Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Environ Res ; 228: 115906, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062480

RESUMO

Wide-scale emergence of glyphosate-resistant weeds has led to an increase in the simultaneous application of herbicide mixtures exacerbated by the introduction of crops tolerant to glyphosate plus dicamba or glyphosate plus 2,4-D. This raises serious concerns regarding the environmental and health risks resulting from increased exposure to a mixture of herbicide active ingredients. We evaluated hepatotoxic effects following perinatal exposure to glyphosate alone or in combination with 2,4-D and dicamba from gestational day-6 until adulthood in Wistar rats. Animals were administered with glyphosate at the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day) and no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day). A mixture of glyphosate with 2,4-D (0.3 mg/kg bw/day) and dicamba (0.02 mg/kg bw/day) with each at their EU ADI was evaluated. Redox status was determined by measuring levels of reduced glutathione, decomposition rate of Η2Ο2, glutathione reductase, glutathione peroxidase, total antioxidant capacity, thiobarbituric reactive substances, and protein carbonyls. Gene expression analysis of Nr1d1, Nr1d2, Clec2g, Ier3, and Gadd45g associated with oxidative damage to DNA, was also performed. Analysis of liver samples showed that exposure to the mixture of the three herbicides induced a marked increase in the concentration of glutathione and malondialdehyde indicative of a disturbance in redox balance. Nevertheless, the effect of increased lipid peroxidation was not discernible following a 3-month recuperation period where animals were withdrawn from pesticide exposure post-weaning. Interestingly, toxic effects caused by prenatal exposure to the glyphosate NOAEL were present after the same 3-month recovery period. No statistically significant changes in the expression of genes linked with genotoxicity were observed. Our findings reinforce the importance of assessing the combined effects of chemical pollutants at doses that are asserted by regulatory agencies to be safe individually.


Assuntos
Dicamba , Herbicidas , Ratos , Animais , Gravidez , Feminino , Dicamba/química , Dicamba/toxicidade , Ratos Wistar , Herbicidas/toxicidade , Herbicidas/química , Oxirredução , Ácido 2,4-Diclorofenoxiacético , Fígado
2.
Sensors (Basel) ; 23(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36991952

RESUMO

Weeds can cause significant yield losses and will continue to be a problem for agricultural production due to climate change. Dicamba is widely used to control weeds in monocot crops, especially genetically engineered dicamba-tolerant (DT) dicot crops, such as soybean and cotton, which has resulted in severe off-target dicamba exposure and substantial yield losses to non-tolerant crops. There is a strong demand for non-genetically engineered DT soybeans through conventional breeding selection. Public breeding programs have identified genetic resources that confer greater tolerance to off-target dicamba damage in soybeans. Efficient and high throughput phenotyping tools can facilitate the collection of a large number of accurate crop traits to improve the breeding efficiency. This study aimed to evaluate unmanned aerial vehicle (UAV) imagery and deep-learning-based data analytic methods to quantify off-target dicamba damage in genetically diverse soybean genotypes. In this research, a total of 463 soybean genotypes were planted in five different fields (different soil types) with prolonged exposure to off-target dicamba in 2020 and 2021. Crop damage due to off-target dicamba was assessed by breeders using a 1-5 scale with a 0.5 increment, which was further classified into three classes, i.e., susceptible (≥3.5), moderate (2.0 to 3.0), and tolerant (≤1.5). A UAV platform equipped with a red-green-blue (RGB) camera was used to collect images on the same days. Collected images were stitched to generate orthomosaic images for each field, and soybean plots were manually segmented from the orthomosaic images. Deep learning models, including dense convolutional neural network-121 (DenseNet121), residual neural network-50 (ResNet50), visual geometry group-16 (VGG16), and Depthwise Separable Convolutions (Xception), were developed to quantify crop damage levels. Results show that the DenseNet121 had the best performance in classifying damage with an accuracy of 82%. The 95% binomial proportion confidence interval showed a range of accuracy from 79% to 84% (p-value ≤ 0.01). In addition, no extreme misclassifications (i.e., misclassification between tolerant and susceptible soybeans) were observed. The results are promising since soybean breeding programs typically aim to identify those genotypes with 'extreme' phenotypes (e.g., the top 10% of highly tolerant genotypes). This study demonstrates that UAV imagery and deep learning have great potential to high-throughput quantify soybean damage due to off-target dicamba and improve the efficiency of crop breeding programs in selecting soybean genotypes with desired traits.


