Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Sci Rep ; 12(1): 19412, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371465

RESUMO

Coronaviruses of the genera Gammacoronavirus and Deltacoronavirus are globally widespread and circulate primarily in wild and domestic birds. Prior studies have established frequently occurring crossover events from avian to mammalian reservoirs. However, there is limited understanding of the diversity and geographical distribution of coronaviruses among birds. In this study, the surveillance of coronaviruses in birds in Russia during 2020 revealed the presence of coronaviruses in 12% of samples from birds. Targeted NGS approach was used for the evaluation of genetic diversity based on RdRp gene. While gammacoronviruses were found in both wild birds and poultry, deltacoronaviruses were found in wild birds only and represent the first detections for Russia. A number of cases with the simultaneous detection of gamma- and deltacoronaviruses in one bird was reported. The results of this study highlight the importance of further research concerning the spread and diversity of coronaviruses among birds within and migrating throughout the territory of Russia across the globe.


Assuntos
Infecções por Coronavirus , Coronavirus , Gammacoronavirus , Influenza Aviária , Animais , Deltacoronavirus , Aves Domésticas , Coronavirus/genética , Aves , Animais Selvagens , Mamíferos , Filogenia
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077190

RESUMO

Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic.


Assuntos
COVID-19 , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Teorema de Bayes , Deltacoronavirus , Humanos , Filogeografia , Suínos , Doenças dos Suínos/epidemiologia , Vírus da Gastroenterite Transmissível/genética
3.
Viruses ; 14(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36016405

RESUMO

Porcine deltacoronavirus (PDCoV) is a recently discovered enteropathogenic coronavirus and has caused significant economic impacts on the pork industry. Although studies have partly uncovered the molecular mechanism of PDCoV-host interaction, it requires further research. In this study, we explored the roles of Stromal Antigen 2 (STAG2) in PDCoV infection. We found that STAG2-deficient cells inhibited infection with vesicular stomatitis virus (VSV) and PDCoV, whereas restoration of STAG2 expression in STAG2-depleted (STAG2-/-) IPEC-J2 cells line restored PDCoV infection, suggesting that STAG2 is involved in the PDCoV replication. Furthermore, we found that STAG2 deficiency results in robust interferon (IFN) expression. Subsequently, we found that STAG2 deficiency results in the activation of JAK-STAT signaling and the expression of IFN stimulated gene (ISG), which establish an antiviral state. Taken together, the depletion of STAG2 activates the JAK-STAT signaling and induces the expression of ISG, thereby inhibiting PDCoV replication. Our study provides new insights and potential therapeutic targets for unraveling the mechanism of PDCoV replication.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Animais , Antivirais/metabolismo , Coronavirus/fisiologia , Deltacoronavirus , Interferons/metabolismo , Suínos
4.
Viruses ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016437

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen which mainly causes diarrhea, dehydration and death in nursing piglets, threatening the global swine industry. Moreover, it can infect multiple animal species and humans. Hence, reliable diagnostic assays are needed to better control this zoonotic pathogen. Here, a blocking ELISA was developed using a recombinant nucleocapsid (N) protein as the coating antigen paired with an N-specific monoclonal antibody (mAb) as the detection antibody. The percent inhibition (PI) of the ELISA was determined using 384 swine serum samples, with an indirect immunofluorescence assay (IFA) as the reference method. Through receiver operating characteristic analysis in conjunction with Youden's index, the optimal PI cut-off value was determined to be 51.65%, which corresponded to a diagnostic sensitivity of 98.79% and a diagnostic specificity of 100%. Of the 330 serum samples tested positive via IFA, 326 and 4 were tested positive and negative via the ELISA, respectively, while the 54 serum samples tested negative via IFA were all negative via the ELISA. The overall coincidence rate between the two assays was 98.96% (380/384). The ELISA exhibited good repeatability and did not cross-react with antisera against other swine pathogens. Overall, this is the first report on developing a blocking ELISA for PDCoV serodiagnosis.


Assuntos
Infecções por Coronavirus , Doenças dos Suínos , Animais , Anticorpos Antivirais , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Deltacoronavirus , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Proteínas do Nucleocapsídeo , Suínos
5.
J Virol ; 96(16): e0102722, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35916536

RESUMO

Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.


Assuntos
COVID-19 , Deltacoronavirus/metabolismo , Histona Desacetilase 2/metabolismo , Doenças dos Suínos , Animais , Humanos , Mamíferos , Peptídeo Hidrolases , SARS-CoV-2 , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia
6.
J Med Virol ; 94(12): 5723-5738, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35927214

RESUMO

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in suckling piglets and has the potential for cross-species transmission, posing a threat to animal and human health. However, the susceptibility profile of different species of mice to PDCoV infection and its evolutionary characteristics are still unclear. In the current study, we found that BALB/c and Kunming mice are susceptible to PDCoV. Our results showed that there were obvious lesions in intestinal and lung tissues from the infected mice. PDCoV RNAs were detected in the lung, kidney, and intestinal tissues from the infected mice of both strains, and there existed wider tissue tropism in the PDCoV-infected BALB/c mice. The RNA and protein levels of aminopeptidase N from mice were relatively high in the kidney and intestinal tissues and obviously increased after PDCoV infection. The viral-specific IgG and neutralizing antibodies against PDCoV were detected in the serum of infected mice. An interesting finding was that two key amino acid mutations, D138H and Q641K, in the S protein were identified in the PDCoV-infected mice. The essential roles of these two mutations for PDCoV-adaptive evolution were confirmed by cryo-electron microscope structure model analysis. The evolutionary characteristics of PDCoV among Deltacoronaviruses (δ-CoVs) were further analyzed. δ-CoVs from multiple mammals are closely related based on the phylogenetic analysis. The codon usage analysis demonstrated that similar codon usage patterns were used by most of the mammalian δ-CoVs at the global codon, synonymous codon, and amino acid usage levels. These results may provide more insights into the evolution, host ranges, and cross-species potential of PDCoV.


Assuntos
COVID-19 , Doenças dos Suínos , Aminoácidos , Animais , Anticorpos Neutralizantes , Antígenos CD13/genética , Antígenos CD13/metabolismo , Deltacoronavirus , Humanos , Imunoglobulina G , Mamíferos/metabolismo , Camundongos , Filogenia , RNA , Suínos
7.
Virulence ; 13(1): 1471-1485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005235

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen causing severe diarrhoea, dehydration, and death in nursing piglets and enormous economic losses for the global swine industry. Furthermore, it can infect multiple animal species including humans. Therefore, a rapid, definitive diagnostic assay is required for the effective control of this zoonotic pathogen. To identify PDCoV, we developed a nucleic acid detection assay combining reverse transcription recombinase-aided amplification (RT-RAA) with a lateral flow dipstick (LFD) targeting the highly conserved genomic region in the ORF1b gene. The RT-RAA-LFD assay exhibited good PDCoV detection reproducibility and repeatability and could be completed within 11 min. Ten minutes at 40 °C was required for nucleic acid amplification and 1 min at room temperature was needed for the visual LFD readout. The assay specifically detected PDCoV and did not cross-react with any other major swine pathogens. The 95% limit of detection (LOD) was 3.97 median tissue culture infectious dose PDCoV RNA per reaction. This performance was comparable to that of a reference TaqMan-based real-time RT-PCR (trRT-PCR) assay for PDCoV. Of 149 swine small intestine, rectal swab, and serum samples, 71 and 75 tested positive for PDCoV according to RT-RAA-LFD and trRT-PCR, respectively. The diagnostic coincidence rate for both assays was 97.32% (145/149) and the kappa value was 0.946 (p < 0.001). Overall, the RT-RAA-LFD assay is a user-friendly diagnostic tool that can rapidly and visually detect PDCoV.


Assuntos
Ácidos Nucleicos , Recombinases , Animais , Deltacoronavirus , Humanos , Técnicas de Amplificação de Ácido Nucleico , Recombinases/genética , Recombinases/metabolismo , Reprodutibilidade dos Testes , Transcrição Reversa , Sensibilidade e Especificidade , Suínos
8.
Microb Pathog ; 170: 105723, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35981694

RESUMO

Porcine deltacoronavirus (PDCoV) is an emenging swine enteropathogenic coronavirus that can cause high mortality rate. It affects pigs of all ages, but most several in neonatal piglets. Little is known regarding the pathogenicity of PDCoV against 27-day-old piglets. In this study, 27-day-old piglets were experimentally infected with PDCoV CZ2020 from cell culture, the challenged piglets do not have obvious symptoms from 1 to 7 days post-challenge (DPC), while viral shedding was detected in rectal swab at 1 DPC. Tissues of small intestines displayed slight macroscopic and microscopic lesions with no viral antigen detection. On the other hand, 27-day-old piglets were infected with PDCoV from intestinal contents, the piglets developed mild to severe diarrhea, shedding increasing from 2 to 7 DPC, and developed macroscopic and microscopic lesions in small intestines with clear viral antigen confirmed by immunohistochemistry staining. Indicating the small intestine was still the major target organ in PDCoV-challenged pigs at the age of 27-day-old. Diarrhea caused by PDCoV from intestinal contents in 27-day-old piglets is less reported. Thus, our results might provide new insights into the pathogenesis of PDCoV.


Assuntos
Doenças dos Suínos , Animais , Técnicas de Cultura de Células , Deltacoronavirus , Diarreia/patologia , Conteúdo Gastrointestinal , Suínos , Virulência
9.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029354

RESUMO

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Assuntos
Deltacoronavirus , Animais , China , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Deltacoronavirus/patogenicidade , Diarreia/veterinária , Genômica , Filogenia , Suínos , Doenças dos Suínos/virologia , Virulência
10.
Vet Microbiol ; 271: 109494, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752087

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that has the potential for cross-species infection. Many viruses have been reported to induce endoplasmic reticulum stress (ERS) and activate the unfolded protein response (UPR). To date, little is known about whether and, if so, how the UPR is activated by PDCoV infection. Here, we investigated the activation state of UPR pathways and their effects on viral replication during PDCoV infection. We found that PDCoV infection induced ERS and activated all three known UPR pathways (inositol-requiring enzyme 1 [IRE1], activating transcription factor 6 [ATF6], and PKR-like ER kinase [PERK]), as demonstrated by IRE1-mediated XBP1 mRNA cleavage and increased mRNA expression of XBP1s, ATF4, CHOP, GADD34, GRP78, and GRP94, as well as phosphorylated eIF2α expression. Through pharmacologic treatment, RNA interference, and overexpression experiments, we confirmed the negative role of the PERK-eIF2α pathway and the positive regulatory role of the ATF6 pathway, but found no obvious effect of IRE1 pathway, on PDCoV replication. Taken together, our results characterize, for the first time, the state of the ERS response during PDCoV infection and identify the PERK and ATF6 pathways as potential antiviral targets.


Assuntos
Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , Animais , Deltacoronavirus , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Suínos , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
11.
Arch Virol ; 167(8): 1649-1657, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661915

RESUMO

Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV) have often been detected simultaneously in piglets with coronavirus diarrhea. However, the intestinal immune response to the interaction between circulating PDCoV and PEDV is unknown. Therefore, this study was conducted to investigate the intestinal immunity of neonatal piglets that were exposed first to PDCoV and then to PEDV. The amounts and distribution of CD3+ T lymphocytes, B lymphocytes, and goblet cells (GCs) in the small intestine were analyzed by immunohistochemistry and periodic acid-Schiff staining, respectively. The expression levels of pattern recognition receptors and downstream mediator cytokines were analyzed by qPCR and ELISA. The results showed that the numbers of GCs, CD3+ T lymphocytes, and B lymphocytes in the duodenum and jejunum of the PDCoV + PEDV coinoculated piglets were increased compared with those of piglets inoculated with PEDV alone. The piglets in the PDCoV + PEDV group had significantly upregulated IFN-α and IFN-λ1 compared with the PEDV single-inoculated piglets. These results suggest that PDCoV + PEDV-coinfected piglets can activate intestinal antiviral immunity more strongly than piglets infected with PEDV alone, which provides new insight into the pathogenesis mechanism of swine enteric coronavirus coinfection that may be used for vaccination in the future.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Infecções por Coronavirus/epidemiologia , Deltacoronavirus , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos
12.
Vaccine ; 40(31): 4211-4219, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35691873

RESUMO

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in pigs of various ages, especially in suckling piglets, and there are no effective measures to prevent and control PDCoV currently. In this study, two adjuvants Al(OH)3 and ODN2395 working through different mechanisms were used to prepare inactivated PDCoV vaccines, and the immune effects of PDCoV inactivated vaccines were assessed in mice. From the results, we found that both PDCoV/Al(OH)3 vaccine and PDCoV/2395 vaccine could induce IgG and neutralizing antibodies with high levels in mice. At the same time, cytokines of IFN-γ, IL-4 and chemokine ligand of CXCL13 in serum were significantly increased after immunization, and reached the highest levels in PDCoV/2395 vaccine group, which suggested that PDCoV/2395 could promote the production of both Th1 and Th2 polarized cytokines. In addition, histopathological observations showed that vaccination helped mice resist PDCoV infection. These results indicated that both the two inactivated vaccines have good immune effects. Moreover, the PDCoV/2395 vaccine worked better than the PDCoV/Al(OH)3 vaccine for PDCoV/2395 having the good ability to induce both humoral and cellular immunogenicity. The PDCoV/2395 inactivated vaccine developed in this study might be an effective tool for the prevention of PDCoV infection.


Assuntos
COVID-19 , Doenças dos Suínos , Animais , Citocinas , Deltacoronavirus , Camundongos , Suínos , Vacinas de Produtos Inativados
13.
Viruses ; 14(6)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35746696

RESUMO

Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs.


Assuntos
Infecções por Coronavirus , Pardais , Doenças dos Suínos , Animais , Galinhas , Deltacoronavirus/genética , Aves Domésticas , Glicoproteína da Espícula de Coronavírus/genética , Suínos , Perus
15.
Transbound Emerg Dis ; 69(5): e2443-e2455, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35526257

RESUMO

The porcine deltacoronavirus (PDCoV) is a newly discovered pig enteric coronavirus that can infect cells from various species. In Haiti, PDCoV infections in children with acute undifferentiated febrile fever were recently reported. Considering the great potential of inter-species transmission of PDCoV, we performed a comprehensive analysis of codon usage patterns and host adaptation profiles of 54 representative PDCoV strains with the spike (S) gene. Phylogenetic analysis of the PDCoV S gene indicates that the PDCoV strains can be divided into five genogroups. We found a certain codon usage bias existed in the S gene, in which the synonymous codons are often ended with U or A. Heat map analysis revealed that all the PDCoV strains shared a similar codon usage trend. The PDCoV S gene with a dN/dS ratio lower than 1 reveals a negative selection on the PDCoV S gene. Neutrality analysis showed that natural selection is the dominant force in shaping the codon usage bias of the PDCoV S gene. Unexpectedly, host adaptation analysis reveals a higher adaptation level of PDCoV to Homo sapiens and Gallus gallus than to Sus scrofa. Compared to the USA lineage, the PDCoV strains in the Early China lineage and Thailand lineage were less adapted to their hosts, which indicates that the evolutionary process plays an important role in the adaptation ability of PDCoV. These findings of this study add to our understanding of PDCoV's evolution, adaptability, and inter-species transmission.


Assuntos
Infecções por Coronavirus , Doenças dos Suínos , Animais , Códon/genética , Uso do Códon , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Deltacoronavirus , Genoma Viral/genética , Filogenia , Suínos , Doenças dos Suínos/epidemiologia
17.
Viruses ; 14(4)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458502

RESUMO

Porcine deltacoronavirus (PDCoV) mainly causes severe diarrhea and intestinal pathological damage in piglets and poses a serious threat to pig farms. Currently, no effective reagents or vaccines are available to control PDCoV infection. Single-chain fragment variable (scFv) antibodies can effectively inhibit virus infection and may be a potential therapeutic reagent for PDCoV treatment. In this study, a porcine phage display antibody library from the peripheral blood lymphocytes of piglets infected with PDCoV was constructed and used to select PDCoV-specific scFv. The library was screened with four rounds of biopanning using the PDCoV N protein, and the colony with the highest affinity to the PDCoV N protein was obtained (namely, N53). Then, the N53-scFv gene fragment was cloned into plasmid pFUSE-hIgG-Fc2 and expressed in HEK-293T cells. The scFv-Fc antibody N53 (namely, scFv N53) was purified using Protein A-sepharose. The reactive activity of the purified antibody with the PDCoV N protein was confirmed by indirect enzyme-linked immunosorbent assay (ELISA), western blot and indirect immunofluorescence assay (IFA). Finally, the antigenic epitopes that the scFv N53 recognized were identified by a series of truncated PDCoV N proteins. The amino acid residues 82GELPPNDTPATTRVT96 of the PDCoV N protein were verified as the minimal epitope that can be recognized by the scFv-Fc antibody N53. In addition, the interaction between the scFv-Fc antibody N53 and the PDCoV N protein was further analyzed by molecule docking. In conclusion, our research provides some references for the treatment and prevention of PDCoV.


Assuntos
Bacteriófagos , Infecções por Coronavirus , Anticorpos de Cadeia Única , Doenças dos Suínos , Animais , Anticorpos Antivirais , Deltacoronavirus , Epitopos , Proteínas do Nucleocapsídeo/genética , Anticorpos de Cadeia Única/genética , Suínos , Tecnologia
18.
J Virol ; 96(7): e0015822, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35311551

RESUMO

Major histocompatibility complex class I (MHC-I) and MHC-II molecules, mainly being responsible for the processing and presentation of intracellular or extracellular antigen, respectively, are critical for antiviral immunity. Here, we reported that porcine deltacoronavirus (PDCoV) with the zoonotic potential and potential spillover from pigs to humans, upregulated the expressions of porcine MHC-I (swine leukocyte antigen class I, SLA-I) molecules and SLA-I antigen presentation associated genes instead of porcine MHC-II (SLA-II) molecules both in primary porcine enteroids and swine testicular (ST) cells at the late stage of infection, and this finding was verified in vivo. Moreover, the induction of SLA-I molecules by PDCoV infection was mediated through enhancing the expression of NOD-like receptor (NLR) family caspase recruitment domain-containing 5 (NLRC5). Mechanistic studies demonstrated that PDCoV infection robustly elevated retinoic acid-inducible gene I (RIG-I) expression, and further initiated the downstream type I interferon beta (IFN-ß) production, which led to the upregulation of NLRC5 and SLA-I genes. Likewise, interferon regulatory factor 1 (IRF1) elicited by PDCoV infection directly activated the promoter activity of NLRC5, resulting in an increased expression of NLRC5 and SLA-I upregulation. Taken together, our findings advance our understanding of how PDCoV manipulates MHC molecules, and knowledge that could help inform the development of therapies and vaccines against PDCoV. IMPORTANCE MHC-I molecules play a crucial role in antiviral immunity by presenting intracellular antigens to CD8+T lymphocytes and eliminating virus-infected cells by natural killer cells' "missing-self recognition." However, the manipulation of MHC molecules by coronaviruses remains poorly understood. Here, we demonstrated that PDCoV, a zoonotic potential coronavirus efficiently infecting cells from broad species, greatly increased the expressions of porcine MHC-I (SLA-I) molecules and MHC-I antigen presentation associated genes but not porcine MHC-II (SLA-II) molecules both in vitro and in vivo. Mechanistically, the upregulation of MHC-I molecules by PDCoV infection required the master transactivator of MHC-I, NLRC5, which was mediated not only by RIG-I-initiated type I IFN signaling pathway but also by IRF1 induced by PDCoV as it could activate NLRC5 promoter activity. These results provide significant insights into the modification of the MHC class I pathway and may provide a potential therapeutic intervention for PDCoV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Antígenos de Histocompatibilidade Classe I , Animais , Infecções por Coronavirus/imunologia , Deltacoronavirus/imunologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Suínos
19.
Nat Commun ; 13(1): 1467, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304871

RESUMO

Porcine deltacoronavirus (PDCoV) can experimentally infect a variety of animals. Human infection by PDCoV has also been reported. Consistently, PDCoV can use aminopeptidase N (APN) from different host species as receptors to enter cells. To understand this broad receptor usage and interspecies transmission of PDCoV, we determined the crystal structures of the receptor binding domain (RBD) of PDCoV spike protein bound to human APN (hAPN) and porcine APN (pAPN), respectively. The structures of the two complexes exhibit high similarity. PDCoV RBD binds to common regions on hAPN and pAPN, which are different from the sites engaged by two alphacoronaviruses: HCoV-229E and porcine respiratory coronavirus (PRCoV). Based on structure guided mutagenesis, we identified conserved residues on hAPN and pAPN that are essential for PDCoV binding and infection. We report the detailed mechanism for how a deltacoronavirus recognizes homologous receptors and provide insights into the cross-species transmission of PDCoV.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Animais , Deltacoronavirus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...