RESUMO
Background: Hermetia illucens L. have gained popularity in recent years as an environmentally friendly response to both the present and potential future food/feed crisis. The larvae of H. illucens L., or black soldier fly larvae (BSFL), is an alternative solution to tackle the issue of organic waste bioconversion. However, understanding the environmental loads associated with biowaste bioconversion using BSFL to produce dried BSFL is a pivotal point to keep the environment sustainable. This study reported a life cycle assessment (LCA) of the biowaste bioconversion process of BSFL and determined the environment impact analysis to make recommendations for modifications to lessen environmental consequences. Methods: The methodology used is life cycle assessment (LCA), which includes: (a) system boundary determination (gate-to-gate), starting from biowaste production, biowaste bioconversion, prepupae and BSFL frass production. The system boundary of the dried BSFL production is designed for both the processing and production of one cycle of BSFL; (b) life cycle inventory activities carried out at PT Biomagg Sinergi Internasional, Depok, West Java, Indonesia; (c) conducting life cycle impact assessment on five environmental impact categories namely global warming potential (GWP), acidification (AC), terrestrial eutrophication (TE), fossil fuel depletion (FFE), eco-toxicity (ET); and (d) interpretation of the assessment result. The LCA is conducted using openLCA 1.11 software and TRACI 2.1 impact assessment method. Results: The impact values of GWP, AC, TE, FFE, and ET, per 100 kg of BSFL dried production was 6.687 kg CO 2 eq; 0.029 kg SO 2-eq; 0.092 kg N-eq; 16.732 MJ surplus; 121.231 CTUe. Production of prepupa had the highest hotspots in these emissions, followed dried BSFL production. Conclusions: Efforts to reduce environmental impacts that can be done are by implementing an integrated rearing system using substrate from a single type of known substrate for BSFL and using alternative drying methods for BSFL dried production.
Assuntos
Dípteros , Alimentos , Animais , Larva , Indonésia , Avaliação de Resultados em Cuidados de SaúdeRESUMO
BACKGROUND: In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS: In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS: In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.
Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Larva , Microbioma Gastrointestinal/genética , Plásticos , RNA Ribossômico 16S/genéticaRESUMO
Ham products play a fundamental role in the Italian economy, and attention to the problems of this sector is essential. The products of this sector can be attacked by parasites, which can cause direct and indirect damage. Piophila casei (L.) (Diptera: Piophilidae) a cheese and meat parasite, is currently responsible for hygiene problems in ham factories. The trophic activity of this pest on the products causes serious direct damage and it is a vector of various bacteria, including Clostridium botulinum. Another risk is human ingestion of the larvae, which are resistant to gastric juices action, potentially causing intestinal myiasis. Insecticide use of any type is not allowed in aging rooms, so biological control can represent a potential alternative. In this study, we investigate quality parameters such as successful rate of parasitism (SP), degree of parasitism (DP), sex-ratio (SR), life-span (LS), and emergence rates (ER) of 2 pupal parasitoids of Diptera: Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae), currently the only known pupal parasitoid of P. casei, and Muscidifurax raptor (Girault and Sanders) (Hymenoptera: Pteromalidae). Our research confirmed P. vindemiae efficacy to parasitize P. casei and reported, for the first time, M. raptor as a pupal parasitoid of this Piophilidae. ER for both parasitoids were low, thus affecting the DP and SP estimations. This could be explained by the feeding behavior of the parasitoid host. The strongly female-biased SR for P. vindemiae supported previous studies. LS results in our experiment are crucial for determining the timing of release.
