Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.113
Filtrar
1.
J Ethnopharmacol ; 336: 118684, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127117

RESUMO

ETHNOPHARMACOLOGICAL PREVALENCE: Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN). MATERIALS AND METHODS: Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 µL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 µg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT: In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION: SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Fator 2 Relacionado a NF-E2 , Syzygium , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Syzygium/química , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células HEK293 , Estresse Oxidativo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Produtos Finais de Glicação Avançada/metabolismo , Estreptozocina , Ratos Wistar , Antioxidantes/farmacologia , Ratos Sprague-Dawley
2.
J Ethnopharmacol ; 336: 118742, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39197806

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Persian medicine (TPM), people often use herbal infusions as a dosage form to treat diseases related to hyperglycemia, known as 'dam-kardeh'. Traditionally, herbal preparations of Eryngium bungei Boiss. (E. b), Tragopogon buphthalmoides (DC.) Boiss. (T. b), Salvia hydrangea DC. ex Benth. (S. h), and Juniperus polycarpos K. Koch. (J. p) are used to manage diabetes in Iran. However, there is no evidence of their effectiveness in controlling glucose levels and their mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate whether traditional doses of plant infusions can have hypoglycemic and/or anti-hyperglycemic effects during fasting and/or postprandial states and establish the basis for future research on their potential mechanisms of action. MATERIALS AND METHODS: The effects of traditional doses of herbal extracts on blood glucose levels in STZ-NA-induced hyperglycemic rats were investigated in 2-h acute tests during fasting and postprandial states (with a glucose load). In addition, the potential inhibitory effect in vitro of enzymes involved in relevant pathways, such as gluconeogenesis (fructose-1,6-bisphosphatase, FBPase and glucose-6-phosphatase, G6Pase), carbohydrate breakdown (intestinal α-glucosidases), and insulin sensitivity (protein tyrosine phosphatase 1B, PTP-1B) was evaluated. Acute toxicity tests were carried out and HPLC-SQ-TOF was used to analyze the chemical profiles of the plant extracts. RESULTS: In the fasting state, T. b, S. h, and E. b were as effective as glibenclamide in lowering blood glucose levels in hyperglycemic rats. Moreover, all three suppressed G6Pase and FBPase enzymatic activity by 90-97% and 80-91%, respectively. On the other hand, significant postprandial hypoglycemic efficacy was observed for E. b, S. h, and T. b. Based on the AUC values, T. b caused a reduction comparable to the therapeutic efficacy of repaglinide. When investigating the possible mechanisms of action involved in this activity, E. b, S. h, and T. b showed significant inhibition of PTP-1B in vitro (>70%). Finally, all plant extracts showed no signs of acute toxicity. Several compounds that may contribute to biological activities were identified, including phenolic acids and flavonoid glycosides. CONCLUSIONS: The present study supports the traditional use of T. b, E. b and S. h for the control of diabetes in the fasting and postprandial state. Moreover, these plants were found to be rich in bioactive compounds with hypoglycemic and antihyperglycemic activities. On the other hand, J. p, showed a modest effect only in the fasting state and after 90 min. Further studies are needed to expand these results by analyzing the chemical composition and using complementary experimental models.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Jejum , Hipoglicemiantes , Extratos Vegetais , Período Pós-Prandial , Animais , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Masculino , Irã (Geográfico) , Ratos , Medicina Persa , Ratos Wistar , Hiperglicemia/tratamento farmacológico , Plantas Medicinais/química , Estreptozocina , Juniperus/química
3.
J Nanobiotechnology ; 22(1): 611, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380018

RESUMO

BACKGROUND: In diabetic wounds, hyperglycemia-induced cytotoxicity and impaired immune microenvironment plasticity directly hinder the wound healing process. Regulation of the hyperglycemic microenvironment and remodeling of the immune microenvironment are crucial. RESULTS: Here, we developed a nanozymatic functionalized regenerative microenvironmental regulator (AHAMA/CS-GOx@Zn-POM) for the effective repair of diabetic wounds. This novel construct integrated an aldehyde and methacrylic anhydride-modified hyaluronic acid hydrogel (AHAMA) and chitosan nanoparticles (CS NPs) encapsulating zinc-based polymetallic oxonate nanozyme (Zn-POM) and glucose oxidase (GOx), facilitating a sustained release of release of both enzymes. The GOx catalyzed glucose to gluconic acid and (H2O2), thereby alleviating the effects of the hyperglycemic microenvironment on wound healing. Zn-POM exhibited catalase and superoxide dismutase activities to scavenge reactive oxygen species and H2O2, a by-product of glucose degradation. Additionally, Zn-POM induced M1 macrophage reprogramming to the M2 phenotype by inhibiting the MAPK/IL-17 signaling diminishing pro-inflammatory cytokines, and upregulating the expression of anti-inflammatory mediators, thus remodeling the immune microenvironment and enhancing angiogenesis and collagen regeneration within wounds. In a rat diabetic wound model, the application of AHAMA/CS-GOx@Zn-POM enhanced neovascularization and collagen deposition, accelerating the wound healing process. CONCLUSIONS: Therefore, the regenerative microenvironment regulator AHAMA/CS-GOx@Zn-POM can achieve the effective conversion of a pathological microenvironment to regenerative microenvironment through integrated control of the hyperglycemic-immune microenvironment, offering a novel strategy for the treatment of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Hidrogéis , Hiperglicemia , Ratos Sprague-Dawley , Cicatrização , Zinco , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Ratos , Zinco/química , Zinco/farmacologia , Hiperglicemia/tratamento farmacológico , Masculino , Camundongos , Quitosana/química , Quitosana/farmacologia , Nanopartículas/química , Microambiente Celular/efeitos dos fármacos , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Macrófagos/efeitos dos fármacos , Células RAW 264.7 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
4.
FASEB J ; 38(19): e70091, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39383062

