Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35580024

RESUMO

A Gram-stain-negative, facultatively anaerobic, oxidase-negative and catalase-positive predatory bacillus, designated strain V1718T, was isolated from Xiaoshi Island, PR China. Strain V1718T was found to be closely related to Lujinxingia sediminis SEH01T, with 89.8 % similarity in the 16S rRNA gene sequence, followed by Bradymonas sediminis FA350T with a similarity of 88.4 %. Strain V1718T had the ability to prey on other bacteria, and selective predation on members of Algoriphagus, Nocardioides and Bacillus occurred with the strain. Growth was observed within the range of 20-45 °C (optimal at 37 °C), pH 6.5-9.0 (optimal at pH 8.0) and 1-10 % NaCl (optimal at 3-4 %, w/v). The predominant cellular fatty acids in strain V1718T were iso-C15 : 0 (53.0 %) and C16 : 0 (19.1 %). The major polar lipids present in the strain were phosphatidylglycerol and phosphatidylethanolamine, and the respiratory quinone was menaquinone MK-7. The complete genome sequence of strain V1718T was 5 847 748 bp with a G+C content of 55.2 mol%. The topology of the phylogenomic tree indicated that strain V1718T forms a separate branch in the same clade with the genus Lujinxingia and the family Bradymonadaceae. The average nucleotide identity and average amino acid identity values were 66.4 and 48.6 %, respectively, with Bradymonas sediminis FA350T (type species of Bradymonas) and 66.8 % and 48.9 % with Lujinxingia litoralis B210T (type species of Lujinxingia). The genes related to biosynthesis pathways of several important chemical compounds could not be found in the genome of strain V1718T, which was predicted to be the intrinsic reason for predation in this group. The physiological, biochemical and phylogenetic properties of strain V1718T suggest that it belongs to a novel family distinct from other culturable bradymonabacteria. The name Microvenator marinus gen. nov., sp. nov. is proposed, with strain V1718T (=KCTC 72082T=MCCC 1H00380T) as type strain; the name Microvenatoraceae fam. nov. is also proposed. Meanwhile, the genus Lujinxingia can also be taxonomic classified as Lujinxingiaceae fam. nov. Thus, two novel families and a novel genus of the order Bradymonadales are proposed in this paper.


Assuntos
Ácidos Graxos , Água do Mar , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
2.
Mol Cell Proteomics ; 21(4): 100215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189333

RESUMO

Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.


Assuntos
Deltaproteobacteria , Proteoma , Bactérias/metabolismo , Benzoatos/metabolismo , Deltaproteobacteria/metabolismo , Lisina/metabolismo , Proteoma/metabolismo
3.
ISME J ; 16(1): 200-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34285365

RESUMO

Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.


Assuntos
Deltaproteobacteria , Sulfatos , Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Oxirredução , Sulfatos/metabolismo , Óxidos de Enxofre/metabolismo
4.
ISME J ; 16(1): 307-320, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331018

RESUMO

Deltaproteobacteria, now proposed to be the phyla Desulfobacterota, Myxococcota, and SAR324, are ubiquitous in marine environments and play essential roles in global carbon, sulfur, and nutrient cycling. Despite their importance, our understanding of these bacteria is biased towards cultured organisms. Here we address this gap by compiling a genomic catalog of 1 792 genomes, including 402 newly reconstructed and characterized metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments. Phylogenomic analyses reveal that many of these novel MAGs are uncultured representatives of Myxococcota and Desulfobacterota that are understudied. To better characterize Deltaproteobacteria diversity, metabolism, and ecology, we clustered ~1 500 genomes based on the presence/absence patterns of their protein families. Protein content analysis coupled with large-scale metabolic reconstructions separates eight genomic clusters of Deltaproteobacteria with unique metabolic profiles. While these eight clusters largely correspond to phylogeny, there are exceptions where more distantly related organisms appear to have similar ecological roles and closely related organisms have distinct protein content. Our analyses have identified previously unrecognized roles in the cycling of methylamines and denitrification among uncultured Deltaproteobacteria. This new view of Deltaproteobacteria diversity expands our understanding of these dominant bacteria and highlights metabolic abilities across diverse taxa.