Assuntos
Dípteros , Himenópteros , Animais , Humanos , Feminino , Agentes de Controle Biológico , Larva , Comportamento AlimentarRESUMO
Lameness in sheep is one of the most serious issues on farms in the UK and worldwide, affecting over 90% of all UK sheep flocks. Despite its severity and prevalence, there are knowledge gaps regarding transmission routes of bacterial pathogens associated with infectious lameness in sheep. As larvae of Lucilia sericata are commonly found on foot lesions on lame sheep, it was hypothesised that the flies or their larvae could harbour lameness associated bacteria. This study examined the gut contents of larvae obtained from the foot lesions of lame sheep and compared them to control larvae collected from infested cat food on the same farm. Of particular interest, were the presence of three different bacterial genera associated with lameness; Fusobacterium necrophorum, Dichelobacter nodosus and Treponema spp., for which viability was also investigated. Larvae were cultured In vitro and some allowed to metamorphose into flies before specific PCR assays were carried out on the gut contents. Results showed a significant association between the bacteria on the feet of the sheep and those within the larvae. Although the gut contents of all larvae found on sheep feet contained one or more of the lameness bacteria, none of the bacteria were recovered from the adult flies, suggesting a level of gut remodelling during metamorphosis. Interestingly, Treponema spp. and Fusobacterium spp. were viable when isolated from gut contents of larvae. Maintenance of infection from larvae to fly did not occur. However, it still remains important to control both disease and insect populations of farms to maintain animal welfare.
Assuntos
Doenças do Gato , Dípteros , Pododermatite Necrótica dos Ovinos , Doenças dos Ovinos , Ovinos , Animais , Gatos , Larva , Coxeadura Animal , Doenças dos Ovinos/epidemiologia , BactériasRESUMO
House flies (Musca domestica L) are nuisances and vectors of pathogens between and among humans and livestock. Population suppression has been accomplished for decades with pyrethroids and acetylcholinesterase (AChE) inhibitors, but recurrent selection has led to increased frequency of alleles conferring resistance to those two classes of active ingredients (Geden et al., 2021). A common mechanism of resistance to both classes involves an altered target site (mutations in Voltage gated sodium channel (Vgsc) for pyrethroids or in Ace for AChE inhibitors). As part of ongoing efforts to understand the origin, spread and evolution of insecticide resistance alleles in house fly populations, we sampled flies in 11 different US states, sequenced, and then estimated frequencies of the Vgsc and Ace alleles. There was substantial variation in frequencies of the four common knockdown resistance alleles (kdr (L1014F), kdr-his (L1014H), super-kdr (M918T + L10414F) and 1B (T929I + L1014F) across the sampled states. The kdr allele was found in all 11 states and was the most common allele in four of them. The super-kdr allele was detected in only six collections, with the highest frequencies found in the north, northeast and central United States. The kdr-his allele was the most common allele in PA, NC, TN and TX. In addition, a novel super-kdr-like mutation in mutually exclusive exon 17a was found. The overall frequencies of the different Ace alleles, which we name based on the amino acid present at the mutation sites (V260L, A316S, G342A/V and F407Y), varied considerably between states. Five Ace alleles were identified: VAGF, VAVY, VAGY, VAAY and VSAY. Generally, the VSAY allele was the most common in the populations sampled. The susceptible allele (VAGF) was found in all populations, ranging in frequency from 3% (KS) to 41% (GA). Comparisons of these resistance allele frequencies with those previously found suggests a dynamic interaction between the different alleles, in terms of levels of resistance they confer and likely fitness costs they impose in the absence of insecticides.
Assuntos
Dípteros , Moscas Domésticas , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Estados Unidos , Alelos , Resistência a Inseticidas/genética , Acetilcolinesterase/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Moscas Domésticas/genética , Canais de Sódio Disparados por Voltagem/genética , MutaçãoRESUMO
Phosphorous (P) resources are finite. Sewage sludge recyclates (SSR) are not only of interest as plant fertilizer but also as potential source of minerals in animal nutrition. However, besides P and calcium (Ca), SSR contain heavy metals. Under EU legislation, the use of SSR derivatives in animal feed is not permitted, but given the need to improve nutrient recycling, it could be an environmentally sound future mineral source. Black soldier fly larvae (BSFL) convert low-grade biomass into valuable proteins and lipids, and accumulate minerals in their body. It was hypothesized that BSFL modify and increase their mineral content in response to feeding on SSR containing substrates. The objective was to evaluate the upcycling of minerals from SSR into agri-food nutrient cycles through BSFL. Growth, nutrient and mineral composition were compared in BSFL reared either on a modified Gainesville fly diet (FD) or on FD supplemented with either 4% of biochar (FD + BCH) or 3.6% of single-superphosphate (FD + SSP) recyclate (n = 6 BSFL rearing units/group). Larval mass, mineral and nutrient concentrations and yields were determined, and the bioaccumulation factor (BAF) was calculated. The FD + SSP substrate decreased specific growth rate and crude fat of BSFL (P < 0.05) compared to FD. The FD + SSP larvae had higher Ca and P contents and yields but the BAF for Ca was lowest. The FD + BCH larvae increased Ca, iron, cadmium and lead contents compared to FD. Larvae produced on FD + SSP showed lower lead and higher arsenic concentration than on FD + BCH. Frass of FD + BCH had higher heavy metal concentration than FD + SSP and FD (P < 0.05). Except for cadmium and manganese, the larval heavy metal concentration was below the legally permitted upper concentrations for feed. In conclusion, the SSR used could enrich BSFL with Ca and P but at the expense of growth. Due to the accumulation of Cd and Mn, BSFL or products thereof can only be a component of farmed animal feed whereas in BSFL frass heavy metal concentrations remained below the upper limit authorized by EU.