RESUMO

Impaired wound healing in diabetic patients is the leading cause of diabetes-associated hospitalizations and approximately 50% of lower limb amputations. This is due to multiple factors, including elevated glucose, sustained hypoxia, and cell dysfunction. Previously, diabetic wounds were found to contain excessive levels of the matricellular protein thrombospondin-2 (TSP2) and genetic ablation of TSP2 in diabetic mice or treatment of wounds with a hydrogel derived from TSP2-null mouse skin improved healing. Previously, TSP2 has been shown to be repressed by hypoxia, but in the present study we observed sustained hypoxia and overlapping TSP2 deposition in diabetic wounds. We determined this observation was due to the insufficient HIF-1α activation verified by western blot and immunofluorescent analysis of wound tissues and in vitro hypoxia experiments. Application of Dimethyloxalylglycine (DMOG), which can stabilize HIF-1α, inhibited TSP2 expression in diabetic fibroblasts in hypoxic conditions. Therefore, we prepared DMOG-containing TSP2KO hydrogel and applied it to the wounds of diabetic mice. In comparison to empty TSP2KO hydrogel or DMOG treatment, we observed improved wound healing associated with a reduction of TSP2, reduced hypoxia, and increased neovascularization. Overall, our findings shed light on the intricate interplay between hyperglycemia, hypoxia, and TSP2 in the complex environment of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Subunidade alfa do Fator 1 Induzível por Hipóxia , Trombospondinas , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Trombospondinas/metabolismo , Trombospondinas/genética , Camundongos , Diabetes Mellitus Experimental/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Aminoácidos Dicarboxílicos/farmacologia , Masculino , Camundongos Knockout , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Hipóxia Celular
5.
Front Cell Infect Microbiol ; 14: 1436477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355267

RESUMO

Aims: Hyperglycemia is one of the adverse effects of tacrolimus (TAC), but the underlying mechanism is not fully identified. We used multi-omics analysis to evaluate the changes in the gut microbiota and metabolic profile of rats with TAC-induced diabetes. Methods: To establish a diabetic animal model, Sprague Dawley rats were divided randomly into two groups. Those in the TAC group received intraperitoneal injections of TAC (3 mg/kg) for 8 weeks, and those in the CON group served as the control. 16S rRNA sequencing was used to analyze fecal microbiota. The metabolites of the two groups were detected and analyzed by nontargeted and targeted metabolomics, including amino acids (AAs), bile acids (BAs), and short-chain fatty acids (SCFAs). Results: The rats treated with TAC exhibited hyperglycemia as well as changes in the gut microbiota and metabolites. Specifically, their gut microbiota had significantly higher abundances of Escherichia-Shigella, Enterococcus, and Allobaculum, and significantly lower abundances of Ruminococcus, Akkermansia, and Roseburia. In addition, they had significantly reduced serum levels of AAs including asparagine, aspartic acid, glutamic acid, and methionine. With respect to BAs, they had significantly higher serum levels of taurocholic acid (TCA), and glycochenodeoxycholic acid (GCDCA), but significantly lower levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). There were no differences in the levels of SCFAs between the two groups. Correlations existed among glucose metabolism indexes (fasting blood glucose and fasting insulin), gut microbiota (Ruminococcus and Akkermansia), and metabolites (glutamic acid, hydroxyproline, GCDCA, TDCA, and TUDCA). Conclusions: Both AAs and BAs may play crucial roles as signaling molecules in the regulation of TAC-induced diabetes.