Assuntos
Aprendizado Profundo , Herbicidas , Dicamba , Herbicidas/análise , Soja/genética , Dispositivos Aéreos não Tripulados , Melhoramento Vegetal , Produtos Agrícolas/genética , Plantas Daninhas
3.
J Agric Food Chem ; 71(11): 4550-4560, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36877199

RESUMO

A series of piperidinium-based herbicidal ionic liquids (HILs) were synthesized and investigated. The designed HILs, obtained with high yields, consisted of cation 1-alkyl-1-methylpiperidinium with surface activity and a commercially available herbicidal anion: (3,6-dichloro-2-methoxy)benzoates (dicamba). The above-mentioned compounds were characterized in terms of surface activity and phytotoxicity. Preliminary results were obtained at higher wettability for all HILs when compared to the wettability of commercial Dicash, with HIL having 18 atoms in the carbon chain being the best effectiveness in wetting surfaces (weeds and crop leaves), whereby a drop of HILs with short alkyl chains (C8-C10) could not slide down a leaf. Our findings present that wettability or mobility of HILs drops varied depending on the plant species. Moreover, in this study, by zeta potential and atomic force microscopy measurements, we provide conclusive evidence to demonstrate that alkyl chain elongation plays a significant role in the evolution of surface properties of HILs.


Assuntos
Herbicidas , Líquidos Iônicos , Herbicidas/farmacologia , Controle de Plantas Daninhas , Dicamba , Propriedades de Superfície
4.
J Environ Sci Health B ; 58(4): 327-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36747441

RESUMO

2,4-D or dicamba can cause injuries and other deleterious effects on non-tolerant soybeans. Thus, the objective was to evaluate the potential for injury of subdoses of 2,4-D or dicamba, in drift simulation, for application in non-tolerant soybeans. Two experiments were carried out, one with 2,4-D and the other with dicamba. The treatments consisted of the application, in post-emergence of non-tolerant soybean, of subdoses 0; 1.35; 2.68; 5.37; 10.72; 21.45 and 42.9 g acid equivalent (ae) ha-1 2,4-D choline salt or dicamba diglycolamine (DGA) salt. Injury symptoms in plants, plant height and yield were evaluated, and the results were subjected to regression analysis. Polynomial fit was possible for the doses of both herbicides, with deleterious effects on soybean, with reductions in height and yield. The application of 2,4-D ≥ 10.72 g ae ha-1 was enough to cause injuries greater than 10% in plants, in simulated drift. The application of dicamba ≥1.35 g ae ha-1 was enough to cause injuries greater than 30% in plants, in simulated drift. For both herbicides, greater potential for injury and reductions in soybean yield were observed for the application of the highest doses (21.45 and 42.9 g ae ha-1).


Assuntos
Dicamba , Herbicidas , Dicamba/toxicidade , Soja , Herbicidas/toxicidade , Ácido 2,4-Diclorofenoxiacético/toxicidade
5.
Sci Total Environ ; 856(Pt 1): 158917, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155028