Assuntos
Dípteros , Metais Pesados , Animais , Larva/metabolismo , Esgotos , Cádmio/metabolismo , Ração Animal/análise , Minerais/metabolismo , Cálcio/metabolismoRESUMO
Elevated temperatures are expected to rise beyond what the physiology of many organisms can tolerate. Behavioural responses facilitating microhabitat shifts may mitigate some of this increased thermal selection on physiology, but behaviours are themselves mediated by physiology, and any behavioural response may trade-off against other fitness-related activities. We investigated whether experimental evolution in different thermal regimes (Cold: 15 °C; Hot: 31 °C; Intergenerational fluctuation 15/31 °C; Control: 23 °C) resulted in genetic differentiation of standard locomotor activity in the dung fly Sepsis punctum. We assessed individual locomotor performance, an integral part of most behavioral repertoires, across eight warm temperatures from 24 °C to 45 °C using an automated device. We found no evidence for generalist-specialist trade-offs (i.e. changes in the breadth of the performance curve) for this trait. Instead, at the warmest assay temperatures hot-selected flies showed somewhat higher maximal performance than all other, especially cold-selected flies, overall more so in males than females. Yet, the flies' temperature optimum was not higher than that of the cold-selected flies, as expected under the 'hotter-is-better' hypothesis. Maximal locomotor performance merely weakly increased with body size. These results suggest that thermal performance curves are unlikely to evolve as an entity according to theory, and that locomotor activity is a trait of limited use in revealing thermal adaptation.
Assuntos
Dípteros , Sepse , Masculino , Animais , Feminino , Dípteros/fisiologia , Temperatura , Temperatura Baixa , LocomoçãoRESUMO
Receivers of acoustic communication signals evaluate signal features to identify conspecifics. Changes in the ambient temperature can alter these features, rendering species recognition a challenge. To maintain effective communication, temperature coupling-changes in receiver signal preferences that parallel temperature-induced changes in signal parameters-occurs among genetically coupled signallers and receivers. Whether eavesdroppers of communication signals exhibit temperature coupling is unknown. Here, we investigate if the parasitoid fly Ormia ochracea, an eavesdropper of cricket calling songs, exhibits song pulse rate preferences that are temperature coupled. We use a high-speed treadmill system to record walking phonotaxis at three ambient temperatures (21, 25, and 30°C) in response to songs that varied in pulse rates (20 to 90 pulses per second). Total walking distance, peak steering velocity, angular heading, and the phonotaxis performance index varied with song pulse rates and ambient temperature. The peak of phonotaxis performance index preference functions became broader and shifted to higher pulse rate values at higher temperatures. Temperature-related changes in cricket songs between 21 and 30°C did not drastically affect the ability of flies to recognize cricket calling songs. These results confirm that temperature coupling can occur in eavesdroppers that are not genetically coupled with signallers.