Assuntos
Aminoácidos , Fezes , Microbioma Gastrointestinal , Metabolômica , RNA Ribossômico 16S , Ratos Sprague-Dawley , Tacrolimo , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Tacrolimo/farmacologia , Ratos , Masculino , Fezes/microbiologia , RNA Ribossômico 16S/genética , Aminoácidos/metabolismo , Aminoácidos/sangue , Diabetes Mellitus Experimental/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos Graxos Voláteis/metabolismo , Metaboloma/efeitos dos fármacos , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Glicemia/metabolismo , Imunossupressores
6.
Blood Press ; 33(1): 2414072, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39387176

RESUMO

OBJECTIVE: To study the role of perivascular adipose tissue (PVAT) in the reactivity of rat and human vessels. METHODS: Iliac and mesenteric arteries were obtained from normotensive Sprague-Dawley rats, hypertensive transgenic (mRen2)27 rats overexpressing mouse renin, and (mRen2)27 rats made diabetic with streptozotocin. Human coronary arteries were obtained from donors. Concentration-response curves were constructed to endothelin-1 and acetylcholine with and without PVAT. The contribution of NO and endothelium-dependent hyperpolarization (EDH) were determined making use of the NO synthase inhibitor L-NAME and the EDH inhibitors apamin + TRAM-34. The endothelin type A and type B (ETA, ETB) receptor blockers BQ123 and BQ788, the chemerin inhibitors α-NETA and pravastatin, and the angiotensin receptor blocker losartan were also used. RESULTS: In rat iliac arteries, PVAT diminished endothelin-induced constriction, while the opposite was true in human coronaries. Coronary effects were unaltered by α-NETA, pravastatin, or losartan. ETB receptor-mediated relaxation in iliac arteries occurred only with PVAT, and BQ123 blocked endothelin-1-induced constriction. Diabetes upregulated the anticontractile effects of PVAT. In rat mesenteric arteries, acetylcholine-induced relaxation with PVAT relied on NO, and on NO + EDH without PVAT. Diabetes upregulated the EDH component exclusively with PVAT. CONCLUSION: PVAT modulates ET-1-induced constriction in a vessel type-dependent manner. Its enhancing effects in coronaries involved neither chemerin nor angiotensin II. Its anticontractile effects in rat iliac arteries involved ETB receptor-mediated relaxation. Diabetes upregulated PVAT's anticontractile effects. In mesenteric arteries, PVAT counterbalanced the EDH component of the relaxant effect of acetylcholine. Diabetes reversed this effect by upregulating the EDH component.


What is the context?The role of perivascular adipose tissue (PVAT) in vascular reactivity in pathological conditions is poorly understood.What is the study about?This study investigates the role of PVAT in vascular reactivity in animal and human vessels.What are the results?PVAT has vasoconstrictor and vasorelaxant effects depending on location and tissue. In human coronary arteries, PVAT-mediated vasoconstrictor effects do not involve chemerin or angiotensin II. PVAT's anticontractile effects in rat iliac arteries are mediated through a mechanism involving endothelin type B receptor-dependent relaxation. Moreover, diabetes but not hypertension dysregulates PVAT's anticontractile effects in rat mesenteric vessels.


Assuntos
Acetilcolina , Tecido Adiposo , Angiotensina II , Quimiocinas , Diabetes Mellitus Experimental , Endotelina-1 , Artérias Mesentéricas , Ratos Sprague-Dawley , Animais , Humanos , Endotelina-1/farmacologia , Endotelina-1/metabolismo , Ratos , Acetilcolina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Angiotensina II/farmacologia , Tecido Adiposo/metabolismo , Masculino , Quimiocinas/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Artérias Mesentéricas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Vasoconstrição/efeitos dos fármacos , Camundongos
7.
Cell Mol Life Sci ; 81(1): 423, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367914

RESUMO

Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic ß-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4+ T cells into Treg subsets, facilitating Ca2+ influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca2+ entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 2 , Osteoporose , Linfócitos T Reguladores , Vitamina D , Animais , Masculino , Camundongos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Glicolipídeos/farmacologia , Glicolipídeos/uso terapêutico , Camundongos Endogâmicos C57BL , Proteína ORAI1/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Molécula 1 de Interação Estromal/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/imunologia , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitamina D/uso terapêutico
8.
Int J Nanomedicine ; 19: 10077-10095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371478

RESUMO

Purpose: Anecdotal reports have praised the benefits of cold exposure, exemplified by activities like winter swimming and cold water immersion. Cold exposure has garnered acclaim for its potential to confer benefits and potentially alleviate diabetes. We posited that systemic cold temperature (CT, 4-8°C) likely influences the organism's blood components through ambient temperature, prompting our investigation into the effects of chronic cold exposure on type 2 diabetic (T2DM) mice and our initial exploration of how cold exposure mitigates the incidence of T2DM. Methods: The effects of CT (4-8°C) or room temperature (RT, 22-25°C) on T2DM mice were investigated. Mice blood and organ specimens were collected for fully automated biochemical testing, ELISA, HE staining, immunohistochemistry, and immunofluorescence. Glucose uptake was assessed using flow cytometry with 2-NBDG. Changes in potential signaling pathways such as protein kinase B (AKT), phosphorylated AKT (p-AKT), insulin receptor substrates 1 (IRS1), and phosphorylated IRS1 (p-IRS1) were evaluated by Western blot. Results: CT or CT mice plasma-derived extracellular vesicles (CT-EVs) remarkably reduced blood glucose levels and improved insulin sensitivity in T2DM mice. This treatment enhanced glucose metabolism, systemic insulin sensitivity, and insulin secretion function while promoting glycogen accumulation in the liver and muscle. Additionally, CT-EVs treatment protected against the streptozocin (STZ)-induced destruction of islets in T2DM mice by inhibiting ß-cell apoptosis. CT-EVs also shielded islets from destruction and increased the expression of p-IRS1 and p-AKT in adipocytes and hepatocytes. In vitro experiments further confirmed its pro-insulin sensitivity effect. Conclusion: Our data indicate that cold exposure may have a potentially beneficial effect on the development of T2DM, mainly through the anti-diabetic effect of plasma-derived EVs released during cold stimulation. This phenomenon could significantly contribute to understanding the lower prevalence of diabetes in colder regions.


