Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.531
Filtrar
1.
Nature ; 614(7948): 456-462, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792740

RESUMO

Stretchable hybrid devices have enabled high-fidelity implantable1-3 and on-skin4-6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans7,8 and soft robots9,10, rigid modules containing Si-based microelectronics11,12 and protective encapsulation modules13,14. To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure15-17. Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft-soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm-1. As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices.


Assuntos
Eletromiografia , Eletrônica Médica , Nanoestruturas , Maleabilidade , Polímeros , Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Humanos , Nanoestruturas/química , Polímeros/química , Pele , Monitorização Fisiológica , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Eletromiografia/instrumentação
2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(5): 588-590, 2022 Sep 30.
Artigo em Chinês | MEDLINE | ID: mdl-36254493

RESUMO

Medical electronic endoscope is one of the indispensable tools in medical diagnosis and treatment. With the development of science and technology, electronic endoscope has higher safety and accuracy than traditional optical endoscope. Due to the sophisticated construction and high price, hospitals spend a lot of money on maintenance every year. In order to prolong the working life of electronic endoscope, reduce the incidence of artificial failure and save hospital costs, this study made a retrospective analysis on the common faults of electronic endoscope, and summarized the maintenance strategies for reference.


Assuntos
Eletrônica Médica , Endoscópios , Estudos Retrospectivos
3.
Nano Lett ; 22(14): 5944-5953, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35816764

RESUMO

A combined treatment using medication and electrostimulation increases its effectiveness in comparison with one treatment alone. However, the organic integration of two strategies in one miniaturized system for practical usage has seldom been reported. This article reports an implantable electronic medicine based on bioresorbable microneedle devices that is activated wirelessly for electrostimulation and sustainable delivery of anti-inflammatory drugs. The electronic medicine is composed of a radio frequency wireless power transmission system and a drug-loaded microneedle structure, all fabricated with bioresorbable materials. In a rat skeletal muscle injury model, periodic electrostimulation regulates cell behaviors and tissue regeneration while the anti-inflammatory drugs prevent inflammation, which ultimately enhance the skeletal muscle regeneration. Finally, the electronic medicine is fully bioresorbable, excluding the second surgery for device removal.


Assuntos
Implantes Absorvíveis , Terapia por Estimulação Elétrica , Animais , Sistemas de Liberação de Medicamentos , Eletrônica Médica , Ondas de Rádio , Ratos , Tecnologia sem Fio
4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(2): 225-229, 2022 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-35411756

RESUMO

This study introduced the current testing content and standards of ECG medical electronic instruments, combined with actual clinical needs, and discussed the comprehensive verification and evaluation protocol for ECG medical electronic instruments. The protocol mainly includes hardware performance testing, automatic diagnostic function testing and clinical application evaluation. The protocol emphasizes the clinical practicality and importance of the comprehensive verification and evaluation program, and provides a reference for the institutions involved in the program.


Assuntos
Eletrocardiografia , Eletrônica Médica , Padrões de Referência
5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-928893

RESUMO

This study introduced the current testing content and standards of ECG medical electronic instruments, combined with actual clinical needs, and discussed the comprehensive verification and evaluation protocol for ECG medical electronic instruments. The protocol mainly includes hardware performance testing, automatic diagnostic function testing and clinical application evaluation. The protocol emphasizes the clinical practicality and importance of the comprehensive verification and evaluation program, and provides a reference for the institutions involved in the program.


Assuntos
Eletrocardiografia , Eletrônica Médica , Padrões de Referência
6.
PLoS One ; 16(12): e0261793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34969050

RESUMO

Disinvestment is the removal or reduction of previously provided practices or services, and has typically been undertaken where a practice or service has been clearly shown to be ineffective, inefficient and/or harmful. However, practices and services that have uncertain evidence of effectiveness, efficiency and safety can also be considered as candidates for disinvestment. Disinvestment from these practices and services is risky as they may yet prove to be beneficial if further evidence becomes available. A novel research approach has previously been described for this situation, allowing disinvestment to take place while simultaneously generating evidence previously missing from consideration. In this paper, we describe how this approach can be expanded to situations where three or more conditions are of relevance, and describe the protocol for a trial examining the reduction and elimination of use of mobilisation alarms on hospital wards to prevent patient falls. Our approach utilises a 3-group, concurrent, non-inferiority, stepped wedge, randomised design with an embedded parallel, cluster randomised design. Eighteen hospital wards with high rates of alarm use (≥3%) will be paired within their health service and randomly allocated to a calendar month when they will transition to a "Reduced" (<3%) or "Eliminated" (0%) mobilisation alarm condition. Dynamic randomisation will be used to determine which ward in each pair will be allocated to either the reduced or eliminated condition to promote equivalence between wards for the embedded parallel, cluster randomised component of the design. A project governance committee will set non-inferiority margins. The primary outcome will be rates of falls. Secondary clinical, process, safety, and economic outcomes will be collected and a concurrent economic evaluation undertaken.


