Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.880
Filtrar
1.
Chemosphere ; 286(Pt 1): 131688, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346327

RESUMO

Nowadays, ethanol (ethyl alcohol, bioethanol) is one of the most commonly used liquid biofuels, playing a vital role in industrial development. There are some advanced technologies available to produce ethanol by fermentation of agricultural wastes, fruit wastes, municipal and industrial wastes. Herein, the dried carrot pulp as a source of raw material has been utilized for the production of bioethanol by using the yeast Saccharomyces cerevisiae and beet molasses inoculated at 28 °C for 72 h. The results have revealed that the highest amount of alcohol (10.3 ml (40.63 g/l)) has been obtained in a sample containing 50 ml of inoculum, 150 ml of water, and 10 g of dried waste. This study has proved the potential of dried carrot pulp to be converted into a value-added product such as ethanol.


Assuntos
Beta vulgaris , Daucus carota , Biocombustíveis , Biomassa , Fermentação , Melaço , Saccharomyces cerevisiae
2.
Food Chem ; 369: 130941, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479009

RESUMO

Black carrot pomace is a juice industry by-product that can be easily spoiled due to its high moisture content and usually considered as waste; however, it is a valuable product with high amount of bioactive compounds that can be recovered for further application in several industrial fields. Drying is an effective method for the preservation of this product. Thus, the influence of five drying methods (FD: freeze drying, MWD: microwave drying, CD: convective drying, VCD: vacuum/convective drying, CHD: conductive hydro drying) on colour, phenolics and volatiles of pomace were investigated. Findings revealed that drying process decreased the amount of anthocyanins, colourless phenolics and volatile compounds. CHD resulted in similar colour quality and yielded a better preservation of colour and phenolics while FD provided dried sample with an aroma quality similar to fresh sample. The shorter duration of the CHD makes it a better choice.


Assuntos
Daucus carota , Antocianinas , Cor , Dessecação , Liofilização , Fenóis , Pós
3.
Food Chem ; 370: 131023, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509942

RESUMO

The influence of high pressure homogenization (HPH) at 100-150 MPa performed by multiple passes below 35 °C on carrot juice quality and stability was studied. The highest reduction in microorganisms (by 2.47 log) was noted at 150 MPa with 5 passes of the juice through the homogenizer. The PPO and POD's residual activity increased after HPH; PG was at the same level, while PME activity increased or decreased depending on the process parameters used. HPH treatment resulted in a decrease in the apparent dynamic viscosity, turbidity and colour parameters. Five passes at 150 MPa caused an increase in the carotenoid content, especially 9-Z-ß-carotene (by 154%) while the TPC did not change significantly. Carrot juice treatment at 150 MPa with 5 passes may extend its shelf-life by 3 days when stored at 4 °C.


Assuntos
Daucus carota , Carotenoides , Manipulação de Alimentos , Conservação de Alimentos , Pressão
4.
Exp Parasitol ; 230: 108176, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34740586

RESUMO

Foliar spray of silicon dioxide (SiO2 NPs), zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs) nanoparticles were used for the management of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Foliar spray of SiO2 NPs/ZnO NPs or TiO2 NPs increased plant growth attributes, chlorophyll and carotenoid of carrot. Foliar spray of 0.10 mg ml-1 SiO2 NPs caused the highest increase in plant growth, chlorophyll and carotenoid content of leaves followed by spray of 0.10 mg ml-1 ZnO NPs, 0.05 mg ml-1 SiO2 NPs, 0.05 mg ml-1 ZnO NPs, 0.10 mg ml-1 TiO2 NPs and 0.05 mg ml-1 TiO2 NPs. Use of SiO2 NPs caused a higher reduction in root galling, nematode multiplication and disease indices followed by ZnO NPs and TiO2 NPs. Two principal components analysis showed a total of 97.84% overall data variance in plants inoculated with single pathogen and 97.20% in plants inoculated with two or more pathogens. Therefore, foliar spray of SiO2 NPs appears interesting for the management of disease complex of carrot.