RESUMO

In recent years, carbon-based materials catalyzing peroxymonosulfate (PMS) for green degradation of persistent organic pollutants have attracted increasing attention. However, PMS activation by hydrochar composite (e.g. hydrochar-montomorillonite) has rarely been investigated. Herein, a simple preparation, low-cost and eco-friendly catalyst of hydrochar-montmorillonite composite (HC-Mt) was prepared to firstly catalyze PMS for the degradation of dicamba (DIC). The as-prepared HC-Mt showed a remarkably better catalyzing performance for PMS than pure hydrochar (HC) due to its good physicochemical characteristics and abundant oxygen-containing groups. Furthermore, the electron spin resonance (ESR) and quenching tests revealed that active species such as SO4-, OH and O2- all participated in the degradation process. DIC sites on C6, Cl 10, and O15 exhibited higher reactivity according to the density functional theory (DFT) calculation, which were easily attacked by active species. The DIC degradation mainly occurred via hydroxyl substitution, decarboxylation, oxidation and ring-cleavage and finally most of the intermediates were mineralized into CO2 and H2O. Finally, the phytotoxicity assessment was measured by the germination growth situation of tobacco and mung beans in the presence of DIC (with or without treatment by HC-Mt/PMS). The result showed that HC-Mt/PMS could significantly reduce the phytotoxicity of DIC to crops, suggesting that catalyzing PMS using HC-Mt was environmentally friendly. Therefore, this work did not only provide a novel catalyzing PMS strategy using hydrochar composite for wastewater treatment, but also give a new idea for herbicide phytotoxicity management.


Assuntos
Bentonita , Dicamba , Peróxidos
6.
Pest Manag Sci ; 78(11): 4939-4946, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181421

RESUMO

BACKGROUND: Chenopodium album L. is a troublesome weed in spring-planted crops, and different levels of ploidy have been documented for this weed species. A population of C. album has evolved resistance to dicamba. The level of ploidy and inheritance of dicamba resistance was studied in this population. RESULTS: The resistant and susceptible individuals of C. album were confirmed as tetraploid by flow cytometry. Pair-crosses were made between ten resistant and susceptible individuals. Eight F1 individuals from five crosses were confirmed resistant after treating with dicamba at 400 g a.e. ha-1 . These individuals were selfed, and the response of their progenies to dicamba was assessed in dose-response experiments, and the results confirmed the resistance trait was dominant. Furthermore, an analysis of the segregation patterns revealed that the segregation response of all F2 progenies fitted a 3:1 (resistant/susceptible) ratio when treated with dicamba at 200, 400 and 800 g a.e. ha-1 , suggesting a single gene was responsible for dicamba resistance. CONCLUSIONS: Dicamba resistance in the studied tetraploid population of C. album is governed by a single dominant gene. This type of inheritance suggests that selection for dicamba resistance can occur readily. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chenopodium album , Herbicidas , Chenopodium album/genética , Dicamba , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Humanos , Tetraploidia
7.
PLoS One ; 17(10): e0276418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36279296

RESUMO

Widespread pesticide drift issues ensued from the advent of dicamba-tolerant crop systems in the late 2010s, resulting in millions of acres of damaged farmland. Farmers who suffered drift-related losses in crop yield had to seek recovery in state courts. However, state courts varied in their approaches to drift lawsuits and remedies, if awarded, could include damage awards or injunctions. To demonstrate the need for a more transparent judicial process, this paper identifies three torts commonly advanced as causes of actions in drift cases and creates theoretic-game models to evaluate each tort's impact on farmers' decision-making and economic outcomes.


Assuntos
Responsabilidade Legal , Praguicidas , Humanos , Dicamba , Fazendeiros , Agricultura
8.
Chemosphere ; 308(Pt 1): 136236, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057354