Assuntos
Glicemia , Temperatura Baixa , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Camundongos , Masculino , Diabetes Mellitus Experimental/terapia , Camundongos Endogâmicos C57BL , Insulina/sangue , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/metabolismo
9.
Clin Transl Med ; 14(10): e70026, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350473

RESUMO

BACKGROUND: The immunoglobulin superfamily protein Trem2 (triggering receptor expressed on myeloid cells 2) is primarily expressed on myeloid cells where it functions to regulate macrophage-related immune response induction. While macrophages are essential mediators of diabetic wound healing, the specific regulatory role that Trem2 plays in this setting remains to be established. OBJECTIVE: This study was developed to explore the potential importance of Trem2 signalling in diabetic wound healing and to clarify the underlying mechanisms through which it functions. METHODS AND RESULTS: Following wound induction, diabetic model mice exhibited pronounced upregulation of Trem2 expression, which was primarily evident in macrophages. No cutaneous defects were evident in mice bearing a macrophage-specific knockout of Trem2 (T2-cKO), but they induced more pronounced inflammatory responses and failed to effectively repair cutaneous wounds, with lower levels of neovascularization, slower rates of wound closure, decreased collagen deposition following wounding. Mechanistically, we showed that interleukin (IL)-4 binds directly to Trem2, inactivating MAPK/AP-1 signalling to suppress the expression of inflammatory and chemoattractant factors. Co-culture of fibroblasts and macrophages showed that macrophages from T2-cKO mice suppressed the in vitro activation and proliferation of dermal fibroblasts through upregulation of leukaemia inhibitory factor (Lif). Injecting soluble Trem2 in vivo was also sufficient to significantly curtail inflammatory responses and to promote diabetic wound healing. CONCLUSIONS: These analyses offer novel insight into the role of IL-4/Trem2 signalling as a mediator of myeloid cell-fibroblast crosstalk that may represent a viable therapeutic target for efforts to enhance diabetic wound healing.


Assuntos
Interleucina-4 , Glicoproteínas de Membrana , Receptores Imunológicos , Cicatrização , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Cicatrização/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Interleucina-4/metabolismo , Interleucina-4/genética , Camundongos Knockout , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL
10.
Nutr Diabetes ; 14(1): 83, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375333

RESUMO

OBJECTIVE: This study aims to conduct an unbiased assessment of the synergistic effects of non-pharmacological Interventions of intermittent fasting and pulsed radiofrequency energy (PRFE) combination therapy on the facilitation of diabetic wound healing, while also exploring the underlying mechanisms. The findings of this research will provide a theoretical framework and innovative strategy for unconventional therapeutic interventions aimed at enhancing the healing process of diabetes-related wounds. METHODS: In vivo experiments involved the induction of diabetic models in C57 mice through streptozotocin injection. To simulate a combined therapeutic approach, diabetic mice underwent fasting on days 2 and 6, accompanied by twice daily PRFE applications for 8 days. In vitro experiments were conducted using a serum-free culture medium to replicate fasting conditions. The investigation encompassed wound healing rate, proliferation, migration, angiogenesis, oxidative stress, fibrogenesis, and sensory nerve growth through histological analysis and functional assessments in vivo. Additionally, this study utilized quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting (WB), and immunofluorescence staining techniques to elucidate the potential mechanisms underlying the effects of intermittent Fasting and PRFE combination therapy in diabetic wound healing, both in vitro and in vivo. RESULTS: The intermittent fasting and PRFE combination therapy demonstrated superior efficacy in enhancing diabetic wound healing compared to either treatment alone. It harnessed the respective strengths of individual therapies, fostering migration, mitigating oxidative stress, and enhancing fibrogenesis. Furthermore, the combination therapy manifested a synergistic effect in promoting proliferation, tube formation, angiogenesis, and sensory nerve growth. CONCLUSION: This study demonstrates that intermittent fasting and PRFE combination therapy enhance diabetic wound healing, effectively leveraging the strengths of both therapies and even yielding synergistic benefits. Moreover, it indicates the potential engagement of the P75/HIF1A/VEGFA axis in mediating these effects.