Assuntos
Acidentes por Quedas/prevenção & controle , Alarmes Clínicos , Hospitalização , Hospitais , Monitorização Ambulatorial/instrumentação , Segurança do Paciente , Leitos , Simulação por Computador , Eletrônica Médica/instrumentação , Humanos , Avaliação de Resultados em Cuidados de Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Estatística como Assunto , Incerteza
7.
Radiat Oncol ; 16(1): 232, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863229

RESUMO

BACKGROUND: Intensity-modulated radiation therapy (IMRT) and volume-modulated arc therapy (VMAT) are rather complex treatment techniques and require patient-specific quality assurance procedures. Electronic portal imaging devices (EPID) are increasingly used in the verification of radiation therapy (RT). This work aims to develop a novel model to predict the EPID transmission image (TI) with fluence maps from the RT plan. The predicted TI is compared with the measured TI for in vivo treatment verification. METHODS: The fluence map was extracted from the RT plan and corrections of penumbra, response, global field output, attenuation, and scatter were applied before the TI was calculated. The parameters used in the model were calculated separately for central axis and off-axis points using a series of EPID measurement data. Our model was evaluated using a CIRS thorax phantom and 20 clinical plans (10 IMRT and 10 VMAT) optimized for head and neck, breast, and rectum treatments. RESULTS: Comparisons of the predicted and measured images were carried out using a global gamma analysis of 3%/2 mm (10% threshold) to validate the accuracy of the model. The gamma pass rates for IMRT and VMAT were greater than 97.2% and 94.5% at 3%/2 mm, respectively. CONCLUSION: We have developed an accurate and straightforward EPID-based quality assurance model that can potentially be used for in vivo treatment verification of the IMRT and VMAT delivery.


Assuntos
Diagnóstico por Imagem/métodos , Eletrônica Médica/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
8.
PLoS One ; 16(6): e0252589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077459

RESUMO

Electrical stimulation is one of the candidates for elongation-driven regeneration of damaged peripheral nerves. Different organs and tissues have an inherent cell structure and size. This leads to variation in the tissue-specific electrical properties of the frequency of interfacial polarization. Although nervous tissues have a membrane potential, the electrical reaction inside these tissues following electrical stimulation from outside remains unexplored. Furthermore, the pathophysiological reaction of an injured nerve is unclear. Here, we investigated the electrical reaction of injured and non-injured rat sciatic nerves via broadband dielectric spectroscopy. Crush injured and non-injured sciatic nerves of six 12-week-old male Lewis rats were used, 6 days after infliction of the injury. Both sides of the nerves (with and without injury) were exposed, and impedance measurements were performed at room temperature (approximately 25°C) at frequencies ranging from 100 mHz to 5.5 MHz and electric potential ranging from 0.100 to 1.00 V. The measured interfacial polarization potentially originated from the polarization by ion transport around nerve membranes at frequencies between 3.2 kHz and 1.6 MHz. The polarization strength of the injured nerves was smaller than that of non-injured nerves. However, the difference in polarization between injured and non-injured nerves might be caused by inflammation and edema. The suitable frequency range of the interfacial polarization can be expected to be critical for electrical stimulation of injured peripheral nerves.


Assuntos
Lesões por Esmagamento/fisiopatologia , Espectroscopia Dielétrica/métodos , Nervo Isquiático/lesões , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Eletrônica Médica , Masculino , Compressão Nervosa , Regeneração Nervosa , Ratos
9.
IEEE Pulse ; 12(3): 14-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34156928

RESUMO

An estimated ten million people in the United States have a condition known as essential tremor (ET). Yet although it's been recognized for over a century-it was originally known as senile tremor-there is relatively little awareness of it as a distinct medical condition. Sometimes mistaken for Parkinson's disease, ET can lead to shaking of the arms and hands, and sometimes the head or torso. When severe, it can interfere with eating or drinking, writing, dressing, and even make some tasks impossible. Now, new approaches for treating the condition are emerging, potentially offering options to many patients whose life activities have been curtailed by ET.


Assuntos
Estimulação Elétrica/instrumentação , Tremor , Dispositivos Eletrônicos Vestíveis , Eletrônica Médica/instrumentação , Humanos , Tremor/diagnóstico , Tremor/terapia
10.
J Orthop Surg Res ; 16(1): 305, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964958

RESUMO

BACKGROUND: Soft tissue balancing is essential for the success of total knee arthroplasty (TKA) and is mainly dependent on surgeon-defined assessment (SDA) or a gap-balancer (GB). However, an electronic sensor has been developed to objectively measure the gap pressure. This study aimed to evaluate the accuracy of soft tissue balancing using SDA and GB compared with a sensor. METHODS: Forty-eight patients undergoing TKA (60 knees) were prospectively enrolled. Soft tissue balancing was sequentially performed using SDA, a GB, and an electronic sensor. We compared the SDA, GB, and sensor data to calculate the sensitivity, specificity, and accuracy at 0°, 45°, 90°, and 120° flexion. Cumulative summation (CUSUM) analysis was performed to assess the surgeon's performance during the sensor introductory phase. RESULTS: The sensitivity of SDA was 63.3%, 68.3%, 80.0%, and 80.0% at 0°, 45°, 90°, and 120°, respectively. The accuracy of the GB compared with sensor data was 76.7% and 71.7% at 0° and 90°, respectively. Cohen's kappa coefficient for the accuracy of the GB was 0.406 at 0° (moderate agreement) and 0.227 at 90° (fair agreement). The CUSUM 0° line achieved good prior performance at case 45, CUSUM 90° and 120° showed a trend toward good prior performance, while CUSUM 45° reached poor prior performance at case 8. CONCLUSION: SDA was a poor predictor of knee balance. GB improved the accuracy of soft tissue balancing, but was still less accurate than the sensor, particularly for unbalanced knees. SDA improved with ongoing use of the sensor, except at 45° flexion.


Assuntos
Artroplastia do Joelho/métodos , Tecido Conjuntivo/fisiologia , Eletrônica Médica/instrumentação , Prótese do Joelho , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/cirurgia , Amplitude de Movimento Articular , Cirurgiões , Fenômenos Biomecânicos , Estudos de Coortes , Humanos , Curva de Aprendizado , Sensibilidade e Especificidade , Resultado do Tratamento
11.
Sci Rep ; 11(1): 9815, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972649

RESUMO

Lab-on-Chip is a technology that aims to transform the Point-of-Care (PoC) diagnostics field; nonetheless a commercial production compatible technology is yet to be established. Lab-on-Printed Circuit Board (Lab-on-PCB) is currently considered as a promising candidate technology for cost-aware but simultaneously high specification applications, requiring multi-component microsystem implementations, due to its inherent compatibility with electronics and the long-standing industrial manufacturing basis. In this work, we demonstrate the first electrolyte gated field-effect transistor (FET) DNA biosensor implemented on commercially fabricated PCB in a planar layout. Graphene ink was drop-casted to form the transistor channel and PNA probes were immobilized on the graphene channel, enabling label-free DNA detection. It is shown that the sensor can selectively detect the complementary DNA sequence, following a fully inkjet-printing compatible manufacturing process. The results demonstrate the potential for the effortless integration of FET sensors into Lab-on-PCB diagnostic platforms, paving the way for even higher sensitivity quantification than the current Lab-on-PCB state-of-the-art of passive electrode electrochemical sensing. The substitution of such biosensors with our presented FET structures, promises further reduction of the time-to-result in microsystems combining sequential DNA amplification and detection modules to few minutes, since much fewer amplification cycles are required even for low-abundance nucleic acid targets.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/isolamento & purificação , Grafite/química , Dispositivos Lab-On-A-Chip , Microtecnologia/instrumentação , DNA/química , Eletrônica Médica/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos
12.
Nat Commun ; 12(1): 2399, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893292