RESUMO

Basin land-use interacts with hydrology to deliver chemical contaminants to riverine environments. These chemicals are eventually taken up by aquatic organisms, where they can cause harmful effects. However, knowledge gaps related to the connections between hydrological, chemical, and biological processes currently limit our ability to forecast potential future changes in contaminant concentrations accurately. In this study, concentrations of three pesticide classes (organochlorines, organophosphates, and herbicides) and a standard suite of trace metals were analyzed in the South Saskatchewan River, Canada in 2020 and 2021 in water, sediments, and fishes. Organochlorine pesticides have been banned in Canada since the 1970s, yet there were some detections for methoxychlor and lindane, predominantly in sediment and fish samples, which could be attributed to legacy contamination. Except for malathion and parathion, organophosphate pesticides were scarcely detected in both sampling years in all matrices, and neonicotinoids were below detection in all samples. Conversely, the herbicides 2,4-D and dicamba were detected consistently throughout all locations in water samples for both sampling years. Overall, concentrations were 3 times higher in 2020 when river discharge was ∼2 times higher, suggesting run-off from the surrounding catchment or disturbance of contaminated sediments. Analysis for trace metals revealed that Cu and Zn exceeded sediment quality guidelines in some locations. Mercury concentrations exceeded the guidelines for about 18% of the samples (water and sediment) analyzed. These findings fill gaps in monitoring datasets and highlight key links between hydrology and chemistry that can be further explored in computational models to predict future contaminant trends in freshwater systems.


Assuntos
Herbicidas , Hidrocarbonetos Clorados , Mercúrio , Paration , Praguicidas , Oligoelementos , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético , Animais , Dicamba , Monitoramento Ambiental , Peixes , Sedimentos Geológicos/química , Herbicidas/análise , Hexaclorocicloexano/análise , Hidrocarbonetos Clorados/análise , Malation , Mercúrio/análise , Metoxicloro/análise , Neonicotinoides/análise , Praguicidas/análise , Rios/química , Oligoelementos/análise , Água/análise , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 56(19): 13644-13653, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36150089

RESUMO

Amines are frequently included in formulations of the herbicides glyphosate, 2,4-D, and dicamba to increase herbicide solubility and reduce herbicide volatilization by producing herbicide-amine salts. Amines, which typically have higher vapor pressures than the corresponding herbicides, could potentially volatilize from these salts and enter the atmosphere, where they may impact atmospheric chemistry, human health, and climate. Amine volatilization from herbicide-amine salts may additionally contribute to volatilization of dicamba and 2,4-D. In this study, we established that amines applied in herbicide-amine salt formulations undergo extensive volatilization. Both dimethylamine and isopropylamine volatilized when aqueous salt solutions were dried to a residue at ∼20 °C, while lower-vapor pressure amines like diglycolamine and n,n-bis-(3-aminopropyl)methylamine did not. However, all four amines volatilized from salt residues at 40-80 °C. Because amine loss typically exceeded herbicide loss, we proposed that neutral amines dominated volatilization and that higher temperatures altered their protonation state and vapor pressure. Due to an estimated 4.0 Gg N/yr applied as amines to major U.S. crops, amine emissions from herbicide-amine salts may be important on regional scales. Further characterization of worldwide herbicide-amine use would enable this contribution to be compared to the 285 Gg N/yr of methylamines emitted globally.


Assuntos
Dicamba , Herbicidas , Ácido 2,4-Diclorofenoxiacético , Aminas , Dicamba/química , Dimetilaminas , Herbicidas/química , Humanos , Metilaminas , Sais , Volatilização
10.
Sci Total Environ ; 848: 157770, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926599

RESUMO

Weed resistance to glyphosate has been a driving force behind the increased use of alternative herbicides in agriculture. Recently, dicamba-tolerant recombinant plants were introduced to the market, which may result in residues of this agrochemical contaminating environmental waters. Given that restrictions on the use of dicamba have consequently been established by regulatory agencies, it is therefore also desirable to conduct extensive controls on dicamba residues. Immunoassays are currently the most powerful bioanalytical technology for the rapid monitoring of chemical residues and contaminants. In the present study, a novel hapten was designed maintaining unaltered all the antigenic moieties of the target molecule, and this was used to generate high-affinity monoclonal antibodies against dicamba for the first time. Additionally, a collection of haptens with different linker composition or linker tethering site was synthesized and conjugated to proteins. Using these novel immunoreagents, a direct competitive enzyme-linked immunosorbent assay with a limit of detection for dicamba of 0.24 ng/mL was developed and validated. Analysis of water samples from different origins afforded recovery values between 90 % and 120 %, and coefficients of variation below 20 % were obtained. These results indicate that the developed immunochemical assay is suitable for the rapid determination of dicamba residues in environmental water samples.