Assuntos
Deltaproteobacteria , Metagenoma , Bactérias/genética , Deltaproteobacteria/genética , Genômica , Humanos , Filogenia
5.
Nanoscale ; 13(48): 20396-20400, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34860229

RESUMO

Magnetite-binding proteins are in high demand for the functionalization of magnetic nanoparticles. Binding analysis of six previously uncharacterized proteins from the magnetotactic Deltaproteobacterium Desulfamplus magnetovallimortis BW-1 identified two new magnetite-binding proteins (Mad10, Mad11). These proteins can be utilized as affinity tags for the immobilization of recombinant fusion proteins to magnetite.


Assuntos
Deltaproteobacteria , Nanopartículas de Magnetita , Magnetossomos , Magnetospirillum , Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Deltaproteobacteria/metabolismo , Óxido Ferroso-Férrico/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo
6.
FEMS Microbiol Lett ; 368(21-24)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34875060

RESUMO

Peatlands are responsible for over half of wetland methane emissions, yet major uncertainties remain regarding carbon flow, especially when increased availability of electron acceptors stimulates competing physiologies. We used microcosm incubations to study the effects of sulfate on microorganisms in two temperate peatlands, one bog and one fen. Three different electron donor treatments were used (13C-acetate, 13C-formate and a mixture of 12C short-chain fatty acids) to elucidate the responses of sulfate-reducing bacteria (SRB) and methanogens to sulfate stimulation. Methane production was measured and metagenomic sequencing was performed, with only the heavy DNA fraction sequenced from treatments receiving 13C electron donors. Our data demonstrate stimulation of dissimilatory sulfate reduction in both sites, with contrasting community responses. In McLean Bog (MB), hydrogenotrophic Deltaproteobacteria and acetotrophic Peptococcaceae lineages of SRB were stimulated, as were lineages with unclassified dissimilatory sulfite reductases. In Michigan Hollow Fen (MHF), there was little stimulation of Peptococcaceae populations, and a small stimulation of Deltaproteobacteria SRB populations only in the presence of formate as electron donor. Sulfate stimulated an increase in relative abundance of reads for both oxidative and reductive sulfite reductases, suggesting stimulation of an internal sulfur cycle. Together, these data indicate a stimulation of SRB activity in response to sulfate in both sites, with a stronger growth response in MB than MHF. This study provides valuable insights into microbial community responses to sulfate in temperate peatlands and is an important first step to understanding how SRB and methanogens compete to regulate carbon flow in these systems.


Assuntos
Deltaproteobacteria , Peptococcaceae , Microbiologia do Solo , Sulfatos , Carbono , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/metabolismo , Ecossistema , Formiatos , Metano/análise , Metano/metabolismo , New York , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peptococcaceae/efeitos dos fármacos , Peptococcaceae/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacologia
7.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34739365

RESUMO

A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2T, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2T grew at 25-40 °C (optimum 35 °C) and pH 5.5-7.0 (optimum 6.6) in the presence of 25-45 g l-1 NaCl (optimum 30 g l-1). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO2 as the sole carbon source for chemolithoautotrophic growth on H2. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO2. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth. The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2T is a member of the family Desulfobulbaceae, showing a sequence similarity of 94.3 % with Desulforhopalus singaporensis. Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2T and related genera of the family Desulfobulbaceae were 65.6-68.6 % and 53.1-62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2T represents a novel genus and species within the family Desulfobulbaceae, for which the name Desulfomarina profundi gen. nov., sp. nov. is proposed, with KT2T (=JCM 34118T = DSM 111364T) as the type strain.