Assuntos
Diabetes Mellitus Experimental , Jejum , Camundongos Endogâmicos C57BL , Tratamento por Radiofrequência Pulsada , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Diabetes Mellitus Experimental/terapia , Tratamento por Radiofrequência Pulsada/métodos , Masculino , Terapia Combinada , Estresse Oxidativo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Jejum Intermitente
11.
Front Endocrinol (Lausanne) ; 15: 1427058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39377070

RESUMO

Background: In addition to conventional treatment and modifications in physical activity and diet, alternative strategies have been investigated to manage, prevent, or delay diabetes in humans. In this regard, one strategy has relied on the immunomodulatory properties of mycobacteria, whereby Bacillus Calmette-Guerin, an attenuated live strain of Mycobacterium bovis, has been shown to improve glycemic control in patients with diabetes and to alleviate hyperglycemia in selected murine models of diabetes. A novel heat-killed (HK) whole-cell preparation of Mycobacterium aurum (M. aurum) is currently under development as a potential food supplement; nevertheless, its potential bioactivity remains largely unknown. Thus, the present study investigated the potential prophylactic anti-diabetic effects of HK M. aurum in streptozotocin (STZ)-induced diabetic mice. Methods: Mice were divided into three groups: the STZ-induced diabetic group was injected with a single intraperitoneal high dose of STZ, the HK M. aurum-treated diabetic group was prophylactically treated with three doses of HK M. aurum 6 weeks before STZ injection, and the control non-diabetic group was given three intradermal injections of borate-buffered saline and an intraperitoneal injection of citrate buffer. Liver lactate dehydrogenase (LDH), uncoupling protein 2 (UCP2), and glucose transporter 2 (GLUT2) and skeletal muscle LDH, UCP3, and GLUT4 protein expression levels in different mouse groups were determined by Western blot. Results: Our results indicated that HK M. aurum did not cause any significant changes in glycemic levels of normal non-diabetic mice. Prophylactic administration of three doses of HK M. aurum to diabetic mice resulted in a significant reduction in their blood glucose levels when compared to those in control diabetic mice. Prophylactic treatment of diabetic mice with HK M. aurum significantly restored their disturbed protein expression levels of liver UCP2 and LDH as well as of skeletal muscle UCP3. On the other hand, prophylactic treatment of diabetic mice with HK M. aurum had no significant effect on their liver GLUT2 and skeletal muscle GLUT4 and LDH protein expression levels. Conclusions: Our findings provide the first evidence that HK M. aurum possesses a hyperglycemia-lowering capacity and might support its future use as a food supplement for the amelioration of diabetes.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Fígado , Músculo Esquelético , Estresse Oxidativo , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hiperglicemia/prevenção & controle , Hiperglicemia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Glicemia/metabolismo , Estreptozocina , Mycobacterium , Temperatura Alta , Glucose/metabolismo
12.
Cell Transplant ; 33: 9636897241283728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39361612

RESUMO

Human islets can be transplanted into the portal vein for T1 diabetes, and a similar procedure is being used in a clinical trial for stem cell-derived beta-like cells. Efforts have been underway to find an alternative transplant site that will foster better islet cell survival and function. Although conceptually attractive, the subcutaneous (SC) site has yielded disappointing results, in spite of some improvements resulting from more attention paid to vascularization and differentiation factors, including collagen. We developed a method to transplant rat islets in a disk of type 1 collagen gel and found improved efficacy of these transplants. Survival of islets following transplantation (tx) was determined by comparing insulin content of the graft to that of the pre-transplant islets from the same isolation. At 14 days after transplantation, grafts of the disks had more than double the recovered insulin than islets transplanted in ungelled collagen. SC grafts of disks had similar insulin content to grafts in a kidney site and in epididymal fat pads. In vivo disks underwent contraction to 10% of initial volume within 24 h but the islets remained healthy and well distributed. Whole mount imaging showed that residual donor vascular cells within the islets expanded and connected to ingrowing host blood vessels. Islets (400 rat islet equivalents (IEQ)) in the collagen disks transplanted into an SC site of NOD scid IL2R gammanull (NSG) mice reversed streptozotocin (STZ)-induced diabetes within 10 days as effectively as transplants in the kidney site. Thus, a simple change of placing islets into a gel of collagen 1 prior to transplantation allowed a prompt reversal of STZ-induced diabetes using SC site.