Assuntos
Alternaria/efeitos dos fármacos , Daucus carota , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Rhizoctonia/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Aerossóis , Alternaria/crescimento & desenvolvimento , Alternaria/patogenicidade , Animais , Carotenoides/análise , Clorofila/análise , Daucus carota/crescimento & desenvolvimento , Daucus carota/microbiologia , Daucus carota/parasitologia , Microscopia de Fluorescência , Nanopartículas/administração & dosagem , Folhas de Planta/química , Análise de Componente Principal , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/patogenicidade , Dióxido de Silício/farmacologia , Titânio/farmacologia , Tylenchoidea/patogenicidade , Óxido de Zinco/farmacologia
5.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639081

RESUMO

The aim of this work was to show an efficient, recombinant DNA-free, multiplex gene-editing method using gRNA:Cas9 ribonucleoprotein (RNP) complexes delivered directly to plant protoplasts. For this purpose, three RNPs were formed in the tube, their activity was confirmed by DNA cleavage in vitro, and then they were delivered to carrot protoplasts incubated with polyethylene glycol (PEG). After 48 h of incubation, single nucleotide deletions and insertions and small deletions at target DNA sites were identified by using fluorescent-PCR capillary electrophoresis and sequencing. When two or three RNPs were delivered simultaneously, long deletions of 33-152 nt between the gRNA target sites were generated. Such mutations occurred with an efficiency of up to 12%, while the overall editing effectiveness was very high, reaching 71%. This highly efficient multiplex gene-editing method, without the need for recombinant DNA technology, can be adapted to other plants for which protoplast culture methods have been established.


Assuntos
Sistemas CRISPR-Cas , Daucus carota/genética , Edição de Genes , Engenharia Genética/métodos , Polietilenoglicóis/química , RNA Guia , Ribonucleoproteínas/metabolismo , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Genoma de Planta , Protoplastos , Ribonucleoproteínas/genética
6.
BMC Plant Biol ; 21(1): 475, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663216

RESUMO

BACKGROUND: Carrot (Daucus carota L.), an important root vegetable, is very popular among consumers as its taproot is rich in various nutrients. Abiotic stresses, such as drought, salt, and low temperature, are the main factors that restrict the growth and development of carrots. Non-heme carotene hydroxylase (BCH) is a key regulatory enzyme in the ß-branch of the carotenoid biosynthesis pathway, upstream of the abscisic acid (ABA) synthesis pathway. RESULTS: In this study, we characterized a carrot BCH encoding gene, DcBCH1. The expression of DcBCH1 was induced by drought treatment. The overexpression of DcBCH1 in Arabidopsis thaliana resulted in enhanced tolerance to drought, as demonstrated by higher antioxidant capacity and lower malondialdehyde content after drought treatment. Under drought stress, the endogenous ABA level in transgenic A. thaliana was higher than that in wild-type (WT) plants. Additionally, the contents of lutein and ß-carotene in transgenic A. thaliana were lower than those in WT, whereas the expression levels of most endogenous carotenogenic genes were significantly increased after drought treatment. CONCLUSIONS: DcBCH1 can increase the antioxidant capacity and promote endogenous ABA levels of plants by regulating the synthesis rate of carotenoids, thereby regulating the drought resistance of plants. These results will help to provide potential candidate genes for plant drought tolerance breeding.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/genética , Carotenoides/metabolismo , Daucus carota/genética , Oxigenases de Função Mista/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Antioxidantes/metabolismo , Arabidopsis/fisiologia , Daucus carota/fisiologia , Secas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico
7.
Nutrients ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34684477