Assuntos
Deltaproteobacteria/classificação , Fontes Hidrotermais , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Hidrogênio , Fontes Hidrotermais/microbiologia , Oxirredução , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sulfatos , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/isolamento & purificação
8.
Sci Rep ; 11(1): 19978, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620953

RESUMO

Tidal-flat sediments harbor a diverse array of sulfate-reducing bacteria. To isolate novel sulfate-reducing bacteria and determine their abundance, a tidal-flat sediment sample collected off Ganghwa Island (Korea) was investigated using cultivation-based and culture-independent approaches. Two Gram-stain-negative, strictly anaerobic, rod-shaped, sulfate-reducing bacteria, designated IMCC35004T and IMCC35005T, were isolated from the sample. The two strains reduced sulfate, sulfite, elemental sulfur, thiosulfate, Fe(III) citrate, and Mn(IV) oxide by utilizing several carbon sources, including acetate. The 16S rRNA gene amplicon sequencing revealed that the tidal-flat sediment contained diverse members of the phylum Desulfobacterota, and the phylotypes related to IMCC35004T and IMCC35005T were < 1%. The two strains shared 97.6% similarity in 16S rRNA gene sequence and were closely related to Desulfopila aestuarii DSM 18488T (96.1-96.5%). The average nucleotide identity, level of digital DNA-DNA hybridization, average amino acid identity, and percentages of conserved proteins determined analyzing the whole-genome sequences, as well as the chemotaxonomic data showed that the two strains belong to two novel species of a novel genus. Additionally, genes related to dissimilatory sulfate reduction were detected in the genomes of the two strains. Unlike the genera Desulfopila and Desulfotalea, IMCC35004T and IMCC35005T contained menaquinone-5 as the major respiratory quinone. Collectively, IMCC35004T and IMCC35005T were concluded to represent two novel species of a novel genus within the family Desulfocapsaceae, for which the names Desulfosediminicola ganghwensis gen. nov., sp. nov. (IMCC35004T = KCTC 15826T = NBRC 114003T) and Desulfosediminicola flagellatus sp. nov. (IMCC35005T = KCTC 15827T = NBRC 114004T) are proposed.


Assuntos
Deltaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , DNA Bacteriano/análise , Deltaproteobacteria/genética , Deltaproteobacteria/ultraestrutura , Genoma Bacteriano , RNA Ribossômico 16S/genética , República da Coreia , Especificidade da Espécie , Sulfatos/metabolismo , Vitamina K 2/metabolismo
9.
Appl Environ Microbiol ; 87(24): e0167621, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613754

RESUMO

Electroactive bacteria are living catalysts, mediating energy-generating reactions at anodes or energy storage reactions at cathodes via extracellular electron transfer (EET). The Cathode-ANode (CANode) biofilm community was recently shown to facilitate both reactions; however, the identities of the primary constituents and underlying molecular mechanisms remain unknown. Here, we used metagenomics and metatranscriptomics to characterize the CANode biofilm. We show that a previously uncharacterized member of the family Desulfobulbaceae, Desulfobulbaceae-2, which had <1% relative abundance, had the highest relative gene expression and accounted for over 60% of all differentially expressed genes. At the anode potential, differential expression of genes for a conserved flavin oxidoreductase (Flx) and heterodisulfide reductase (Hdr) known to be involved in ethanol oxidation suggests a source of electrons for the energy-generating reaction. Genes for sulfate and carbon dioxide reduction pathways were expressed by Desulfobulbaceae-2 at both potentials and are the proposed energy storage reactions. Reduction reactions may be mediated by direct electron uptake from the electrode or from hydrogen generated at the cathode potential. The Desulfobulbaceae-2 genome is predicted to encode at least 85 multiheme (≥3 hemes) c-type cytochromes, some with as many as 26 heme-binding domains, that could facilitate reversible electron transfer with the electrode. Gene expression in other CANode biofilm species was also affected by the electrode potential, although to a lesser extent, and we cannot rule out their contribution to observed current. Results provide evidence of gene expression linked to energy storage and energy-generating reactions and will enable development of the CANode biofilm as a microbially driven rechargeable battery. IMPORTANCE Microbial electrochemical technologies (METs) rely on electroactive bacteria to catalyze energy-generating and energy storage reactions at electrodes. Known electroactive bacteria are not equally capable of both reactions, and METs are typically configured to be unidirectional. Here, we report on genomic and transcriptomic characterization of a recently described microbial electrode community called the Cathode-ANode (CANode). The CANode community is able to generate or store electrical current based on the electrode potential. During periods where energy is not needed, electrons generated from a renewable source, such as solar power, could be converted into energy storage compounds to later be reversibly oxidized by the same microbial catalyst. Thus, the CANode system can be thought of as a living "rechargeable battery." Results show that a single organism may be responsible for both reactions demonstrating a new paradigm for electroactive bacteria.