Assuntos
Transplante das Ilhotas Pancreáticas , Transplante das Ilhotas Pancreáticas/métodos , Animais , Ratos , Camundongos , Masculino , Colágeno Tipo I/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Experimental/terapia , Géis , Humanos , Insulina/metabolismo , Sobrevivência de Enxerto
13.
Mol Med Rep ; 30(6)2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-39370807

RESUMO

Although both mucin1 (MUC1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) have been reported to be associated with dry eye (DE) disease, whether they interact and their regulatory roles in diabetic DE disease are unknown. Diabetic DE model mice were generated by streptozotocin induction and assessed by corneal fluorescein staining, tear ferning (TF) tests, phenol red thread tests, hematoxylin and eosin staining of corneal sections and periodic acid Schiff staining of conjunctival sections. Cell proliferation was measured by CCK8 assay. Western blotting was performed to measure protein expression. Primary mouse corneal epithelial cells (MCECs) were cultured after enzymatic digestion. Immunofluorescence staining of MCECs and frozen corneal sections was conducted to assess protein expression and colocalization. Coimmunoprecipitation was performed to detect protein­protein interactions. It was found that, compared with control mice, diabetic DE mice exhibited increased corneal epithelial defects, reduced tear production, poorer TF pattern grades and impaired corneal and conjunctival tissues. In vivo and in vitro experiments showed that hyperglycemia impaired cell proliferation, accompanied by decreased levels of the MUC1 extracellular domain (MUC1­ND) and TRPV1. Additionally, it was found that capsazepine (a TRPV1 antagonist) inhibited the proliferation of MCECs. Notably, MUC1­ND was shown to interact with the TRPV1 protein in the control group but not in the diabetic DE group. It was also found that the AKT signaling pathway was attenuated in the diabetic DE mice and downstream of TRPV1. MUC1­ND interacted with TRPV1, partly activating the AKT signaling pathway to promote MCEC proliferation. The present study found that the interaction of MUC1­ND with TRPV1 promotes MCEC proliferation by partly activating the AKT signaling pathway, providing new insight into the pathogenesis of corneal epithelial dysfunction in diabetic DE disease.


Assuntos
Proliferação de Células , Diabetes Mellitus Experimental , Síndromes do Olho Seco , Mucina-1 , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Mucina-1/metabolismo , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
14.
PLoS One ; 19(10): e0311502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39374222

RESUMO

BACKGROUND: Penthorum chinense Pursh (PCP), a medicinal and edible plant, has been reported to protect against liver damage by suppressing oxidative stress. Type 2 diabetes mellitus (T2DM) is associated with liver dysfunction and oxidative stress. In the present study, we aim to investigate the hypoglycemic effect of PCP on db/db mice and further explore the underlying mechanisms. METHODS: Thirty-two db/db mice were randomized into four groups, including a diabetic model control group (MC) and three diabetic groups treated with low (LPCP, 300 mg/kg/d), medium (MPLP, 600 mg/kg/d), and high doses of PCP (HPCP, 1200 mg/kg/d), and the normal control group (NC) of eight db/m mice were included. Mice in the NC and MC groups received the ultrapure water. After four weeks of intervention, parameters of fasting blood glucose (FBG), insulin resistance (IR), blood lipid levels, hepatic oxidative stress, and enzymes related to hepatic glucose metabolism were compared in the groups. RESULTS: PCP administration significantly reduced FBG and IR in diabetic db/db mice, and improved hepatic glucose metabolism by increasing glucose transporter 2 (GLUT2) and glucokinase (GCK) protein expression. Meanwhile, PCP supplementation ameliorated hepatic oxidative stress by decreasing malonaldehyde content and increasing the activities of superoxide dismutase and glutathione peroxidase in db/db mice. Furthermore, PCP treatment reduced obesity and food intake in db/db mice, and improved dyslipidemia demonstrated by increasing high-density lipoprotein cholesterol (HDL-C) while decreasing total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (HDL-C). All doses of PCP treatment decreased the values of LDL-C/HDL-C in a dose-response relationship. CONCLUSION: PCP significantly alleviated hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity, inhibited hepatic oxidative stress, and enhanced hepatic glucose transport in T2DM mice. Based on the above findings, the hypoglycemic effect of PCP may be attributed to the activation of the GLUT2/GCK expression in the liver and the reduction of hepatic oxidative stress.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Obesidade , Estresse Oxidativo , Extratos Vegetais , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Transportador de Glucose Tipo 2/metabolismo
15.
Sci Rep ; 14(1): 22812, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354039

RESUMO

This study aimed to characterize the role of female sex in the pathogenesis of diabetic retinopathy. In the retinae of female Ins2Akita-diabetic mice (F-IA), ovariectomized female Ins2Akita-diabetic mice (F-IA/OVX), male Ins2Akita-diabetic mice (M-IA), and female STZ-diabetic mice (F-STZ), the formation of reactive metabolites and post-translational modifications, damage to the neurovascular unit, and expression of cellular stress response genes were analyzed. Compared to the male diabetic retina, the concentrations of the glycation adduct fructosyl-lysine, the Maillard product 3-deoxyglucosone, and the reactive metabolite methylglyoxal were significantly reduced in females. In females, there was also less evidence of diabetic damage to the neurovascular unit, as shown by decreased pericyte loss and reduced microglial activation. In the male diabetic retina, the expression of several members of the crystallin gene family (Cryab, Cryaa, Crybb2, Crybb1, and Cryba4) was increased. Clinical data from type 1 diabetic females showed that premenopausal women had a significantly lower prevalence of diabetic retinopathy compared to postmenopausal women stratified for disease duration and glycemic control. These data emphasize the importance of estradiol in protecting the diabetic retina and highlight the pathogenic relevance of sex in diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Retina , Caracteres Sexuais , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Feminino , Masculino , Camundongos , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Retina/patologia , Humanos , Fatores Sexuais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças
16.
Acta Cir Bras ; 39: e396124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39356932