Assuntos
Dicamba , Herbicidas , Anticorpos Monoclonais , Dicamba/química , Haptenos/química , Herbicidas/química , Imunoensaio , Água
11.
Sci Total Environ ; 845: 157181, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817095

RESUMO

In this study, two homologous series of esterquats comprising alkyl (from ethyl to octadecyl) betainate cations and bromide as well as dicamba anions were successfully synthesized, starting from a renewable raw material - glycine betaine. Due to the favorable octanol-water partition coefficient and utilization of biodegradable cations of natural origin, synthesized esterquats can be considered promising alternatives to currently applied dicamba-based formulations. In addition, the obtained results allowed us to verify whether the organic cations in quaternary ammonium salts containing herbicidally active anions (such as dicamba) play the role of biologically inactive adjuvants that only enhance the efficiency of the active ingredient or if they simultaneously exhibit a significant degree of phytotoxicity. Analysis of the influence of alkyl betainate esterquats containing nonherbicidal (bromide) anions on seedlings of white mustard revealed that alkyl betainate cations promote the germination of white mustard seeds; however, the subsequent growth of the seedlings was significantly inhibited. Further studies performed on white mustard and cornflower plants in a stage of 4-6 leaves allowed us to conclude that in the case of sensitive plants, the high phytotoxicity can be attributed to the presence of the dicamba anion, whereas for more resistant plants the additional influence of the cation on the phytotoxic effect is visible. Esterquats comprising a dodecyl substituent or longer had high surface active properties. Nonetheless, their contact angle values were not correlated with phytotoxicity data, indicating an additional influence of the cation on this stage of plant development. Interestingly, subsequent dose-response experiments conducted for two selected dicamba-based products confirmed that the greatest phytotoxicity was expressed by compounds containing a decyl substituent.


Assuntos
Dicamba , Herbicidas , Ânions , Betaína/toxicidade , Brometos , Cátions , Herbicidas/toxicidade , Sinapis
12.
Mol Biol Rep ; 49(12): 11273-11280, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35804213

RESUMO

BACKGROUND: Many genotoxicity tests allow us to understand the mechanism of damages on genetic material occurring in living organisms against various physical and chemical agents. One of them is the Comet test. The current study aimed to evaluate genotoxic caused by picloram and dicamba to root meristems of Allium cepa utilizing comet assay. METHODS: Two different protocols were used for rooting and auxin/pesticide application. (i) A. cepa bulbs were rooted in MS medium and then treated with Murashige and Skoog (MS) medium (control) and 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba using aseptic tissue culture techniques. (ii) A. cepa bulbs were then rooted in bidistilled water and treated with 0 (control), 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba in distilled water. The A. cepa root tip cells in both treatment groups were examined using comet test to find the possible DNA damaging effects of picloram and dicamba. RESULTS: The results obtained at all the concentrations were statistically compared with their control groups. Almost at all the concentrations of Picloram and dicamba increased comet tail intensity (%) and tail moment in roots treated in MS medium. Two highest concentrations revealed toxic effect. On the other hand, DNA damaging effect of both auxins was only noted on the highest (> 4.02 mg/L) in roots treated in distilled water. CONCLUSIONS: This study approve and confirm genotoxic effects of how growth regulators on plants. These findings give an evidence of DNA damage in A. cepa. Therefore, both picloram and dicamba should only be used in appropriate and recommended concentrations in agriculture to conserve ecosystem and to pose minimum threat to life.