RESUMO

It is unclear whether genetic interactions are involved in the association between vegetable intake and reduced body mass index (BMI) or obesity. We conducted a comprehensive search for single nucleotide polymorphisms (SNPs) which are associated with the interaction between vegetable intake frequency and BMI or obesity. We performed a genome-wide association analysis to evaluate the genetic interactions between self-reported intake of vegetables such as carrot, broccoli, spinach, other green vegetables (green pepper and green beans), pumpkin, and cabbage with BMI and obesity, which is defined as a BMI ≥ 25.0 kg/m2 in the Japanese population (n = 12,225). The mean BMI and prevalence of obesity was 23.9 ± 3.4 kg/m2 and 32.3% in men and 22.1 ± 3.8 kg/m2 and 17.3% in in women, respectively. A significant interaction was observed between rs4445711 and frequency of carrot intake on BMI (p = 4.5 × 10-8). This interaction was slightly attenuated after adjustment for age, sex, alcohol intake, smoking, physical activity and the frequency of total vegetable intake (p = 2.1 × 10-7). A significant interaction was also observed between rs4445711 and frequency of carrot intake on obesity (p = 2.5 × 10-8). No significant interactions that were the same as the interaction between frequency of carrot intake and rs4445711 were observed between the intake frequency of broccoli, spinach, other green vegetables, pumpkin or cabbage and BMI or obesity. The frequency of carrot consumption is implicated in reducing BMI by the intermediary of rs4445711. This novel genetic association may provide new clues to clarify the association between vegetable intake and BMI or obesity.


Assuntos
Índice de Massa Corporal , Daucus carota , Comportamento Alimentar , Obesidade/epidemiologia , Obesidade/genética , Feminino , Frequência do Gene/genética , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
8.
Sci Rep ; 11(1): 17862, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504252

RESUMO

When hemoglobin (Hb) is fully saturated with oxygen, the additional gain in oxygen delivery (DO2) achieved by increasing the fraction of inspired oxygen (FiO2) is often considered clinically insignificant. In this study, we evaluated the change in DO2, interrogated by mixed venous oxygen saturation (SvO2), in response to a change in FiO2 of 0.5 during cardiac surgery. When patients were hemodynamically stable, FiO2 was alternated between 0.5 and 1.0 in on-pump cardiac surgery patients (pilot study), and between 0.3 and 0.8 in off-pump coronary artery bypass grafting patients (substudy of the CARROT trial). After the patient had stabilized, a blood gas analysis was performed to measure SvO2. The observed change in SvO2 (ΔSvO2) was compared to the expected ΔSvO2 calculated using Fick's equation. A total 106 changes in FiO2 (two changes per patient; total 53 patients; on-pump, n = 36; off-pump, n = 17) were finally analyzed. While Hb saturation remained near 100% (on-pump, 100%; off-pump, mean [SD] = 98.1% [1.5] when FiO2 was 0.3 and 99.9% [0.2] when FiO2 was 0.8), SvO2 changed significantly as FiO2 was changed (the first and second changes in on-pump, 7.7%p [3.8] and 7.6%p [3.5], respectively; off-pump, 7.9%p [4.9] and 6.2%p [3.9]; all P < 0.001). As a total, regardless of the surgery type, the observed ΔSvO2 after the FiO2 change of 0.5 was ≥ 5%p in 82 (77.4%) changes and ≥ 10%p in 31 (29.2%) changes (mean [SD], 7.5%p [3.9]). Hb concentration was not correlated with the observed ΔSvO2 (the first changes, r = - 0.06, P = 0.677; the second changes, r = - 0.21, P = 0.138). The mean (SD) residual ΔSvO2 (observed - expected ΔSvO2) was 0%p (4). Residual ΔSvO2 was more than 5%p in 14 (13.2%) changes and exceeded 10%p in 2 (1.9%) changes. Residual ΔSvO2 was greater in patients with chronic kidney disease than in those without (median [IQR], 5%p [0 to 7] vs. 0%p [- 3 to 2]; P = 0.049). DO2, interrogated by SvO2, may increase to a clinically significant degree as FiO2 is increased during cardiac surgery, and the increase of SvO2 is not related to Hb concentration. SvO2 increases more than expected in patients with chronic kidney disease. Increasing FiO2 can be used to increase DO2 during cardiac surgery.