RESUMO

PURPOSE: To examine whether isoflurane preconditioning (IsoP) has a protective effect against renal ischemia/reperfusion injury (I/RI) in diabetic conditions and to further clarify the underlying mechanisms. METHODS: Control and streptozotocin-induced diabetic rats were randomly assigned to five groups, as follows: normal sham, normal I/R, diabetic sham, diabetic I/R, and diabetic I/R + isoflurane. Renal I/RI was induced by clamping renal pedicle for 45 min followed by reperfusion for 24 h. IsoP was achieved by exposing the rats to 2% isoflurane for 30 min before vascular occlusion. Kidneys and blood were collected after reperfusion for further analysis. Renal histology, blood urea nitrogen, serum creatinine, oxidative stress, inflammatory cytokines, and renal cell apoptosis were assessed. Furthermore, the expression of brahma related gene 1 (Brg1), nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and nuclear factor-κB (NF-κB) were determined. RESULTS: Compared with control, diabetic rats undergoing I/R presented more severe renal injury, oxidative stress, inflammatory reaction, and apoptosis with the impairment of Brg1/Nrf2/HO-1 signaling. All these alterations were significantly attenuated by pretreatment with isoflurane. CONCLUSIONS: These findings suggest that isoflurane could alleviate renal I/RI in diabetes, possibly through improving Brg1/Nrf2/HO-1 signaling.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Precondicionamento Isquêmico , Isoflurano , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Distribuição Aleatória , Traumatismo por Reperfusão , Transdução de Sinais , Fatores de Transcrição , Animais , Isoflurano/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Diabetes Mellitus Experimental/complicações , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Precondicionamento Isquêmico/métodos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , DNA Helicases/metabolismo , Rim/efeitos dos fármacos , Rim/irrigação sanguínea , Rim/patologia , Proteínas Nucleares/metabolismo , Heme Oxigenase-1/metabolismo , Anestésicos Inalatórios/farmacologia , Ratos , Ratos Sprague-Dawley , NF-kappa B/metabolismo
17.
CNS Neurosci Ther ; 30(9): e70024, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39218798

RESUMO

AIMS: Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS: T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS: Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS: These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.


Assuntos
Astrócitos , Diabetes Mellitus Tipo 2 , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório , Hipocampo , Camundongos Endogâmicos C57BL , Complicações Cognitivas Pós-Operatórias , Animais , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Astrócitos/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Hipocampo/metabolismo , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Transgênicos
18.
J Nanobiotechnology ; 22(1): 530, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218901

RESUMO

Improper management of diabetic wound effusion and disruption of the endogenous electric field can lead to passive healing of damaged tissue, affecting the process of tissue cascade repair. This study developed an extracellular matrix sponge scaffold (K1P6@Mxene) by incorporating Mxene into an acellular dermal stroma-hydroxypropyl chitosan interpenetrating network structure. This scaffold is designed to couple with the endogenous electric field and promote precise tissue remodelling in diabetic wounds. The fibrous structure of the sponge closely resembles that of a natural extracellular matrix, providing a conducive microenvironment for cells to adhere grow, and exchange oxygen. Additionally, the inclusion of Mxene enhances antibacterial activity(98.89%) and electrical conductivity within the scaffold. Simultaneously, K1P6@Mxene exhibits excellent water absorption (39 times) and porosity (91%). It actively interacts with the endogenous electric field to guide cell migration and growth on the wound surface upon absorbing wound exudate. In in vivo experiments, the K1P6@Mxene sponge reduced the inflammatory response in diabetic wounds, increased collagen deposition and arrangement, promoted microvascular regeneration, Facilitate expedited re-epithelialization of wounds, minimize scar formation, and accelerate the healing process of diabetic wounds by 7 days. Therefore, this extracellular matrix sponge scaffold, combined with an endogenous electric field, presents an appealing approach for the comprehensive repair of diabetic wounds.