Assuntos
Dicamba , Cebolas , Ensaio Cometa , Cebolas/genética , Dicamba/farmacologia , Picloram/farmacologia , Ecossistema , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Água
13.
J Environ Manage ; 317: 115303, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35613534

RESUMO

Expansion of dicamba-resistant crops increased the frequency of off-target movement issues, especially in the midsouthern United States. Six field trials were conducted over two growing seasons with the purpose to determine the contribution of volatilization and physical suspension of particles to the off-target movement of dicamba when applied with glyphosate and imazethapyr - a non-volatile herbicide used as a tracer for physical off-target movement. Applications included dicamba at 560 g ha-1, glyphosate at 1260 g ha-1, and imazethapyr at 105 g ha-1. Applicators include glyphosate with dicamba to increase the spectrum of weed control from these applications; however, this addition increases potential for dicamba volatilization. Following application of the mixture, air samplers were placed in the field to collect dicamba and imazethapyr. Results showed there was at least 50 times more dicamba than imazethapyr detected even though the dicamba:imazethapyr ratio applied was 5.3:1. Dicamba was detected in the treated area and the off-site locations and all intervals of air sampling, ranging from 126 to 5990 ng. No more than 37.5 ng of imazethapyr was detected during the first 24-h after application (HAA) inside the treated area. Imazethapyr was only detected in 9 of the 20 sampling combinations during these experiments, and most of these detections (6) occurred during the first 24 HAA and inside the treated area. While some movement from the suspension of particles occurred based on the detection of imazethapyr in air samples, results show that most dicamba detection was due to the volatilization of the herbicide.


Assuntos
Dicamba , Herbicidas , Glicina/análogos & derivados , Ácidos Nicotínicos , Volatilização
14.
Pest Manag Sci ; 78(7): 2759-2766, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35254733

RESUMO

BACKGROUND: Field experiments were conducted across multiple sites in 2012 and 2013 to describe sensitivity of soybean to 2,4-D (six doses) and dicamba (seven doses) at V3 and R1 growth stages. Further experiments were conducted under greenhouse conditions in 2017 and 2018 to compare soybean response to several dicamba herbicides across a broader range of doses than those tested in the field. RESULTS: Soybean yield loss was 6.1-fold greater from 2,4-D exposure at V3 compared to R1 and 1.4 times greater from dicamba exposure at R1 than at V3. In V3 exposures, soybean was 15.4 times more sensitive to dicamba than 2,4-D and 134.4-fold more sensitive to dicamba when exposed at R1. Plant injury and height correlations to grain yield resulted in coefficients ranging from 0.65 to 0.91. In greenhouse experiments, five dicamba products were tested at up to 19 doses and as low as 0.002 g ae ha-1 (3.6 × 10-6 % of maximum single use-rate); however, no differences were observed among formulations used in dicamba-resistant crops versus traditional formulations. A no observable effects dose was not identified due to responses observed even at the lowest doses tested, although hormesis effects were observed in plant height. CONCLUSION: These data suggest that the sensitivity of soybean to dicamba is much greater than what has previously been reported. However, as has been indicated by previous work, that injury does not always result in yield loss. © 2022 Society of Chemical Industry.


Assuntos
Dicamba , Herbicidas , Ácido 2,4-Diclorofenoxiacético/farmacologia , Produtos Agrícolas , Dicamba/farmacologia , Herbicidas/análise , Herbicidas/farmacologia , Soja
15.
Pest Manag Sci ; 78(6): 2151-2160, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35170207