RESUMO

Energy autonomy and conformability are essential elements in the next generation of wearable and flexible electronics for healthcare, robotics and cyber-physical systems. This study presents ferroelectric polymer transducers and organic diodes for imperceptible sensing and energy harvesting systems, which are integrated on ultrathin (1-µm) substrates, thus imparting them with excellent flexibility. Simulations show that the sensitivity of ultraflexible ferroelectric polymer transducers is strongly enhanced by using an ultrathin substrate, which allows the mounting on 3D-shaped objects and the stacking in multiple layers. Indeed, ultraflexible ferroelectric polymer transducers have improved sensitivity to strain and pressure, fast response and excellent mechanical stability, thus forming imperceptible wireless e-health patches for precise pulse and blood pressure monitoring. For harvesting biomechanical energy, the transducers are combined with rectifiers based on ultraflexible organic diodes thus comprising an imperceptible, 2.5-µm thin, energy harvesting device with an excellent peak power density of 3 mW·cm-3.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/instrumentação , Eletrônica Médica/instrumentação , Transdutores , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Eletrônica Médica/métodos , Humanos , Sistemas Microeletromecânicos/instrumentação , Sistemas Microeletromecânicos/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Reprodutibilidade dos Testes , Robótica/instrumentação , Robótica/métodos
13.
Adv Healthc Mater ; 10(17): e2001916, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33899347

RESUMO

Owing to their excellent mechanical flexibility, mixed-conducting electrical property, and extraordinary chemical turnability, conjugated polymers have been demonstrated to be an ideal bioelectronic interface to deliver therapeutic effect in many different chronic diseases. This review article summarizes the latest advances in implantable electronics using conjugated polymers as electroactive materials and identifies remaining challenges and opportunities for developing electronic medicine. Examples of conjugated polymer-based bioelectronic devices are selectively reviewed in human clinical studies or animal studies with the potential for clinical adoption. The unique properties of conjugated polymers are highlighted and exemplified as potential solutions to address the specific challenges in electronic medicine.


Assuntos
Eletrônica , Polímeros , Animais , Eletrônica Médica , Humanos
14.
Malar J ; 20(1): 192, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879159

RESUMO

BACKGROUND: Private sector malaria programmes contribute to government-led malaria elimination strategies in Cambodia, Lao PDR, and Myanmar by increasing access to quality malaria services and surveillance data. However, reporting from private sector providers remains suboptimal in many settings. To support surveillance strengthening for elimination, a key programme strategy is to introduce electronic surveillance tools and systems to integrate private sector data with national systems, and enhance the use of data for decision-making. During 2013-2017, an electronic surveillance system based on open source software, District Health Information System 2 (DHIS2), was implemented as part of a private sector malaria case management and surveillance programme. The electronic surveillance system covered 16,000 private providers in Myanmar (electronic reporting conducted by 200 field officers with tablets), 710 in Cambodia (585 providers reporting through mobile app), and 432 in Laos (250 providers reporting through mobile app). METHODS: The purpose of the study was to document the costs of introducing electronic surveillance systems and mobile reporting solutions in Cambodia, Lao PDR, and Myanmar, comparing the cost in different operational settings, the cost of introduction and maintenance over time, and assessing the affordability and financial sustainability of electronic surveillance. The data collection methods included extracting data from PSI's financial and operational records, collecting data on prices and quantities of resources used, and interviewing key informants in each setting. The costing study used an ingredients-based approach and estimated both financial and economic costs. RESULTS: Annual economic costs of electronic surveillance systems were $152,805 in Laos, $263,224 in Cambodia, and $1,310,912 in Myanmar. The annual economic cost per private provider surveilled was $82 in Myanmar, $371 in Cambodia, and $354 in Laos. Cost drivers varied depending on operational settings and number of private sector outlets covered in each country; whether purchased or personal mobile devices were used; and whether electronic (mobile) reporting was introduced at provider level or among field officers who support multiple providers for case reporting. CONCLUSION: The study found that electronic surveillance comprises about 0.5-1.5% of national malaria strategic plan cost and 7-21% of surveillance budgets and deemed to be affordable and financially sustainable.


Assuntos
Administração de Caso/economia , Eletrônica Médica/economia , Monitoramento Epidemiológico , Vigilância da População/métodos , Setor Privado/estatística & dados numéricos , Camboja , Humanos , Laos , Malária/epidemiologia , Mianmar , Setor Privado/economia
15.
Lancet Digit Health ; 3(4): e266-e273, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640306

RESUMO

Globally, neonatal mortality remains unacceptability high. Physiological monitoring is foundational to the care of these vulnerable patients to assess neonatal cardiopulmonary status, guide medical intervention, and determine readiness for safe discharge. However, most existing physiological monitoring systems require multiple electrodes and sensors, which are linked to wires tethered to wall-mounted display units, to adhere to the skin. For neonates, these systems can cause skin injury, prevent kangaroo mother care, and complicate basic clinical care. Novel, wireless, and biointegrated sensors provide opportunities to enhance monitoring capabilities, reduce iatrogenic injuries, and promote family-centric care. Early validation data have shown performance equivalent to (and sometimes exceeding) standard-of-care monitoring systems in premature neonates cared for in high-income countries. The reusable nature of these sensors and compatibility with low-cost mobile phones have the future potential to enable substantially lower monitoring costs compared with existing systems. Deployment at scale, in low-income countries, holds the promise of substantial improvements in neonatal outcomes.


Assuntos
Cuidados Críticos/métodos , Eletrônica Médica/instrumentação , Cuidado do Lactente/métodos , Monitorização Fisiológica/instrumentação , Tecnologia sem Fio/instrumentação , Países em Desenvolvimento , Humanos , Lactente , Recém-Nascido
16.
J Manipulative Physiol Ther ; 44(1): 42-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248749

RESUMO

OBJECTIVE: The purpose this study was to investigate the reliability of a handheld myotonometer in measuring the mechanical properties of the neck and orofacial muscles in asymptomatic individuals. METHODS: The study included 16 healthy participants. The mechanical properties (frequency, decrement, stiffness, relaxation time, and creep) of the selected muscles were measured with a MyotonPRO myotonometer (Mumeetria Ltd, Tallinn, Estonia). The sternocleidomastoid, upper trapezius, cervical extensor, and masseter muscles were selected to determine the reliability of the device. Measurements were performed by 2 examiners to determine interrater reliability; for intrarater reliability, an examiner repeated the measurements 1 week after the first measurements. RESULTS: The results revealed moderate to excellent intrarater and interrater reliability (intraclass correlation coefficients: 0.50-0.95) in measuring muscle mechanic properties. The standard error of measurement in the tested muscles ranged from 0.3 to 0.8 Hz for frequency, from 7.4 to 20.9 N/m for stiffness, from 0.1 to 0.2 for decrement, and from 0.8 to 1.4 ms for relaxation time. The minimum detectable change ranged from 0.8 to 2.2 Hz for frequency, from 20.5 to 57.9 N/m for stiffness, from 0.2 to 0.6 for decrement, from 2.2 to 3.9 ms for relaxation time, and from 0.2 to 0.3 for creep. In addition, the coefficients of variation were below 9.1% for all the assessed parameters. CONCLUSION: The obtained results demonstrate that the MyotonPRO device is a reliable and repeatable tool to quantify the frequency, stiffness, decrement, relation time, and creep of the neck and orofacial muscles in asymptomatic individuals.


Assuntos
Eletrônica Médica/instrumentação , Músculos do Pescoço/fisiologia , Músculos Superficiais do Dorso/fisiologia , Adulto , Humanos , Masculino , Manometria/normas , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Adulto Jovem
17.
Adv Mater ; 33(3): e2004425, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33283351

RESUMO

Recent developments in soft functional materials have created opportunities for building bioelectronic devices with tissue-like mechanical properties. Their integration with the human body could enable advanced sensing and stimulation for medical diagnosis and therapies. However, most of the available soft electronics are constructed as planar sheets, which are difficult to interface with the target organs and tissues that have complex 3D structures. Here, the recent approaches are highlighted to building 3D interfaces between soft electronic tools and complex biological organs and tissues. Examples involve mesh devices for conformal contact, imaging-guided fabrication of organ-specific electronics, miniaturized probes for neurointerfaces, instrumented scaffold for tissue engineering, and many other soft 3D systems. They represent diverse routes for reconciling the interfacial mismatches between electronic tools and biological tissues. The remaining challenges include device scaling to approach the complexity of target organs, biological data acquisition and processing, 3D manufacturing techniques, etc., providing a range of opportunities for scientific research and technological innovation.