Assuntos
Dípteros , Gryllidae , Animais , Temperatura , Dípteros/fisiologia , Acústica , Caminhada , Vocalização Animal/fisiologia , Comunicação AnimalRESUMO
The black soldier fly (Hermetia illucens, BSF) has emerged as an industrial insect of high promise because of its ability to convert organic waste into nutritious feedstock, making it an environmentally sustainable alternative protein source. As global interest rises, rearing efforts have also been upscaled, which is highly conducive to pathogen transmission. Viral epidemics have stifled mass-rearing efforts of other insects of economic importance, such as crickets, silkworms, and honeybees, but little is known about the viruses that associate with BSF. Although BSFs are thought to be unusually resistant to pathogens because of their expansive antimicrobial gene repertoire, surveillance techniques could be useful in identifying emerging pathogens and common BSF microbes. In this study, we used high-throughput sequencing data to survey BSF larvae and frass samples, and we identified two novel bunyavirus-like sequences. Our phylogenetic analysis grouped one in the family Nairoviridae and the other with two unclassified bunyaviruses. We describe these putative novel viruses as BSF Nairovirus-like 1 and BSF uncharacterized bunyavirus-like 1. We identified candidate segments for the full BSF Nairovirus-like 1 genome using a technique based on transcript co-occurrence and only a partial genome for BSF uncharacterized bunyavirus-like 1. These results emphasize the value of routine BSF colony surveillance and add to the number of viruses associated with BSF.
Assuntos
Bunyaviridae , Dípteros , Nairovirus , Orthobunyavirus , Animais , Abelhas , Filogenia , Biologia ComputacionalRESUMO
The use of black soldier fly larvae (BSFL) grown on different organic waste streams as a source of feed ingredient is becoming very popular in several regions across the globe. However, information about the easy-to-use methods to monitor the safety of BSFL is a major step limiting the commercialization of this source of protein. This study investigated the ability of near infrared (NIR) spectroscopy combined with chemometrics to predict yeast and mould counts (YMC) in the feed, larvae, and the residual frass. Partial least squares (PLS) regression was employed to predict the YMC in the feed, frass, and BSFL samples analyzed using NIR spectroscopy. The coefficient of determination in cross validation (R2CV) and the standard error in cross validation (SECV) obtained for the prediction of YMC for feed were (R2cv: 0.98 and SECV: 0.20), frass (R2cv: 0.81 and SECV: 0.90), larvae (R2cv: 0.91 and SECV: 0.27), and the combined set (R2cv: 0.74 and SECV: 0.82). However, the standard error of prediction (SEP) was considered moderate (range from 0.45 to 1.03). This study suggested that NIR spectroscopy could be utilized in commercial BSFL production facilities to monitor YMC in the feed and assist in the selection of suitable processing methods and control systems for either feed or larvae quality control.
Assuntos
Dípteros , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Larva , Saccharomyces cerevisiae , FungosRESUMO
BACKGROUND: Lucilia cuprina and L. sericata (family Calliphoridae) are globally significant ectoparasites of sheep. Current literature suggests that only one of these blowfly subspecies, L. cuprina dorsalis, is a primary parasite causing myiasis (flystrike) in sheep in Australia. These species and subspecies are difficult to distinguish using morphological features. Hence, being able to accurately identify blowflies is critical for diagnosis and for understanding their relationships with their hosts and environment. METHODS: In this study, adult blowflies (5 pools of 17 flies; n = 85) were collected from five locations in different states [New South Wales (NSW), Queensland (QLD), Tasmania (TAS), Victoria (VIC) and Western Australia (WA)] of Australia and their mitochondrial (mt) genomes were assembled. RESULTS: Each mt genome assembled was ~ 15 kb in size and encoded 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and a control region. The Lucilia species mt genomes were conserved in structure, and the genes retained the same order and direction. The overall nucleotide composition was heavily biased towards As and Ts-77.7% of the whole genomes. Pairwise nucleotide diversity suggested divergence between Lucilia cuprina cuprina, L. c. dorsalis and L. sericata. Comparative analyses of these mt genomes with published data demonstrated that the blowflies collected from sheep farm in TAS clustered within a clade with L. sericata. The flies collected from an urban location in QLD were more closely related to L. sericata and represented the subspecies L. c. cuprina, whereas the flies collected from sheep farms in NSW, VIC and WA represented the subspecies L. c. dorsalis. CONCLUSIONS: Phylogenetic analyses of the mt genomes representing Lucilia from the five geographic locations in Australia supported the previously demonstrated paraphyly of L. cuprina with respect to L. sericata and revealed that L. c. cuprina is distinct from L. c. dorsalis and that L. c. cuprina is more closely related to L. sericata than L. c. dorsalis. The mt genomes reported here provide an important molecular resource to develop tools for species- and subspecies-level identification of Lucilia from different geographical regions across Australia.
Assuntos
Dípteros , Miíase , Animais , Ovinos , Calliphoridae , Filogenia , Dípteros/genética , Miíase/epidemiologia , Miíase/veterinária , Genótipo , Vitória , Nucleotídeos , GenômicaRESUMO
Widespread environmental contamination caused by huge amounts of wastes generated by human activities has become a critical global concern that requires urgent action. The black soldier fly (BSFL) has gradually been used to treat different wastes due to high efficiency and low cost. However, little information is available regarding the treatment of mixed wastes by BSFLs. The impact of BSFLs on conversion of cow manure (COM) and pig manure (PM) via the incorporation of wet distiller grains (WDG) was assessed. Results demonstrate that the waste reduction rate was increased by 20% by incorporating 45% WDG to COM and PM. The bioconversion rate of BSFLs in COM and PM also increased from 1.20 ± 0.02% and 0.92 ± 0.02% to 10.54 ± 0.06% and 10.05 ± 0.11%, respectively. Total nitrogen content and δ15N/14N ratios of WDG + COM and WDG + PM were found to be significantly lower than those of COM and PM alone (p < 0.01). The organic matter changes during manure degradation were further analyzed by combing ultraviolet-visible spectrum (UV-vis) with excitation-emission matrix (EEM) spectroscopy techniques and fluorescence area integration (FRI) method. The UV-vis spectra results indicate that the addition of WDG to manures resulted in the decreased aromaticity and molecular weight of the waste. EEM spectra demonstrated that the accumulative Pi,n values of regions III and V in COM, COM + WDG, PM, and PM + WDG were 58%, 49%, 52% and 63%, respectively. These results not only provide new insights into the potential of mixed wastes for BSFL treatment but also contribute to the basis for the formulation of effective management measurements that reduce and/or reuse these wastes.
Assuntos
Dípteros , Esterco , Bovinos , Feminino , Humanos , Animais , Suínos , Larva , Gado , Poluição AmbientalRESUMO
Muscoid larvae were observed on self-medicated dressing material loaded with purulent material taken from a 91-year-old hospital patient. These larvae were identified as Lucilia sericata. However, no larvae were found in the patient's tissues. The observation of larvae on dressings should not automatically lead to a diagnosis of cutaneous myiasis.
Assuntos
Dípteros , Miíase , Animais , Humanos , Idoso de 80 Anos ou mais , Miíase/diagnóstico , Larva , Bandagens , CegueiraRESUMO
Leishmaniasis is a zoonotic disease caused by an intracellular parasite from the genus Leishmania. Lack of safe and effective drugs has increasingly promoted researches into new drugs of natural origin to cure the disease. The study, therefore, aimed to investigate the anti-leishmanial effects of Lucilia sericata larval excretion/secretion (ES) in combination with Apis mellifera honey as a synergist on Leishmania major using an in vitro model. Various concentrations of honey and larval ES fractions were tested against promastigotes and intracellular amastigotes of L. major using macrophage J774A.1 cell line. The inhibitory effects and cytotoxicity of ES plus honey were evaluated using direct counting method and MTT assay. To assess the effects of larval ES plus honey on the amastigote form, the rate of macrophage infection and the number of amastigotes per infected macrophage cell were estimated. The 50% inhibitory concentration (IC50) values were 21.66 µg/ml, 43.25 60 µg/ml, 52.58 µg/ml, and 70.38 µg/ml for crude ES plus honey, ES >10 kDa plus honey, ES <10 kDa plus honey, and honey alone, respectively. The IC50 for positive control (glucantime) was 27.03 µg/ml. There was a significant difference between viability percentages of promastigotes exposed to different doses of applied treatments compared to the negative control (p≤ 0.0001). Microscopic examination of amastigote forms revealed that dosages applied at 150 to 300 µg/ml significantly reduced the rate of macrophage infection and the number of amastigotes per infected macrophage cell. Different doses of larval products plus honey did not show a significant toxic effect agaist macrophage J774 cells. The larval ES fractions of L. sericata in combination with A. mellifera honey acted synergistically against L. major.
Assuntos
Antiprotozoários , Dípteros , Mel , Leishmania major , Leishmaniose , Abelhas , Animais , Larva , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologiaRESUMO
Hover flies of the family Syrphidae are a highly diverse group of insects that exhibit varied life histories and provide numerous ecosystem services. Despite their importance, they are highly understudied, and many biological and distributional patterns remain unknown in regions like the midwestern United States. Data from specimens exist in regional insect collections but is largely undigitized and thus inaccessible to much of the scientific community. Here, we report our efforts to identify, recurate, and digitize thousands of specimens from the Illinois Natural History Survey Insect Collection. We then combine these data with existing datasets to compile a comprehensive checklist of Illinois hover fly fauna, assess for temporal range expansion/contraction trends, and identify species of potential conservation significance. All total, the over 20,000 specimens/records we examined revealed 209 species within 71 genera and all 4 subfamilies of Syrphidae to have ever occurred in Illinois. Based on previously published data, 68 of these species are new Illinois state records and 36 expand the previously known range significantly. Numerous species found in Illinois historically have only recently been reported further north, while others of historically southern distribution appear to be extending their range northward, possibly due to anthropogenic factors like climate change. Furthermore, 73 species have not been reported in Illinois since at least 1995, and 27 are deemed to be of potential conservation significance with few to no recent records in the Midwest or elsewhere. Our findings illustrate the importance of routine expansion, curation, and digitization of natural history collections.
Assuntos
Ciência do Cidadão , Dípteros , Animais , Ecossistema , Museus , IllinoisRESUMO
Lucilia cuprina is a vector of important diseases in humans and animals that causes myiasis in sheep, leading to enormous damage to the sheep sector. Chemical products are used to control these flies; however, there are reports of resistance in addition to these products causing toxicity to the environment, humans, and animals, so alternative controls have been studied to reduce these impacts. Pleurotus spp. are basidiomycete fungi and present bioactive compounds with medicinal properties. Due to the potential use of fungi to control Diptera, this study aimed to verify the activity of Pleurotus florida, P. ostreatus, and P. djamor in the control of larvae and adults of L. cuprina, as well as the effects of aqueous extracts of the fungi P. ostreatus, P. djamor, and P. florida on larvae and adults of L. cuprina. The aqueous extract from P. florida was the only one that showed larvicidal activity against L. cuprina, with a half-maximal effective concentration of 11.42 mg/mL. In the test with adult stages, 30 insects were used for each solution concentration, sprinkled with 1 mL of the solution. All aqueous extracts showed adulticidal activity at all concentrations, P. ostreatus showing the best results, with adult mortality ranging from 75.86 to 100%. Our results demonstrated an important larvicidal effect of P. florida and an adulticidal effect of all AE, with emphasis on P. ostreatus.
Assuntos
Dípteros , Pleurotus , Humanos , Animais , Ovinos , Pleurotus/química , LarvaRESUMO
Myrtaceae have a wide geographical distribution in Brazil and host a great richness of Cecidomyiidae galls. However, the number of cecidomyiid species on them has not yet been established and the knowledge of their geographic distribution is deficient. We provide the first list of cecidomyiid species on Myrtaceae and analyze their distribution in Brazilian biomes. A literature review was performed and new data were obtained from herbarium specimens of the Jardim Botânico do Rio de Janeiro. In Brazil, 13 species of Myrtaceae of five genera shelter described species of gall midges. Eugenia hosts the greatest richness of gall-inducers. All plant species have human uses and are native to Brazil, being seven endemic. Myrtaceae shelter 25 cecidomyiid species of 13 genera in 25 gall morphotypes. Sixteen species occur on endemic hosts, highlighting the peculiarity of the Brazilian fauna. These Cecidomyiidae occur collectively in five biomes, but most species (92%) are known from the Atlantic Forest, where 72% appear exclusively. Sixty per cent are restricted to a single Brazilian state, indicating their still poorly known distribution.