasitic forms of these trypanosomatids obtained from the early stationary growth phase infect honey bees. Therefore, efficient infection can be achieved to study their intra-host development and to assess the potential pathogenicity of these trypanosomatids.


Assuntos
Abelhas/parasitologia , Crithidia , Trypanosomatina , Animais , Crithidia/patogenicidade , Trypanosomatina/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...