Assuntos
Antibacterianos , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Masculino , Matriz Extracelular/química , Hemostáticos/farmacologia , Hemostáticos/química , Alicerces Teciduais/química , Diabetes Mellitus Experimental/complicações , Camundongos , Quitosana/química , Ratos , Humanos , Condutividade Elétrica , Ratos Sprague-Dawley
19.
Drug Des Devel Ther ; 18: 3903-3919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224902

RESUMO

Purpose: Bone loss is a common complication of type 2 diabetes mellitus (T2DM). Circadian rhythms play a significant role in T2DM and bone remodeling. Eldecalcitol (ED-71), a novel active vitamin D analog, has shown promise in ameliorating T2DM. We aimed to investigate whether the circadian rhythm coregulator BMAL1 mediates the anti-osteoporotic effect of ED-71 in T2DM and its associated mechanisms. Methods: A T2DM mouse model was established using high-fat diet (HDF) and streptozotocin (STZ) injection, and blood glucose levels were monitored weekly. HE staining, Masson staining, and Micro-CT were performed to assess the changes in bone mass. IHC staining and IF staining were used to detect osteoblast status and BMAL1 expression and RT-qPCR was applied to detect the change of oxidative stress factors. In vitro, high glucose (HG) stimulation was used to simulate the cell environment in T2DM. RT-qPCR, Western blot, IF, ALP staining and AR staining were used to detect osteogenic differentiation and SIRT1/GSK3ß signaling pathway. DCFH-DA staining was used to detect reactive oxygen species (ROS) levels. Results: ED-71 increased bone mass and promoted osteogenesis in T2DM mice. Moreover, ED-71 inhibited oxidative stress and promoted BMAL1 expression in osteoblasts The addition of STL1267, an agonist of the BMAL1 transcriptional repressor protein REV-ERB, reversed the inhibitory effect of ED-71 on oxidative stress and the promotional effect on osteogenic differentiation. In addition, ED-71 facilitated SIRT1 expression and reduced GSK3ß activity. The inhibition of SIRT1 with EX527 partially attenuated ED-71's effects, whereas the GSK3ß inhibitor LiCl further enhanced ED-71's positive effects on BMAL1 expression. Conclusion: ED-71 ameliorates bone loss in T2DM by upregulating the circadian rhythm coregulator BMAL1 and promoting osteogenesis through inhibition of oxidative stress. The SIRT1/GSK3ß signaling pathway is involved in the regulation of BMAL1.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos Endogâmicos C57BL , Osteogênese , Regulação para Cima , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Osteogênese/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Estreptozocina , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Dieta Hiperlipídica , Células Cultivadas
20.
Eur Rev Med Pharmacol Sci ; 28(16): 4214-4224, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39229849

RESUMO

OBJECTIVE: Isorhamnetin, a naturally occurring flavonoid compound, holds paramount importance as a primary constituent within several medicinal plants, exhibiting profound pharmacological significance. The aim of this study is to investigate the pain-relieving attributes of isorhamnetin in murine models through both formalin-induced pain and diabetic neuropathy scenarios. MATERIALS AND METHODS: To achieve our objective, isorhamnetin was orally administered to mice at varying dosage levels (10 to 100 mg/kg). Pain-related behaviors were assessed using the formalin test during its secondary phase. Additionally, the potential pain-alleviating effect of isorhamnetin was evaluated in a diabetic neuropathy model induced by streptozotocin. Additionally, we carried out advanced interventions using naloxone, which is a well-known antagonist of opioid receptors, yohimbine, which blocks α2-adrenergic receptors, and methysergide, which inhibits serotonergic receptors, during the formalin test. RESULTS: The oral intake of isorhamnetin showed a decrease in behaviors associated with pain that was proportional to the dose observed during the second phase of the formalin test when induced by formalin. In the diabetic neuropathy model, isorhamnetin administration effectively reversed the reduced pain threshold observed. Notably, naloxone, the opioid receptor antagonist, effectively counteracted the pain-relieving effect produced by isorhamnetin in the formalin test, whereas yohimbine and methysergide did not yield similar outcomes. Isorhamnetin also led to a reduction in elevated spinal cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) levels triggered by formalin, with this effect reversed by pre-treatment with naloxone. The compound also suppressed heightened spinal phosphorylated CREB (p-CREB) levels caused by diabetic neuropathy. CONCLUSIONS: This research determined that isorhamnetin has notable abilities to relieve pain in models of formalin-induced pain and diabetic neuropathy. The pain-relieving mechanism of isorhamnetin in the formalin-induced pain model seems to be connected to the activation of spinal opioid receptors and the adjustment of CREB protein amounts. This insight improves our knowledge of how isorhamnetin could be used therapeutically to treat pain conditions stemming from formalin-induced pain and diabetic neuropathy.


Assuntos
Analgésicos , Neuropatias Diabéticas , Formaldeído , Quercetina , Animais , Camundongos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/induzido quimicamente , Quercetina/análogos & derivados , Quercetina/farmacologia , Quercetina/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Modelos Animais de Doenças , Dor/tratamento farmacológico , Dor/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Ioimbina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Naloxona/farmacologia , Naloxona/uso terapêutico , Estreptozocina , Medição da Dor/efeitos dos fármacos , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA