RESUMO
The X0â/XXâ sex chromosome system prevails in most Orthopteran species. The X chromosome stands as one of the largest chromosomes within the complement, and is characterized by its heterochromatic nature. Variations of this model were found in some species of grasshoppers, crickets, and katydids, based on X/autosome rearrangements, giving rise to new sex chromosome systems, such as neo-XYâ/XXâ and neo-X1X2Yâ/X1X1X2X2â. The sex chromosome system neo-X1X20â/X1X1X2X2â is rare in Orthoptera, and was observed only in two cricket species. In this study, we present the first multiple chiasmatic sex chromosome system in Orthoptera, found in the tree cricket Oecanthus rubromaculatus Zefa, 2022 from two distinct locations in the State of Rio Grande do Sul, Brazil. In one location, individuals exhibited a karyotype with 2n = 12, X1X2Y1Y2â/X1X1X2X2â, while in the other a karyotype of 2n = 12, X1X2X3Y1Y2Y3â/X1X1X2X2X3X3â was observed. We proposed a model to explain the evolutionary steps in the formation of these karyotypes, based on chromosomal information of the Neotropical Oecanthus' species. In this context, we proposed a hypothesis to explain the chromosome reorganization in O. rubromaculatus, starting from an ancestral karyotype of 2n = 21, X0â, like the karyotype found in Oecanthus pictus Milach & Zefa, 2015, resulting in a significant reduction to 2n = 12 in O. rubromaculatus. This reorganization has led to the emergence of the novel multiple sex chromosome system in Orthoptera.
Assuntos
Gryllidae , Cromossomos Sexuais , Animais , Masculino , Feminino , Gryllidae/genética , Gryllidae/classificação , Gryllidae/anatomia & histologia , Cromossomos de Insetos , Cariótipo , BrasilRESUMO
The touchstone of the 'New Synthesis' was population cytogenetics -rather than genetics - due to the abundant polymorphic inversions in the genus Drosophila. Grasshoppers were not a material of choice because of their conservative karyotypes. However, nowadays seven species of Acrididae were described for polymorphic centric fusions, five of them in South-America. Leptysma argentina and the likely biocontrol of water-hyacinth Cornops aquaticum are semiaquatic Leptysminae (Acrididae: Orthoptera), polymorphic for centric fusions, supernumerary segments and a B-chromosome. We sought to demonstrate the operation of natural selection on them, by detecting: (I) latitudinal clines; (II) regression on environmental variables; (III) deviation from null models, such as linkage equilibrium; (IV) seasonal variation; (V) comparison between age classes and (VI) selection component analyses. All of them were confirmed in L. argentina, just (I) and (II) in C. aquaticum. Furthermore, the relationship between karyotype, phenotype and recombination was confirmed in both species. Karyotype-phenotype relationship may be due to the body enlargement the fusions are associated with, along with a latitudinal transition in voltinism. Karyotype-related recombination reduction in both species may help explain all fusion clines, although there is probably more than one factor at work. No effects were noticed for a supernumerary segment in L. argentina, but it is ubiquitous and certainly non-neutral. C. aquaticum is poised for introduction in South-Africa as a biocontrol of water-hyacinths; the recent discovery of four more segment polymorphisms may imply more chromosomal markers to make sense of its genetic system.
Assuntos
Cromossomos de Insetos , Gafanhotos , Cariótipo , Polimorfismo Genético , Animais , Gafanhotos/genética , Masculino , Feminino , Seleção Genética , Estações do Ano , Recombinação GenéticaRESUMO
This article describes a genome assembly and annotation for Bombus dahlbomii, the giant Patagonian bumble bee. DNA from a single, haploid male collected in Argentina was used for PacBio (HiFi) sequencing, and Hi-C technology was then used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high-quality, near chromosome-level assembly. The sequenced genome size is estimated at 265 Mb. The genome was annotated based on RNA sequencing data of another male from Argentina, and BRAKER3 produced 15,767 annotated genes. The genome and annotation show high completeness, with >95% BUSCO scores for both the genome and annotated genes (based on conserved genes from Hymenoptera). This genome provides a valuable resource for studying the biology of this iconic and endangered species, as well as for understanding the impacts of its decline and designing strategies for its preservation.
Assuntos
Espécies em Perigo de Extinção , Genoma de Inseto , Anotação de Sequência Molecular , Animais , Abelhas/genética , Masculino , Cromossomos de Insetos/genéticaRESUMO
Sex chromosomes are evolutionarily labile in many animals and sometimes fuse with autosomes, creating so-called neo-sex chromosomes. Fusions between sex chromosomes and autosomes have been proposed to reduce sexual conflict and to promote adaptation and reproductive isolation among species. Recently, advances in genomics have fuelled the discovery of such fusions across the tree of life. Here, we discovered multiple fusions leading to neo-sex chromosomes in the sapho subclade of the classical adaptive radiation of Heliconius butterflies. Heliconius butterflies generally have 21 chromosomes with very high synteny. However, the five Heliconius species in the sapho subclade show large variation in chromosome number ranging from 21 to 60. We find that the W chromosome is fused with chromosome 4 in all of them. Two sister species pairs show subsequent fusions between the W and chromosomes 9 or 14, respectively. These fusions between autosomes and sex chromosomes make Heliconius butterflies an ideal system for studying the role of neo-sex chromosomes in adaptive radiations and the degeneration of sex chromosomes over time. Our findings emphasize the capability of short-read resequencing to detect genomic signatures of fusion events between sex chromosomes and autosomes even when sex chromosomes are not explicitly assembled.
Assuntos
Borboletas , Evolução Molecular , Cromossomos Sexuais , Animais , Borboletas/genética , Cromossomos Sexuais/genética , Feminino , Masculino , Filogenia , Genômica/métodos , Sintenia , Cromossomos de Insetos/genética , Genoma de InsetoRESUMO
Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.
Assuntos
Cromossomos de Insetos , Gafanhotos , Animais , Gafanhotos/genética , Cromossomos de Insetos/genética , Heterocromatina/genética , Evolução Molecular , DNA Satélite/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Elementos de DNA TransponíveisRESUMO
This study characterizes the chromosomal organization of DNA repetitive sequences and the karyotypic evolution in four representatives of the solitary wasp genus Trypoxylon using conventional and molecular cytogenetic techniques. Our findings present the first cytogenetic data for Trypoxylon rogenhoferi (2n = 30) and Trypoxylon albonigrum (2n = 32), while the karyotypes of Trypoxylon nitidum (2n = 30) and Trypoxylon lactitarse (2n = 30) were similar to those previously described. Fluorochrome staining and microsatellite distribution data revealed differences in the constitutive heterochromatin composition among species. Trypoxylon nitidum and T. albonigrum exhibited one major rDNA cluster, potentially representing an ancestral pattern for aculeate Hymenoptera, while T. rogenhoferi and T. lactitarse showed two pericentromeric rRNA gene sites, suggesting amplification events in their ancestral clade. The (TCAGG)n motif hybridized in the terminal regions of the chromosomes in all four Trypoxylon species, which may suggest that this sequence represents DNA telomeric repeat. Notably, the presence of this repetitive sequence in the centromeric regions of certain chromosome pairs in two species supports the hypothesis of chromosomal fusions or inversions in the ancestral karyotype of Trypoxylon. The study expands the chromosomal mapping data of repetitive sequences in wasps and offers insights into the dynamic evolutionary landscape of karyotypes in these insects.
Assuntos
Cariótipo , Sequências Repetitivas de Ácido Nucleico , Telômero , Vespas , Animais , Telômero/genética , Vespas/genética , Vespas/classificação , Cromossomos de Insetos/genética , Heterocromatina/genética , Hibridização in Situ Fluorescente , Evolução Molecular , Repetições de Microssatélites , CariotipagemRESUMO
Cytogenetics has allowed the investigation of chromosomal diversity and repetitive genomic content in wasps. In this study, we characterized the karyotype of the social wasp Mischocyttarus cassununga using conventional cytogenetics and chromosomal mapping of repetitive sequences. This study was undertaken to extend our understanding of the genomic organization of repetitive DNA in social wasps and is the first molecular cytogenetic insight into the genus Mischocyttarus. The karyotype of M. cassununga had a chromosome number of 2n = 64 for females and n = 32 for males. Constitutive heterochromatin exhibited three distribution patterns: centromeric and pericentromeric regions along the smaller arms and extending almost the entire chromosome. The major ribosomal DNA sites were located on chromosome pair in females and one chromosome in males. Positive signals for the microsatellite probes (GA)n and (GAG)n were observed in the euchromatic regions of all chromosomes. The microsatellites, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n were not observed in any region of the chromosomes. Our results contrast with those previously obtained for Polybia fastidiosuscula, which showed that the microsatellites (GAG)n, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n are located predominantly in constitutive heterochromatin. This suggests variations in the diversity and chromosomal organization of repetitive sequences in the genomes of social wasps.
Assuntos
Heterocromatina , Repetições de Microssatélites , Vespas , Animais , Vespas/genética , Feminino , Masculino , Heterocromatina/genética , Cromossomos de Insetos/genética , Mapeamento Cromossômico , Cariótipo , Hibridização in Situ Fluorescente , Análise CitogenéticaRESUMO
The genus Partamona includes 33 species of stingless bees, of which 11 were studied cytogenetically. The main goal of this study was to propose a hypothesis about chromosomal evolution in Partamona by combining molecular and cytogenetic data. Cytogenetic analyses were performed on 3 Partamona species. In addition, the molecular phylogeny included mitochondrial sequences of 11 species. Although the diploid number was constant within the genus, 2n = 34, B chromosomes were reported in 7 species. Cytogenetic data showed karyotypic variations related to chromosome morphology and the amount and distribution of heterochromatin and repetitive DNA. The molecular phylogenetic reconstruction corroborated the monophyly of the genus and separated the 2 clades (A and B). This separation was also observed in the cytogenetic data, in which species within each clade shared most of the cytogenetic characteristics. Furthermore, our data suggested that the B chromosome in the genus Partamona likely originated from a common ancestor of the species that have it in clade B and, through interspecific hybridization, it appeared only in Partamona rustica from clade A. Based on the above, Partamona is an interesting genus for further investigations using molecular mapping of B chromosomes as well as for broadening phylogenetic data.
Assuntos
Abelhas/genética , Cromossomos de Insetos/genética , Evolução Molecular , Animais , Abelhas/classificação , Heterocromatina/genética , Cariótipo , Cariotipagem , Masculino , FilogeniaRESUMO
Triatomines are hematophagous insects of great epidemiological importance, since they are vectors of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. Triatoma brasiliensis complex is a monophyletic group formed by two subspecies and six species: T. b. brasiliensis, T. b. macromelasoma, T. bahiensis, T. juazeirensis, T. lenti, T. melanica, T. petrocchiae and T. sherlocki. The specific status of several species grouped in the T. brasiliensis complex was confirmed from experimental crossing and analysis of reproductive barriers. Thus, we perform interspecific experimental crosses between T. lenti and other species and subspecies of the T. brasiliensis complex and perform morphological analysis of the gonads and cytogenetic analysis in the homeologous chromosomes of the hybrids of first generation (F1). Besides that, we rescue all the literature data associated with the study of reproductive barriers in this monophyletic complex of species and subspecies. For all crosses performed between T. b. brasiliensis, T. b. macromelasoma, T. juazeirensis and T. melanica with T. lenti, interspecific copulas occurred (showing absence of mechanical isolation), hybrids were obtained, none of the male hybrids presented the phenomenon of gonadal dysgenesis and 100% pairing between the chromosomes homeologous of the hybrids was observed. Thus, we demonstrate that there are no pre-zygotic reproductive barriers installed between T. lenti and the species and subspecies of the T. brasiliensis complex. In addition, we demonstrate that the hybrids obtained between these crosses have high genomic compatibility and the absence of gonadal dysgenesis. These results point to reproductive compatibility between T. lenti and species and subspecies of the T. brasiliensis complex (confirming its inclusion in the complex) and lead us to suggest a possible recent diversification of the taxa of this monophyletic group.
Assuntos
Quimera/genética , Variação Genética , Hibridização Genética , Insetos Vetores/genética , Filogenia , Triatoma/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Cromossomos de Insetos/genética , Análise Citogenética , Feminino , Fluxo Gênico , Disgenesia Gonadal/genética , Disgenesia Gonadal/patologia , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Masculino , Reprodução/genética , Testículo/patologia , Testículo/fisiopatologia , Triatoma/classificação , Triatoma/parasitologia , Trypanosoma cruziRESUMO
In addition to the normal set of standard (A) chromosomes, some eukaryote species harbor supernumerary (B) chromosomes. In most cases, B chromosomes show differential condensation with respect to A chromosomes and display dark C-bands of heterochromatin, and some of them are highly enriched in repetitive DNA. Here we perform a comprehensive NGS (next-generation sequencing) analysis of the repeatome in the grasshopper Abracris flavolineata aimed at uncovering the molecular composition and origin of its B chromosome. Our results have revealed that this B chromosome shows a DNA repeat content highly similar to the DNA repeat content observed for euchromatic (non-C-banded) regions of A chromosomes. Moreover, this B chromosome shows little enrichment for high-copy repeats, with only a few elements showing overabundance in B-carrying individuals compared to the 0B individuals. Consequently, the few satellite DNAs (satDNAs) mapping on the B chromosome were mostly restricted to its centromeric and telomeric regions, and they displayed much smaller bands than those observed on the A chromosomes. Our data support the intraspecific origin of the B chromosome from the longest autosome by misdivision, isochromosome formation, and additional restructuring, with accumulation of specific repeats in one or both B chromosome arms, yielding a submetacentric B. Finally, the absence of B-specific satDNAs, which are frequent in other species, along with its euchromatic nature, suggest that this B chromosome arose recently and might still be starting a heterochromatinization process. On this basis, it could be a good model to investigate the initial steps of B chromosome evolution.
Assuntos
Gafanhotos , Animais , Cromossomos de Insetos/genética , DNA , DNA Satélite/genética , Gafanhotos/genética , Heterocromatina/genética , HumanosRESUMO
Eumeninae represents the largest subfamily within Vespidae, with 3,600 species described. Of these, only 18 have been cytogenetically analysed. In the present study, we used both classical and molecular techniques to characterise and compare the karyotypes of 3 Eumeninae species, namely, Ancistrocerus sp., Pachodynerus grandis, and Pachodynerus nasidens. Ancistrocerus sp. presented a haploid chromosome number of n = 12, with the first 2 chromosomes of the karyotype being almost entirely heterochromatic and much larger than the remaining chromosomes. The 2 Pachodynerus species presented the same chromosome number (n = 11 and 2n = 22) but displayed different karyotypic formulae. Additionally, chromosomal polymorphisms were observed in the analysed P. nasidens female. In the 3 species, heterochromatin was located in one of the chromosome arms. Fluorochrome staining revealed a balanced composition of AT and GC bases within the chromatin for each of the 3 species, except for few regions that were visibly GC-rich. All species had a single 18S rDNA site that co-localised with GC-rich regions; however, this localisation varied from species to species and not all GC-rich regions corresponded to ribosomal genes. Based on the cytogenetic data obtained here, we discuss the possible numerical/structural rearrangements that may be involved in the karyotypic evolution of the 3 studied species. In addition to the first description of the molecular cytogenetic characteristics of the Eumeninae subfamily and the genus Pachodynerus, this study also provides a relevant contribution towards the discussion of chromosomal evolution in Eumeninae wasps.
Assuntos
Cromossomos de Insetos/genética , Análise Citogenética/métodos , RNA Ribossômico 18S/genética , Vespas/genética , Animais , Bandeamento Cromossômico , Feminino , Heterocromatina/genética , Hibridização in Situ Fluorescente/métodos , Cariótipo , Masculino , Especificidade da Espécie , Vespas/classificaçãoRESUMO
The major rDNA genes are composed of tandem repeats and are part of the nucleolus organizing regions (NORs). They are highly conserved and therefore useful in understanding the evolutionary patterns of chromosomal locations. The evolutionary dynamics of the karyotype may affect the organization of rDNA genes within chromosomes. In this study, we physically mapped 18S rDNA genes in 13 Neotropical ant species from four subfamilies using fluorescence in situ hybridization. Furthermore, a survey of published rDNA cytogenetic data for 50 additional species was performed, which allowed us to detect the evolutionary patterns of these genes in ant chromosomes. Species from the Neotropical, Palearctic, and Australian regions, comprising a total of 63 species from 19 genera within six subfamilies, were analysed. Most of the species (48 out of 63) had rDNA genes restricted to a single chromosome pair in their intrachromosomal regions. The position of rDNA genes within the chromosomes appears to hinder their dispersal throughout the genome, as translocations and ectopic recombination are uncommon in intrachromosomal regions because they can generate meiotic abnormalities. Therefore, rDNA genes restricted to a single chromosome pair seem to be a plesiomorphic feature in ants, while multiple rDNA sites, observed in distinct subfamilies, may have independent origins in different genera.
Assuntos
Formigas/genética , Cromossomos de Insetos , DNA Ribossômico/genética , Evolução Molecular , Genoma , Animais , Feminino , MasculinoRESUMO
Although all triatomines are considered as potential vectors of the Chagas disease, the Triatoma, Panstrongylus, and Rhodnius genera are the most important from the epidemiological point of view. Based on cytogenetic analyzes carried out so far (C banding and FISH), the species of the genus Rhodnius show little interspecific chromosomal variation. Thus, we analyzed the distribution of AT- and CG-rich DNA in the chromatin and chromosomes of the genus Rhodnius and discuss the chromosome evolution of these vectors. Except for Rhodnius domesticus, Rhodnius nasutus, Rhodnius pictipes, Rhodnius colombiensis, and Rhodnius pallescens, all Rhodnius species have euchromatic autosomes with the absence of AT- and CG-rich blocks. Curiously, the same species that have heterochromatin blocks in the autosomes also have chromomycin A3 (CMA3 +) blocks dispersed in the prophasic nucleus (demonstrating that the heterochromatin of these species is rich in CG). Thus, we characterize the AT- and CG-rich DNA pattern for the genus Rhodnius, and we suggest that the pattern of CG-rich heterochromatin in the autosomes of these vectors evolved independently in pallescens, pictipes, and prolixus groups.
Assuntos
Doença de Chagas/transmissão , Cromossomos de Insetos/genética , Insetos Vetores/genética , Rhodnius/genética , Animais , Análise Citogenética , Evolução Molecular , Heterocromatina , HumanosRESUMO
BACKGROUND: Area-wide integrated pest management programs (AW-IPM) incorporating sterile insect technique (SIT) have been successful in suppressing populations of different fruit fly species during the last six decades. In addition, the development of genetic sexing strains (GSS) for different fruit fly species has allowed for sterile male-only releases and has significantly improved the efficacy and cost effectiveness of the SIT applications. The South American Fruit Fly Anastrepha fraterculus (Diptera: Tephritidae) is a major agricultural pest attacking several fruit commodities. This impedes international trade and has a significant negative impact on the local economies. Given the importance of sterile male-only releases, the development of a GSS for A. fraterculus would facilitate the implementation of an efficient and cost-effective SIT operational program against this insect pest species. RESULTS: For potential use in a GSS, three new morphological markers (mutants) were isolated in a laboratory strain of A. fraterculus sp. 1, including the black pupae (bp) gene located on chromosome VI. The black pupa phenotype was used as a selectable marker to develop genetic sexing strains by linking the wild type allele (bp+) to the Y-chromosome -via irradiation to induce a reciprocal Y-autosome translocation. Four GSS were established and one of them, namely GSS-89, showed the best genetic stability and the highest fertility. This strain was selected for further characterization and cytogenetic analysis. CONCLUSIONS: We herein report the development of the first genetic sexing strain of a major agricultural pest, A. fraterculus sp. 1, using as a selectable marker the black pupae genetic locus.
Assuntos
Cor , Pupa/fisiologia , Tephritidae/genética , Alelos , Animais , Cromossomos de Insetos/genética , Feminino , Fertilidade , Ligação Genética , Marcadores Genéticos , Controle de Insetos , Masculino , Fenótipo , Tephritidae/fisiologia , Cromossomo Y/genéticaRESUMO
BACKGROUND: Anastrepha fraterculus is recognized as a quarantine pest in several American countries. This fruit fly species is native to the American continent and distributed throughout tropical and subtropical regions. It has been reported as a complex of cryptic species, and at least eight morphotypes have been described. Only one entity of this complex, formerly named Anastrepha fraterculus sp. 1, is present in Argentina. Previous cytogenetic studies on this morphotype described the presence of sex chromosome variation identified by chromosomal size and staining patterns. In this work, we expanded the cytological study of this morphotype by analyzing laboratory strains and wild populations to provide information about the frequency and geographic distribution of these sex chromosome variants. We analyzed the mitotic metaphases of individuals from four laboratory strains and five wild populations from the main fruit-producing areas of Argentina, including the northwest (Tucumán and La Rioja), northeast (Entre Ríos and Misiones), and center (Buenos Aires) of the country. RESULTS: In wild samples, we observed a high frequency of X1X1 (0.94) and X1Y5 (0.93) karyomorphs, whereas X1X2 and X1Y6 were exclusively found at a low frequency in Buenos Aires (0.07 and 0.13, respectively), Entre Ríos (0.16 and 0.14, respectively) and Tucumán (0.03 and 0.04, respectively). X2X2 and X2Y5 karyomorphs were not found in wild populations but were detected at a low frequency in laboratory strains. In fact, karyomorph frequencies differed between wild populations and laboratory strains. No significant differences among A. fraterculus wild populations were evidenced in either karyotypic or chromosomal frequencies. However, a significant correlation was observed between Y5 chromosomal frequency and latitude. CONCLUSIONS: We discuss the importance of cytogenetics to understand the possible route of invasion and dispersion of this pest in Argentina and the evolutionary forces acting under laboratory conditions, possibly driving changes in the chromosomal frequencies. Our findings provide deep and integral genetic knowledge of this species, which has become of relevance to the characterization and selection of valuable A. fraterculus sp. 1 strains for mass rearing production and SIT implementation.
Assuntos
Cromossomos de Insetos/genética , Genética Populacional , Polimorfismo Genético , Cromossomos Sexuais/genética , Tephritidae/genética , Animais , Argentina , Feminino , Geografia , Cariotipagem , MasculinoRESUMO
BACKGROUND: Dipterans exhibit a remarkable diversity of chromosome end structures in contrast to the conserved system defined by telomerase and short repeats. Within dipteran families, structure of chromosome termini is usually conserved within genera. With the aim to assess whether or not the evolutionary distance between genera implies chromosome end diversification, this report exploits two representatives of Sciaridae, Rhynchosciara americana, and Trichomegalosphyspubescens. METHODS: Probes and plasmid microlibraries obtained by chromosome end microdissection, in situ hybridization, cloning, and sequencing are among the methodological approaches employed in this work. RESULTS: The data argue for the existence of either specific terminal DNA sequences for each chromosome tip in T. pubescens, or sequences common to all chromosome ends but their extension does not allow detection by in situ hybridization. Both sciarid species share terminal sequences that are significantly underrepresented in chromosome ends of T. pubescens. CONCLUSIONS: The data suggest an unusual terminal structure in T. pubescens chromosomes compared to other dipterans investigated. A putative, evolutionary process of repetitive DNA expansion that acted differentially to shape chromosome ends of the two flies is also discussed.
Assuntos
Cromossomos de Insetos/genética , Dípteros/genética , Animais , Sequência de Bases , DNA/biossíntese , Biblioteca Gênica , Microdissecção , Plasmídeos/genética , Cromossomos Politênicos/genéticaRESUMO
Satellite DNAs (satDNA) are fast-evolving repetitive sequences organized in large tandem arrays, with characteristic enrichment in heterochromatin. Knowledge about evolutionary dynamics of this genome fraction is mostly restricted to its characterization in species with monocentric chromosomes, i.e., localized centromeres. In holocentric species, with non-localized centromeres, satDNAs have been largely ignored. Here we advance the understanding of satDNA evolution among holocentric species by characterization of the most abundant satDNAs in the hemipteran Holhymenia histrio, integrating genomic and chromosomal analyses. High plasticity at chromosomal and molecular levels was noticed for 34 satDNAs populating H. histrio genome. One satDNA family in particular (HhiSat01-184) was highly amplified on multiple chromosomes and also highly polymorphic. Our data support the emergence of a new satDNA family from this abundant satDNA, confined to a single chromosome. Moreover, we present new information about composition of a peculiar chromosome in Coreidae, the m-chromosome, and of the X chromosome. Overall, the molecular and chromosomal patterns for satDNAs in the holocentric species H. histrio seem to be similar to those observed in monocentric species.
Assuntos
Cromossomos de Insetos , DNA Satélite , Evolução Molecular , Genoma de Inseto , Genômica , Insetos/genética , Animais , Biologia Computacional/métodos , Genômica/métodos , Heterocromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ FluorescenteRESUMO
Ants (Formicidae) present considerable diversity in chromosome numbers, which vary from n = 1 to n = 60, although this variation is not proportional to that in genome size, for which estimates range from 0.18 pg to 0.77 pg. Intraspecific variation in the chromosome number and karyotype structure has been reported among species, although the variation among populations of the same species has received much less attention, and there are few data on genome size. Here, we studied the karyotype length and genome size of different populations of the fungus-farming ants Mycetophylax conformis (Mayr, 1884) and Mycetophylax morschi (Emery, 1888). We also provide remarks on procedure for the estimation of ant genome size by Flow Cytometry (FCM) analysis. Chromosome number and morphology did not vary among the populations of M. conformis or the cytotypes of M. morschi, but karyotype length and genome size were significantly distinct among the populations of these ants. Our results on the variation in karyotype length and genome size among M. morschi and M. conformis populations reveal considerable diversity that would be largely overlooked by more traditional descriptions of karyotypes, which were also supported by the estimates of genome size obtained using flow cytometry. Changes in the amount of DNA reflect variation in the fine structure of the chromosomes, which may represent the first steps of karyotype evolution and may occur previously to any changes in the chromosome number.
Assuntos
Formigas/genética , Cromossomos de Insetos/genética , Variação Genética , Genoma de Inseto , Cariótipo , Animais , Citometria de Fluxo/métodos , Cariotipagem/métodosRESUMO
With the objective of assisting in the understanding of the chromosome evolution of Pentatomomorpha and in the quest to understand how the genome organizes/reorganizes for the chromosomal position of the 45S rDNA in this infraorder, we analyzed 15 species (it has being 12 never studied before by FISH) of Pentatomomorpha with the probe of 18S rDNA. The mapping of the 45S gene in the Coreidae family demonstrated that the species presented markings on the autosomes, with the exception of Acanthocephala parensis and Leptoglossus gonagra that showed markers on m-chromosomes. Most species of the Pentatomidae family showed marking in the autosomes, except for two species that had 45S rDNA on X sex chromosome (Odmalea sp. and Graphosoma lineatum) and two that showed marking on the X and Y sex chromosomes. Species of the Pyrrhocoridae family showed 18S rDNA markers in autosomes, X chromosome as well as in Neo X. The Largidae and Scutelleridae families were represented by only one species that showed marking on the X sex chromosome and on a pair of autosomes, respectively. Based on this, we characterized the arrangement of 45S DNAr in the chromosomes of 12 new species of Heteroptera and discussed the main evolutionary events related to the genomic reorganization of these species during the events of chromosome and karyotype evolution in Pentatomomorpha infraorder.
Assuntos
Cromossomos de Insetos/genética , Evolução Molecular , Heterópteros/genética , Animais , Mapeamento Cromossômico , DNA Ribossômico/genética , Hemípteros/genética , Hibridização in Situ Fluorescente , Filogenia , Ribossomos/genética , Cromossomo X , Cromossomo YRESUMO
The characterization of karyotypes is an important aspect in understanding the structure and evolution of genomes. Polybia is a genus of social wasps of the family Vespidae. This genus has 58 species, but for only 8 of these chromosome number and morphology have been reported in the literature. The aim of this study was to describe and characterize the Polybia fastidiosuscula Saussure karyotype, presenting the first case of a B chromosome in Vespidae. In addition, we investigated the chromatin composition of this species through C-banding, base-specific fluorochrome staining, and physical mapping of 7 microsatellites and 18S rDNA. Four colonies of P. fastidiosuscula from Minas Gerais and Paraná states, Brazil, were analyzed. The chromosome number identified was 2n = 34, and 2 colonies presented a B chromosome. We characterized the chromatin composition of this species, analyzing the existence of different microsatellite-rich heterochromatic regions which are also enriched with AT or GC base pairs. We suggest an intraspecific origin of the B chromosome based on the homology of the heterochromatic composition with A chromosomes and also verify that the TTAGG and TCAGG sequences are not telomeric, but only microsatellites that occur in the centromeres of most chromosomes, as well as GAG and CGG.