Assuntos
Débito Cardíaco/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/sangue , Troca Gasosa Pulmonar/fisiologia , Cirurgia Torácica , Idoso , Gasometria/métodos , Ponte de Artéria Coronária sem Circulação Extracorpórea/métodos , Daucus carota/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oximetria/métodos
9.
Plant Sci ; 311: 111011, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482913

RESUMO

Carrot psylla is one of the devastating pests of carrot throughout northern Europe and the Mediterranean basin. Here we characterized the behavioral response of psylla females towards different carrot germplasm and identified the chemical cues involved in the host selection of psylla females by oviposition choice experiments and metabolic profiling of leaf volatiles. In choice assays, carrot psylla displayed differential responses to tested 14 germplasm. Among germplasm, wild accessions 21793 and 20465 were highly preferred by carrot psylla, while wild accessions 20465 and the orange cultivar Nairobi were less. In non-choice experiments conducted only with this four-germplasm revealed that the carrot psylla females gave higher preference to the Nairobi and wild accession 20465, indicating the vicinity to other host plants in the same area might affect female preference. Moreover, the nymph development and survival experiments showed the lowest nymphs survival rate on the wild accessions 21793 and 20497. Furthermore, the volatile emissions among different carrot cultivars infested with psylla showed qualitative and quantitative differences versus intact plants. Among these volatiles, apiol, ß-asarone, myristicin, and sabinene showed a relationship with psyllas growth and survival. We also showed that myristicin and sabinene exogenous applications caused a dramatic reduction in the number of eggs laid by psylla and subsequent nymph survival. This is an initial study of the volatiles that mediate attraction and oviposition preference of carrot psylla in response to its host plant. The results from this study provide baseline information for the development of new control strategies against carrot psylla.


Assuntos
Daucus carota/química , Daucus carota/parasitologia , Hemípteros/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Oviposição/fisiologia , Feromônios/fisiologia , Compostos Orgânicos Voláteis/análise , Animais , Variação Genética , Genótipo , Israel , Quênia
10.
Plant Physiol Biochem ; 167: 245-256, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385003

RESUMO

Plant class III peroxidases (CIII Prxs) are involved in numerous essential plant life processes, such as plant development and differentiation, lignification and seed germination, and defence against pathogens. However, there is limited information about the structure-function relationships of Prxs in carrots. This study identified 75 carrot peroxidases (DcPrxs) and classified them into seven subgroups based on phylogenetic analysis. Gene structure analysis revealed that these DcPrxs had between one and eight introns, while conserved motif analysis showed a typical motif composition and arrangement for CIII Prx. In addition, eighteen tandem duplication events, but only eight segmental duplications, were identified among these DcPrxs, indicating that tandem duplication was the main contributor to the expansion of this gene family. Histochemical analyses showed that lignin was mainly localised in the cell walls of xylem, and Prx activity was determined in the epidermal region of taproots. The xylem always showed higher lignin concentration and lower Prx activity compared to the phloem in the taproots of both carrot cultivars. Combining these observations with RNA sequencing, some Prx genes were identified as candidate genes related to lignification and pigmentation. Three peroxidases (DcPrx30, DcPrx32, DcPrx62) were upregulated in the phloem of both genotypes. Carrot taproots are an attractive resource for natural food colourants and this study elucidated genome-wide insights of Prx for the first time, developing hypotheses concerning their involvement with lignin and anthocyanin in purple carrots. The findings provide an essential foundation for further studies of Prx genes in carrot, especially on pigmentation and lignification mechanisms.