RESUMO

BACKGROUND: The commercialization of dicamba-resistant soybean has resulted in increased concern for off-target movement of dicamba onto sensitive vegetation. To mitigate the off-target movement through physical drift, one might consider use of rope wicks and other wiper applicators. Although wiper-type application methods have been efficacious in pasture settings, the utility of dicamba using wiper applicators in agronomic crops is not available in scientific literature. To determine the utility of roller wipers for dicamba applications in dicamba-resistant soybean, two separate experiments were conducted in the summer of 2020 and replicated in both Keiser and Fayetteville, AR, USA. RESULTS: Utilizing opposing application directions and a 2:1:1 ratio of water: formulated glyphosate: formulated dicamba were the most efficacious practices for controlling Palmer amaranth. The high herbicide concentrations and wiping in opposing directions increased dicamba-resistant soybean injury when the wiper contacted the crop, but no yield loss was observed because of this injury. Broadcast applications resulted in greater Palmer amaranth mortality than roller wiper applications, and the most effective roller wiper treatments were when two sequential applications were made inside the crop canopy. CONCLUSIONS: Dicamba applications require adequate coverage for optimum weed control. While efforts can be made to increase roller wiper efficacy by optimizing coverage and timing of applications, broadcast applications are superior to roller wiper applicators for weed control. Roller wiper applications did not reduce soybean yield, thus wiper-type applications may be safely used in dicamba-resistant soybean, albeit the likelihood for off-target damage caused by volatilization of these treatments would need to be investigated. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Dicamba , Herbicidas , Produtos Agrícolas , Resistência a Herbicidas , Herbicidas/análise , Herbicidas/farmacologia , Soja , Controle de Plantas Daninhas/métodos
16.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217601

RESUMO

The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Brassicaceae/genética , Resistência a Herbicidas/genética , Inseticidas , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Deleção de Sequência , Brassicaceae/metabolismo , Dicamba , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica , RNA de Plantas/genética , Receptores de Superfície Celular/metabolismo , Análise de Sequência de RNA/métodos
17.
Pest Manag Sci ; 78(4): 1538-1546, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34964546

RESUMO

BACKGROUND: Early-postemergence herbicide applications in the USA often include residual herbicides such as S-metolachlor to suppress late late-emerging Amaranthus spp. Although this practice benefits weed control, herbicide tankmixes can influence spray droplet size and drift potential during applications. The addition of S-metolachlor products to dicamba spray solutions generally decreases spray droplet size and increases spray drift potential. Advances in formulation technology fostered the development of products with reduced spray drift potential, especially for herbicide premixes containing multiple active ingredients. The objective of this study was to compare the drift potential of a novel dicamba plus S-metolachlor premix formulation (capsule suspension) against a tankmix containing dicamba (soluble liquid) and S-metolachlor (emulsifiable concentrate) using different venturi nozzles. RESULTS: The MUG nozzle had greater DV0.5 (1128.6 µm) compared to the ULDM (930.3 µm), TDXL-D (872.9 µm), and TTI nozzles (854.8 µm). The premix formulation had greater DV0.5 (971.0 µm) compared to the tankmix (922.3 µm). Nozzle influenced spray drift deposition (P < 0.0001) and soybean biomass reduction (P = 0.0465). Herbicide formulation influenced spray drift deposition (P < 0.0001), and biomass reduction of soybean (P < 0.0001) and cotton (P = 0.0479). The novel capsule suspension formulation (premix) of dicamba plus S-metolachlor had reduced area under the drift curve (AUDC) (577.6) compared to the tankmix (913.7). Applications using the MUG nozzle reduced AUDC (459.9) compared to the other venturi nozzles (ranging from 677.4 to 1141.7). CONCLUSION: Study results evidence that advances in pesticide formulation can improve pesticide drift mitigation. © 2021 Society of Chemical Industry.