Assuntos
Deltaproteobacteria , Eletrodos , Metagenômica , Microbiota , Transcriptoma , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo
10.
Antonie Van Leeuwenhoek ; 114(11): 1899-1913, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34478018

RESUMO

The magnetotactic yet uncultured species 'Candidatus Magnetoglobus multicellularis' is a spherical, multicellular ensemble of bacterial cells able to align along magnetic field lines while swimming propelled by flagella. Magnetotaxis is due to intracytoplasmic, membrane-bound magnetic crystals called magnetosomes. The net magnetic moment of magnetosomes interacts with local magnetic fields, imparting the whole microorganism a torque. Previous works investigated 'Ca. M. multicellularis' behavior when free swimming in water; however, they occur in sediments where bumping into solid particles must be routine. In this work, we investigate the swimming trajectories of 'Ca. M. multicellularis' close to solid boundaries using video microscopy. We applied magnetic fields 0.25-8.0 mT parallel to the optical axis of a light microscope, such that microorganisms were driven upwards towards a coverslip. Because their swimming trajectories approach cylindrical helixes, circular profiles would be expected. Nevertheless, at fields 0.25-1.1 mT, most trajectory projections were roughly sinusoidal, and net movements were approximately perpendicular to applied magnetic fields. Closed loops appeared in some trajectory projections at 1.1 mT, which could indicate a transition to the loopy profiles observed at magnetic fields ≥ 2.15 mT. The behavior of 'Ca. M. multicellularis' near natural magnetic grains showed that they were temporarily trapped by the particle's magnetic field but could reverse the direction of movement to flee away. Our results show that interactions of 'Ca. M. multicellularis with solid boundaries and magnetic grains are complex and possibly involve mechano-taxis.


Assuntos
Deltaproteobacteria , Natação , Campos Magnéticos , Magnetismo , Células Procarióticas
11.
Nature ; 597(7878): 720-725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489594

RESUMO

CRISPR-Cas interference is mediated by Cas effector nucleases that are either components of multisubunit complexes-in class 1 CRISPR-Cas systems-or domains of a single protein-in class 2 systems1-3. Here we show that the subtype III-E effector Cas7-11 is a single-protein effector in the class 1 CRISPR-Cas systems originating from the fusion of a putative Cas11 domain and multiple Cas7 subunits that are derived from subtype III-D. Cas7-11 from Desulfonema ishimotonii (DiCas7-11), when expressed in Escherichia coli, has substantial RNA interference effectivity against mRNAs and bacteriophages. Similar to many class 2 effectors-and unique among class 1 systems-DiCas7-11 processes pre-CRISPR RNA into mature CRISPR RNA (crRNA) and cleaves RNA at positions defined by the target:spacer duplex, without detectable non-specific activity. We engineered Cas7-11 for RNA knockdown and editing in mammalian cells. We show that Cas7-11 has no effects on cell viability, whereas other RNA-targeting tools (such as short hairpin RNAs and Cas13) show substantial cell toxicity4,5. This study illustrates the evolution of a single-protein effector from multisubunit class 1 effector complexes, expanding our understanding of the diversity of CRISPR systems. Cas7-11 provides the basis for new programmable RNA-targeting tools that are free of collateral activity and cell toxicity.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes , RNA/genética , Biologia Computacional , Deltaproteobacteria/genética , Escherichia coli , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Interferência de RNA
12.
Water Res ; 204: 117605, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34488140

RESUMO

The vertical migrations of toxic and persistent short-chain chlorinated paraffins (SCCPs) in soils as well as the microbial responses have been reported, however, there is a paucity of data on the resulting groundwater contamination. Here, we determined the concentration and congener profile of SCCPs in the groundwater beneath a production plant of chlorinated paraffins (CPs) and characterized the microbial community to explore their responses to SCCPs. Results showed that SCCPs ranged from not detected to 70.3 µg/L, with C13-CPs (11.2-65.8%) and Cl7-CPs (27.2-50.6%), in mass ratio, as the dominant groups. Similar to the distribution pattern in soils, SCCPs in groundwater were distributed in hotspot pattern. CP synthesis was the source of SCCPs in groundwater and the entire contamination plume significantly migrated downgradient, while there was an apparent hysteresis of C13-CP migration. Groundwater microbial community was likely shaped by both hydrogeological condition (pH and depth) and SCCPs. Specifically, the microbial community responded to the contamination by forming a co-occurrence network with "small world" feature, where Desulfobacca, Desulfomonile, Ferritrophicum, Methylomonas, Syntrophobacter, Syntrophorhabdus, Syntrophus, and Thermoanaerobaculum were the keystone taxa. Furthermore, the interrelations between bacterial taxa and SCCPs indicated that the microbial community might cooperate to achieve the dechlorination and mineralization of SCCPs through either anaerobic organohalide respiration mainly functioned by the keystone taxa, or cometabolic degradation processes functioned by Aquabacterium and Hydrogenophaga. Results of this study would provide a better understanding of the environmental behavior and ecological effects of SCCPs in groundwater systems.


Assuntos
Deltaproteobacteria , Água Subterrânea , Microbiota , Parafina , Solo
13.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583996

RESUMO

The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from ß-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of ß-oxidation in (methyl)menaquinone-containing organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Ácidos Graxos/metabolismo , Metano/metabolismo , Acetatos/metabolismo , Acil Coenzima A/metabolismo , Archaea/metabolismo , Transporte de Elétrons/fisiologia , Fermentação/fisiologia , Formiatos/metabolismo , Oxirredução , Oxirredutases/metabolismo
14.
Microbes Environ ; 36(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34433738

RESUMO

Current challenges in the anaerobic bioremediation of benzene are the lack of capable cultures and limited knowledge on the biodegradation pathway. Under methanogenic conditions, benzene may be mineralized by syntrophic interactions between microorganisms, which are poorly understood. The present study developed an optimized formula for anoxic medium to successfully promote the growth of the putative benzene degrader Deltaproteobacterium Hasda-A and enhance the benzene degradation activity of methanogenic enrichment cultures. Within 70| |d of incubation, the benzene degradation activity and relative abundance of Hasda-A in cultures in the new defined medium increased from 0.5 to >3| |mg L-1 d-1 and from 2.5% to >17%, respectively. Together with Hasda-A, we found a strong positive relationship between the abundances of superphylum OD1 bacteria, three methanogens (Methanoregula, Methanolinea, and Methanosaeta) and benzene degradation activity. The syntrophic relationship between these microbial taxa and Hasda-A was then demonstrated in a correlation analysis of longitudinal data. The involvement of methanogenesis in anaerobic benzene mineralization was confirmed by inhibition experiments. The high benzene degradation activity and growth of Hasda-A were quickly recovered in successive dilutions of enrichment cultures, proving the feasibility of using the medium developed in the present study to produce highly capable cultures. The present results will facilitate practical applications in bioremediation and research on the molecular mechanisms underlying benzene activation and syntrophic interactions in benzene mineralization.


Assuntos
Benzeno/metabolismo , Meios de Cultura/química , Deltaproteobacteria/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Anaerobiose , Biodegradação Ambiental , Crescimento Quimioautotrófico , Técnicas de Cocultura , Meios de Cultura/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Methanosarcinales/crescimento & desenvolvimento
15.
Water Sci Technol ; 84(3): 683-696, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34388127

RESUMO

Quinones and humus are ubiquitous in the biosphere and play an important role in the anaerobic biodegradation and biotransformation of organic acids, poisonous compounds as well as inorganic compounds. The impact of humic model compound, anthraquinone-2, 6-disulfonate (AQDS) on anaerobic phenol and p-cresol degradation were studied. Four methanogenic AQDS-free phenol and p-cresol enrichments and two phenol-AQDS enrichments were obtained using two sludges with potential biodegradability of phenol and cresol isomers as inoculum. 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization revealed that syntrophic aromatic compound degrading bacterium Syntrophorhabdus aromaticivorans was dominant in four AQDS-free enrichments, whereas phenol degrading Cryptanaerobacter phenolicus was dominant in two phenol-AQDS enrichments. Neither co-culture of S. aromaticivorans with Methanospirillum hungatei nor two phenol-AQDS enrichments could metabolize phenol using AQDS as the terminal electron acceptor. Further degradation experiments suggested that C. phenolicus related microbes in two phenol-AQDS enrichments were responsible for the conversion of phenol to benzoate, and benzoate was further degraded by benzoate degraders of Syntrophus aciditrophicus or Sporotomaculum syntrophicum to acetate.


Assuntos
Cresóis , Fenol , Anaerobiose , Antraquinonas , Biodegradação Ambiental , Deltaproteobacteria , Hibridização in Situ Fluorescente , Peptococcaceae , RNA Ribossômico 16S/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-34360485

RESUMO

Rice straw is commonly burned openly after harvesting in Malaysia and many other Asian countries where rice is the main crop. This operation emits a significant amount of air pollution, which can have severe consequences for indoor air quality, public health, and climate change. Therefore, this study focuses on determining the compositions of trace elements and the morphological properties of fine particles. Furthermore, the species of bacteria found in bioaerosol from rice burning activities were discovered in this study. For morphological observation of fine particles, FESEM-EDX was used in this study. Two main categories of particles were found, which were natural particles and anthropogenic particles. The zinc element was found during the morphological observation and was assumed to come from the fertilizer used by the farmers. ICP-OES identifies the concentration of trace elements in the fine particle samples. A cultured method was used in this study by using nutrient agar. From this study, several bacteria were identified: Exiguobavterium indicum, Bacillus amyloliquefaciens, Desulfonema limicola str. Jadabusan, Exiguobacterium acetylicum, Lysinibacillus macrolides, and Bacillus proteolyticus. This study is important, especially for human health, and further research on the biological composition of aerosols should be conducted to understand the effect of microorganisms on human health.


Assuntos
Poluentes Atmosféricos , Oryza , Poluentes Atmosféricos/análise , Bacillus , Deltaproteobacteria , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise
17.
Syst Appl Microbiol ; 44(5): 126236, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34332367

RESUMO

Cable bacteria are multicellular filamentous bacteria within the Desulfobulbaceae that couple the oxidation of sulfide to the reduction of oxygen over centimeter distances via long distance electron transport (LDET). So far, none of the freshwater or marine cable bacteria species have been isolated into pure culture. Here we describe a method for establishing a stable single-strain cable bacterium culture in partially sterilized sediment. By repeated transfers of a single cable bacterium filament from freshwater pond sediment into autoclaved sediment, we obtained strain GS, identified by its 16S rRNA gene as a member of Ca. Electronema. This strain was further propagated by transferring sediment clumps, and has now been stable within its semi-natural microbial community for several years. Its metagenome-assembled genome was 93% complete, had a size of 2.76 Mbp, and a DNA G + C content of 52%. Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI) suggest the affiliation of strain GS to Ca. Electronema as a novel species. Cell size, number of outer ridges, and detection of LDET in the GS culture are likewise consistent with Ca. Electronema. Based on these combined features, we therefore describe strain GS as a new cable bacterium species of the candidate genus Electronema, for which we propose the name Candidatus Electronema aureum sp.nov. Although not a pure culture, this stable single-strain culture will be useful for physiological and omics-based studies; similar approaches with single-cell or single-filament transfers into natural medium may also aid the characterization of other difficult-to-culture microbes.


Assuntos
Técnicas Bacteriológicas , Deltaproteobacteria , Sedimentos Geológicos , Filogenia , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Syst Appl Microbiol ; 44(5): 126233, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311149

RESUMO

Bacteria in the family Geobacteraceae have been proven to fill important niches in a diversity of anaerobic environments and global biogeochemical processes. Here, three bacterial strains in this family, designated Red875T, Red259T, and Red421T were isolated from river sediment and paddy soils in Japan. All of them are Gram-staining-negative, strictly anaerobic, motile, flagellum-harboring cells that form red colonies on agar plates and are capable of utilizing Fe(III)-NTA, Fe(III) citrate, ferrihydrite, MnO2, fumarate, and nitrate as electron acceptors with acetate, propionate, pyruvate, and glucose as electron donors. Phylogenetic analysis based on the 16S rRNA gene and 92 concatenated core proteins sequences revealed that strains Red259T and Red421T clustered with the type strains of Geomonas species, whereas strain Red875T formed an independent lineage within the family Geobacteraceae. Genome comparison based on  average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values clearly distinguished these three strains from other Geobacteraceae members, with lower values than the thresholds for species delineation. Moreover, strain Red875T also shared low average amino acid identity (AAI) and percentage of conserved proteins (POCP) values with the type species of the family Geobacteraceae. Based on these physiological, chemotaxonomic, and phylogenetic distinctions, we propose that strain Red875T (=NBRC 114290T = MCCC 1K04407T) represents a novel genus in the family Geobacteraceae, namely, Geomesophilobacter sediminis gen. nov., sp. nov., and strains Red259T (=NBRC 114288T = MCCC 1K05016T) and Red421T (=NBRC 114289T = MCCC 1K06216T) represent two novel independent species in the genus Geomonas, namely, Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., respectively.


Assuntos
Deltaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Rios/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Compostos Férricos , Japão , Compostos de Manganês , Óxidos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Nat Commun ; 12(1): 3996, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183682

RESUMO

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.


Assuntos
Proteínas de Bactérias/química , Deltaproteobacteria/metabolismo , Condutividade Elétrica , Transporte de Elétrons/fisiologia , Níquel/química , Eletricidade
20.
Water Res ; 200: 117270, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077836

RESUMO

The accumulation of volatile fatty acids, particularly propionic acid, significantly inhibits the efficiency of the anaerobic digestion system. In propionate degradation metabolism, the unfavorable thermodynamics of syntrophic reactions, strict ecological niche of syntrophic priopionate oxidizing bacteria, and slow metabolic rate of methanogens are regarded as major limitations. In this study, Geobacter sulfurreducens was co-cultured with Syntrophobacter fumaroxidans in bioelelectrochemical cells to analyze the propionate degradation process, impact factor, mechanism metabolic pathways, and electron transfer comprehensively. The results revealed that the syntroph S. fumaroxidans and syntrophic partner G. sulfurreducens achieved more efficient propionate degradation than the control group, comprising S. fumaroxidans and methanogens. Moreover, the carbon resource concentration and pH were both significantly correlated with propionate degradation (P < 0.01). The results further confirmed that G. sulfurreducen strengthened the consumption of H2 and acetate via direct interspecific electron transfer in propionate degradation. These findings indicate that G. sulfurreducens plays an unidentified functional role in propionate degradation.


Assuntos
Geobacter , Propionatos , Anaerobiose , Deltaproteobacteria , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...