Assuntos
Eletrônica Médica , Engenharia Tecidual/métodos , Humanos , Próteses e Implantes
18.
IEEE Trans Biomed Circuits Syst ; 15(1): 80-90, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33373302

RESUMO

Battery-less and ultra-low-power implantable medical devices (IMDs) with minimal invasiveness are the latest therapeutic paradigm. This work presents a 13.56-MHz inductive power receiver system-on-a-chip with an input sensitivity of -25.4 dBm (2.88 µW) and an efficiency of 46.4% while driving a light load of 30 µW. In particular, a real-time resonance compensation scheme is proposed to mitigate resonance variations commonly seen in IMDs due to different dielectric environments, loading conditions, and fabrication mismatches, etc. The power-receiving front-end incorporates a 6-bit capacitor bank that is periodically adjusted according to a successive-approximation-resonance-tuning (SART) algorithm. The compensation range is as much as 24 pF and it converges within 12 clock cycles and causes negligible power consumption overhead. The harvested voltage from 1.7 V to 3.3 V is digitized on-chip and transmitted via an ultra-wideband impulse radio (IR-UWB) back-telemetry for closed-loop regulation. The IC is fabricated in 180-nm CMOS process with an overall current dissipation of 750 nA. At a separation distance of 2 cm, the end-to-end power transfer efficiency reaches 16.1% while driving the 30-µW load, which is immune to artificially induced resonance capacitor offsets. The proposed system can be applied to various battery-less IMDs with the potential improvement of the power transfer efficiency on orders of magnitude.


Assuntos
Eletrônica Médica , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Próteses e Implantes , Processamento de Sinais Assistido por Computador
19.
IEEE Trans Biomed Circuits Syst ; 14(6): 1218-1229, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33170783

RESUMO

This paper presents a millimeter-scale crystal-less wireless transceiver for volume-constrained insertable pills. Operating in the 402-405 MHz medical implant communication service (MICS) band, the phase-tracking receiver-based over-the-air carrier recovery has a ±160 ppm coverage. A fully integrated adaptive antenna impedance matching solution is proposed to calibrate the antenna impedance variation inside the body. A tunable matching network (TMN) with single inductor performs impedance matching for both transmitter (TX) and receiver (RX) and TX/RX mode switching. To dynamically calibrate the antenna impedance variation over different locations and diet conditions, a loop-back power detector using self-mixing is adopted, which expands the power contour up to 4.8 VSWR. The transceiver is implemented in a 40-nm CMOS technology, occupying 2 mm2 die area. The transceiver chip and a miniature antenna are integrated in a 3.5 × 15 mm2 area prototype wireless module. It has a receiver sensitivity of -90 dBm at 200 kbps data rate and delivers up to - 25 dBm EIRP in the wireless measurement with a liquid phantom.


Assuntos
Eletrônica Médica/instrumentação , Gastroscopia/instrumentação , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Humanos , Modelos Biológicos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador/instrumentação , Estômago/diagnóstico por imagem
20.
IEEE Trans Biomed Circuits Syst ; 14(6): 1263-1273, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33216718

RESUMO

This paper presents the body-coupled power transmission and ambient energy harvesting ICs. The ICs utilize human body-coupling to deliver power to the entire body, and at the same time, harvest energy from ambient EM waves coupled through the body. The ICs improve the recovered power level by adapting to the varying skin-electrode interface parasitic impedance at both the TX and RX. To maximize the power output from the TX, the dynamic impedance matching is performed amidst environment-induced variations. At the RX, the Detuned Impedance Booster (DIB) and the Bulk Adaptation Rectifier (BAR) are proposed to improve the power recovery and extend the power coverage further. In order to ensure the maximum power extraction despite the loading variations, the Dual-Mode Buck-Boost Converter (DM-BBC) is proposed. The ICs fabricated in 40 nm 1P8M CMOS recover up to 100 µW from the body-coupled power transmission and 2.5 µW from the ambient body-coupled energy harvesting. The ICs achieve the full-body area power delivery, with the power harvested from the ambiance via the body-coupling mechanism independent of placements on the body. Both approaches show power sustainability for wearable electronics all around the human body.


Assuntos
Fontes de Energia Elétrica , Eletrônica Médica/instrumentação , Dispositivos Eletrônicos Vestíveis , Impedância Elétrica , Humanos , Processamento de Sinais Assistido por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...