Assuntos
Dicamba , Herbicidas , Acetamidas , Agricultura/métodos , Controle de Plantas Daninhas
18.
Sci Total Environ ; 806(Pt 3): 151199, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699829

RESUMO

In this work a novel nano-formulation is proposed to control leaching and volatilization of a broadly used herbicide, dicamba. Dicamba is subject to significant leaching in soils, due to its marked solubility, and to significant volatilization and vapor drift, with consequent risks for operators and neighbouring crops. Natural, biocompatible, low-cost materials were employed to control its dispersion in the environment: among four tested candidate carriers, a nanosized natural clay (namely, K10 montmorillonite) was selected to adsorb the pesticide, and carboxymethyl cellulose (CMC), a food-grade biodegradable polymer, was employed as a coating agent. The synthesis approach is based on direct adsorption at ambient temperature and pressure, with a subsequent particle coating to increase suspension stability and control pesticide release. The nano-formulation showed a controlled release when diluted to field-relevant concentrations: in tap water, the uncoated K10 released approximately 45% of the total loaded dicamba, and the percentage reduced to less than 30% with coating. CMC also contributed to significantly reduce dicamba losses due to volatilization from treated soils (e.g., in medium sand, 9.3% of dicamba was lost in 24 h from the commercial product, 15.1% from the uncoated nanoformulation, and only 4.5% from the coated one). Moreover, the coated nanoformulation showed a dramatic decrease in mobility in porous media (when injected in a 11.6 cm sand-packed column, 99.3% of the commercial formulation was eluted, compared to 88.4% of the uncoated nanoformulation and only 24.5% of the coated one). Greenhouse tests indicated that the clay-based nanoformulation does not hinder the dicamba efficacy toward target weeds, even though differences were observed depending on the treated species. Despite the small (lab and greenhouse) scale of the tests, these preliminary results suggest a good efficacy of the proposed nanoformulation in controlling the environmental spreading of dicamba, without hindering efficacy toward target species.


Assuntos
Herbicidas , Biopolímeros , Argila , Dicamba , Herbicidas/análise , Solo
19.
J Agric Food Chem ; 69(48): 14435-14444, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817161

RESUMO

Dicamba is an important herbicide for controlling post-emergent resistant weeds in soybean farming. Recently, the scientific community and general public have further examined off-target transport mechanisms (e.g., spray drift, volatilization, and tank contamination) and the visual responses of soybeans to ultralow dicamba concentrations. This paper synthesizes key chemical concepts and environmental processes associated with dicamba formulations, transport mechanisms, drift measurements, and plant responses. This paper proposes additional areas of research and actions to increase our understanding and communicate the science findings, which should provide farmers with more robust tools and practices for sustainable dicamba use.


Assuntos
Dicamba , Herbicidas , Agricultura , Herbicidas/análise , Herbicidas/farmacologia , Soja , Volatilização
20.
Sci Total Environ ; 801: 149732, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34438156

RESUMO

Herbicides can drift from intended plants onto non-target species. It remains unclear how drift impacts plant functional traits that are important for fitness. To address this gap, we conducted an experiment where fast cycling Brassica rapa plants were exposed to one of three drift concentrations (0.5%, 1%, 10%) of synthetic-auxin dicamba. We evaluated damage to and capacity of floral and vegetative traits to recover as well as lifetime fitness by comparing treated plants to controls. Response to dicamba exposure was concentration-dependent across all traits but varied with trait type. At 0.5% dicamba, three out of five floral traits were affected, while at 1% dicamba, four floral traits and one out of two vegetative traits were negatively impacted. At 10% dicamba all floral and vegetative traits were stunted. Overall, floral traits were more responsive to all dicamba drift concentrations than vegetative traits and displayed a wide range of variation ranging from no response (e.g., pistil length) to up to 84% reduction (ovule number). However, despite floral traits were more affected across the dicamba drift concentrations they were also more likely to recover than the vegetative traits. There was also variation among lifetime traits; the onset of flowering was delayed, and reproductive fitness was negatively affected in a concentration-dependent manner, but the final biomass and total flower production were not affected. Altogether, we show substantial variation across plant traits in their response to dicamba and conclude that accounting for this variation is essential to understand the full impact of herbicide drift on plants and the ecological interactions these traits mediate.


Assuntos
Brassica rapa , Herbicidas , Brassica rapa/genética , Dicamba/toxicidade , Flores , Herbicidas/toxicidade , Ácidos Indolacéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...