Assuntos
Antocianinas/metabolismo , Daucus carota , Lignina , Peroxidase , Daucus carota/enzimologia , Daucus carota/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Família Multigênica , Peroxidase/genética , Peroxidase/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Environ Int ; 157: 106830, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34418848

RESUMO

The effect of manure application on the distribution and accumulation of antibiotic resistance genes (ARGs) in tissue of root vegetables remains unclear, which poses a bottleneck in assessing the health risks from root vegetables due to application of manure. Towards this goal, experiments were conducted in pots to investigate the distribution and bioaccumulation of ARGs in carrot tissues due to application of pig manure. The 144 ARGs targeting nine types of antibiotics were quantified by high throughput qPCR in the soil and plant samples. The rhizosphere was a hot spot for ARGs enrichment in the manured soil. The abundance, diversity, and bioaccumulation factors of ARGs in the phyllosphere were significantly higher than those of carrot root skin and tuber. Manure application increased bioaccumulation of 12 ARGs and 2 MGEs in carrot tuber with 124 the highest factor. The application of manure increased transfer of 10 ARGs and 3 MGEs from carrot skin to inner tuber by factors of 0.1-11.8. The average gene copy number of ARGs of per gram carrot root was about 4.8 × 104 and 1.1 × 106 in the control and the manured treatment, respectively. Children and adults may co-ingest 2.7 × 107 and 3.2 × 107 of ARGs copies/d from carrots grown with pig manure, using estimated human intake values. However, peeling may reduce the intake of ARGs by 28-91% and of MGEs by 46-59%. In conclusion, the application of pig manure increased the accumulation of ARGs in the skin of carrots, whereas peeling was an effective strategy to reduce the risk.


Assuntos
Daucus carota , Esterco , Animais , Antibacterianos/farmacologia , Bioacumulação , Resistência Microbiana a Medicamentos , Genes Bacterianos , Solo , Microbiologia do Solo , Suínos
12.
Theor Appl Genet ; 134(10): 3351-3362, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34282485

RESUMO

KEY MESSAGE: The Or and CH genes are necessary for the accumulation of high amounts of ß-carotene and other carotenoid pigments in carrot roots, in addition to the Y and Y2 genes. Carrot taproot color results from the accumulation of various carotenoid and anthocyanin pigments. Recently, the Or gene was identified as a candidate gene associated with the accumulation of ß-carotene and other provitamin A carotenoids in roots. The specific molecular mechanisms involved with this process, as well as the interactions between Or and the other genes involved in this process are not well understood. In order to better characterize the effect that Or alleles have on conditioning the accumulation of carotenoids in roots, we analyzed an F3 family fixed homozygous recessive for y and y2, derived from a cross between an orange carrot and a white wild carrot, segregating for the two known Or alleles, which we name Orc and Orw. QTL mapping across three different environments revealed that the accumulation of several carotenoids was associated with the Orc allele, with consistent patterns across environments. A second QTL on chromosome 7, harboring a carotene hydroxylase gene homologous to Lut5 in Arabidopsis, was also associated with the accumulation of several carotenoids. Two alleles for this gene, which we name CHc and CHw, were discovered to be segregating in this population. Our study provides further evidence that Or and CH are likely involved with controlling the accumulation of ß-carotene and may be involved with modulating carotenoid flux in carrot, demonstrating that both were important domestication genes in carrot.


Assuntos
Carotenoides/metabolismo , Daucus carota/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Daucus carota/genética , Daucus carota/crescimento & desenvolvimento , Oxigenases de Função Mista/genética , Pigmentação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Locos de Características Quantitativas
13.
Front Immunol ; 12: 673692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305903

RESUMO

In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Assuntos
Reprogramação Celular/genética , Herança Multifatorial/genética , SARS-CoV-2/patogenicidade , Acetilserotonina O-Metiltransferasa/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ciclo Celular/genética , Bases de Dados Genéticas , Daucus carota/genética , Daucus carota/crescimento & desenvolvimento , Fermentação , Perfilação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tubulina (Proteína)/genética , Vírus/patogenicidade
14.
Am J Bot ; 108(7): 1252-1269, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34287829

RESUMO

PREMISE: The carrot family (Apiaceae) comprises 466 genera, which include many well-known crops (e.g., aniseed, caraway, carrots, celery, coriander, cumin, dill, fennel, parsley, and parsnips). Higher-level phylogenetic relationships among subfamilies, tribes, and other major clades of Apiaceae are not fully resolved. This study aims to address this important knowledge gap. METHODS: Target sequence capture with the universal Angiosperms353 probe set was used to examine phylogenetic relationships in 234 genera of Apiaceae, representing all four currently recognized subfamilies (Apioideae, Azorelloideae, Mackinlayoideae, and Saniculoideae). Recovered nuclear genes were analyzed using both multispecies coalescent and concatenation approaches. RESULTS: We recovered hundreds of nuclear genes even from old and poor-quality herbarium specimens. Of particular note, we placed with strong support three incertae sedis genera (Platysace, Klotzchia, and Hermas); all three occupy isolated positions, with Platysace resolved as sister to all remaining Apiaceae. We placed nine genera (Apodicarpum, Bonannia, Grafia, Haplosciadium, Microsciadium, Physotrichia, Ptychotis, Tricholaser, Xatardia) that have never previously been included in any molecular phylogenetic study. CONCLUSIONS: We provide support for the maintenance of the four existing subfamilies of Apiaceae, while recognizing that Hermas, Klotzschia, and the Platysace clade may each need to be accommodated in additional subfamilies (pending improved sampling). The placement of the currently apioid genus Phlyctidocarpa can be accommodated by the expansion of subfamily Saniculoideae, although adequate morphological synapomorphies for this grouping are yet to be defined. This is the first phylogenetic study of the Apiaceae using high-throughput sequencing methods and represents an unprecedented evolutionary framework for the group.


Assuntos
Apiaceae , Daucus carota , Apiaceae/genética , Evolução Biológica , Núcleo Celular/genética , Daucus carota/genética , Filogenia
15.
Methods Mol Biol ; 2288: 113-126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270008

RESUMO

Carrot is a vegetable of increasing economic importance. New hybrid cultivars are constantly required to meet the changing market needs. The application of anther culture significantly shortens the difficult and long-lasting breeding of carrot. We examined all the stages of the process of generating androgenic plants: induction of embryos in anther cultures, regeneration and acclimatization of produced plants, their evaluation, ploidy and homozygosity, and many other factors affecting their effectiveness. Every factor has been optimized by experimentally selecting the optimal level. As a result, a full protocol of producing homozygous plants using anther cultures was developed, which is presented in this chapter.


Assuntos
Daucus carota/crescimento & desenvolvimento , Daucus carota/genética , Melhoramento Vegetal/métodos , Aclimatação/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Meios de Cultura/química , Daucus carota/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Heterozigoto , Homozigoto , Isoenzimas/análise , Biologia Molecular/métodos , Regeneração/genética , Técnicas de Cultura de Tecidos
16.
BMC Genomics ; 22(1): 508, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34225677

RESUMO

BACKGROUND: In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. RESULTS: We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. CONCLUSIONS: The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants.


Assuntos
Apiaceae , Daucus carota , Daucus carota/genética , Hibridização in Situ Fluorescente , Cariótipo , Filogenia
17.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204559

RESUMO

Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.


Assuntos
Vias Biossintéticas/genética , Sistemas CRISPR-Cas , Carotenoides/metabolismo , Parede Celular/metabolismo , Daucus carota/fisiologia , Edição de Genes , Sequência de Bases , Parede Celular/ultraestrutura , Daucus carota/ultraestrutura , Marcação de Genes , Genes de Plantas , Vetores Genéticos/genética , Mutação , Fenótipo , Plastídeos/genética , Plastídeos/ultraestrutura
18.
Genes (Basel) ; 12(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205210

RESUMO

Miniature inverted-repeat transposable elements (MITEs) are the most abundant group of Class II mobile elements in plant genomes. Their presence in genic regions may alter gene structure and expression, providing a new source of functional diversity. Owing to their small size and lack of coding capacity, the identification of MITEs has been demanding. However, the increasing availability of reference genomes and bioinformatic tools provides better means for the genome-wide identification and analysis of MITEs and for the elucidation of their contribution to the evolution of plant genomes. We mined MITEs in the carrot reference genome DH1 using MITE-hunter and developed a curated carrot MITE repository comprising 428 families. Of the 31,025 MITE copies spanning 10.34 Mbp of the carrot genome, 54% were positioned in genic regions. Stowaways and Tourists were frequently present in the vicinity of genes, while Mutator-like MITEs were relatively more enriched in introns. hAT-like MITEs were relatively more frequently associated with transcribed regions, including untranslated regions (UTRs). Some carrot MITE families were shared with other Apiaceae species. We showed that hAT-like MITEs were involved in the formation of new splice variants of insertion-harboring genes. Thus, carrot MITEs contributed to the accretion of new diversity by altering transcripts and possibly affecting the regulation of many genes.


Assuntos
Elementos de DNA Transponíveis , Daucus carota/genética , Sequências Repetidas Invertidas , Genes de Plantas
19.
Chem Biodivers ; 18(8): e2100359, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34170621

RESUMO

The characteristics of acidic polysaccharides extracted from Daucus carota L. var. sativa Hoffm were investigated and its hepatoprotective effects on alcoholic liver injury were determined in the mice model. A carrot polysaccharide (CPS-I: Carrot polysaccharide-I) with the molecular weight of 3.40×104  kDa was isolated from Daucus carota L. and purified by diethylaminoethyl-52 and Sephadex G-150 column chromatography. The components were analyzed by HPLC, which revealed that CPS-I consisted of galacturonic acid, rhamnose, xylose, arabinose, fructose, and galactose at a relative ratio of 1 : 3.16 : 1.13 : 5.53 : 3.45 : 7.76. Structural characterization analysis suggested that CPS-I was mainly composed of →6)-ß-D-Galp-(1→ and →5)-α-L-Araf-(1→. The hepatoprotective effect of CPS-I was evaluated by alcoholic liver injury mice model. The results showed that the administration of CPS-I (300 mg/kg/day) alleviated the alcoholic liver injury in mice by increasing the levels of ADH and ALDH and reducing oxidative stress. CPS-I ameliorated the pathological changes of liver characterized by lipid accumulation, and reduced the number of lipid droplets.


Assuntos
Daucus carota/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Polissacarídeos/química , Substâncias Protetoras/química , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Colesterol/sangue , Modelos Animais de Doenças , Fígado/patologia , Fígado/ultraestrutura , Hepatopatias Alcoólicas/patologia , Camundongos , Microscopia Eletrônica de Transmissão , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Triglicerídeos/sangue
20.
Food Chem ; 364: 130377, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153602

RESUMO

The impact of pulsed electric fields (PEF) and their combination with a thermal treatment on the bioaccessibility of phenolic and carotenoid compounds in oil-added carrot puree (5 %) was investigated. Fractions of such puree were differently treated: subjected to PEF (5 pulses of 3.5 kV cm-1) (PEF); thermally treated (70 °C for 10 min) (T) or first PEF treated and then thermally treated (PEF/T). Purees were in vitro digested, carotenoid and phenolic content and bioaccessibility were determined. Likewise, quality attributes and microstructure were analyzed. Generally, treatments did not affect carotenoid content and quality attributes, whereas phenolic content dramatically decreased after PEF. Nevertheless, all treatments enhanced both compounds bioaccessibilities, which were trebled in PEF-treated purees. Particle size reduction may suggest that microstructural changes could be responsible of bioaccessibility increases. Therefore, PEF could be a feasible treatment to enhance phenolic and carotenoid bioaccessibility without altering quality attributes of carrot-based puree.


Assuntos
Daucus carota , Carotenoides , Eletricidade , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...