Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.517
Filtrar
1.
Chemosphere ; 361: 142573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852630

RESUMO

Dynamic impacts of short-term enrofloxacin (ENR) exposure on juvenile marine fish are not well understood, and the underlying mechanisms remain unclear. We therefore investigated the accumulation and elimination of ENR in the liver of juvenile black seabream Acanthopagrus schlegelii. Meanwhile, the dynamic alterations of biochemical parameters and liver transcriptomes after short-term bath immersion and withdrawal treatment were explored. The results indicated that the contents of ENR in the liver were significantly increased after bath administration for 24 h, and then quickly declined to very low concentrations along with the decontamination time increasing. Judging from the changes in biochemical indicators and liver transcriptomic alterations, 0.5 and 1 mg/L ENR exposure for 24 h triggered oxidative stress, impairment of immune system, as well as aberrant lipid metabolism via differential molecular pathways. Interestingly, biochemical and transcriptome analysis as well as integrated biomarker response (IBR) values showed that more significant changes appeared in 1 mg/L ENR group at decontamination periods, which indicated that the impact of high dose ENR on juvenile A. schlegelii may persist even after depuration for 7 days. These results revealed that the risk of short-term bath of 1 mg/L ENR should not be overlooked even after depuration period. Therefore, attention should be paid to the dosage control when administering the drug to juvenile A. schlegelii, and the restoration of physiological disturbance may be an important factor in formulating a reasonable treatment plan.


Assuntos
Enrofloxacina , Fígado , Dourada , Poluentes Químicos da Água , Animais , Dourada/metabolismo , Dourada/genética , Poluentes Químicos da Água/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Antibacterianos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos
2.
J Environ Manage ; 365: 121565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917539

RESUMO

Animals manure and chemical fertilizers are widely applied to agricultural soils to mitigate soil fertility decline resulting from intensive farming practices. However, the use of antibiotics such as ciprofloxacin (CIP) and enrofloxacin (ENR) in these manures introduces certain environmental risks. The sorption of CIP and ENR in soil is influenced by various factors. Soil cations (i.e., Na+, K+, Mg2+, and Ca2+) and artificially introduced ions (NH4+) can affect the sorption behavior of CIP and ENR in alkaline agricultural soils through mechanisms such as ion exchange and competitive sorption. To investigate the effects of ionic strength and ion type on the sorption of antibiotics in alkaline agricultural soil, batch equilibrium experiments were conducted in this study. The results showed that the affinity of alkaline farmland soil to CIP and ENR was poor, and Kd was only 159 L/kg and 89 L/kg, respectively. Increases in temperature and pH inhibited CIP and ENR sorption on soil. Mineral elements in the soil strongly inhibited CIP and ENR sorption. Conversely, NH4+ promoted the Kd values of CIP and ENR by 46% and 221%, respectively. Additionally, under different influencing factors, both the sorption affinity (Kd) and sorption amount of ENR were lower than those of CIP. These findings indicate that ENR has a greater migration potential and poses a greater environmental risk in agricultural soils. Alkaline soil and mineral elements increase the migration potential of CIP, ENR, but the introduction of NH4+ in agricultural production can weaken the migration potential of them.


Assuntos
Ciprofloxacina , Enrofloxacina , Poluentes do Solo , Solo , Ciprofloxacina/química , Solo/química , Concentração de Íons de Hidrogênio , Enrofloxacina/química , Concentração Osmolar , Poluentes do Solo/química , Adsorção , Agricultura , Antibacterianos/química
3.
Food Chem ; 455: 139876, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823143

RESUMO

Enrofloxacin (ENR) residues in animal-derived food and water threaten human health. Simple, low-cost and on-site detection methods are urgently needed. Blue emitting carbon quantum dots (CQDs) and orange rhodamine B (RhB) were used as recognition and reference signals, respectively, to construct a ratiometric fluorescence sensor. After the addition of ENR, the color of the sensor changed from orange to blue because hydrogen bonding induced a considerable increase in CQDs fluorescence. Based on this mechanism, a simple and low cost on-site portable sensing platform was constructed, which integrated a stable UV light strip and a smartphone with voice-controlled phototaking function and an RGB app. The t-test results of spiked ENR recoveries for diluted milk, honey and drinking water revealed no significant differences between the ratiometric fluorescent sensor and portable sensing platform. Thus, this portable sensing platform provides a novel strategy for on-site quantification of quinolone antibiotics in foodstuffs and environmental water.


Assuntos
Antibacterianos , Enrofloxacina , Contaminação de Alimentos , Ligação de Hidrogênio , Leite , Pontos Quânticos , Smartphone , Enrofloxacina/análise , Pontos Quânticos/química , Leite/química , Contaminação de Alimentos/análise , Antibacterianos/análise , Animais , Fluorescência , Poluentes Químicos da Água/análise , Mel/análise , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Água Potável/análise , Carbono/química , Rodaminas/química
4.
J Vet Intern Med ; 38(4): 2358-2361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738486

RESUMO

To describe the diagnosis and successful treatment of systemic francisellosis in a dog. An 11-year-old female spayed Labrador retriever presented for progressive lethargy, hyporexia, and cough. The dog was febrile with a neutrophilia, nonregenerative anemia, thrombocytopenia, and had increased activity in serum of liver-derived enzymes. Francisella philomiragia was isolated from aerobic blood culture. The dog was treated for 6 weeks with enrofloxacin orally. Repeated aerobic blood cultures after 2 and 6 weeks of antibiotic therapy were negative. The dog was clinically normal 7 months after diagnosis with no evidence of relapse.


Assuntos
Antibacterianos , Bacteriemia , Doenças do Cão , Enrofloxacina , Francisella , Infecções por Bactérias Gram-Negativas , Animais , Cães , Feminino , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Enrofloxacina/uso terapêutico , Antibacterianos/uso terapêutico , Bacteriemia/veterinária , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia
5.
ACS Appl Mater Interfaces ; 16(21): 27028-27039, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38755114

RESUMO

The fate and effects of fluoroquinolone antibacterial (FQ) on the environment are important since there appears to be a surge in FQ resistance like enrofloxacin (ENR) in both environmental and clinical organisms. Numerous reports indicate that the sensing capabilities of these antibiotics need to be improved. Here, we have investigated the interaction of ENR with our synthesized pentacenequinone-modulated gadolinium-tin (GdSn-PQ) nanosheets and the formation of intermolecular interactions that caused the occurrence of aggregation-induced emission enhancement. The concept for designing hybrid metallic nanosheets comes from the unique features inherited from the parent organic precursor. Due to the distinct interaction between ENR and GdSn-PQ, the interstate conversion (ISC) between GdSn-PQ and ENR induces a significant wavelength shift in photoluminescence (PL), improving reliability, selectivity, and visibility compared to quenching- or AIEE-based methods without peak shifts, allowing for highly sensitive and visually detectable analyses. The fluorescence signal of GdSn-PQ exhibited a linear relationship (R2 = 0.9911), with the added ENR concentrations ranging from 5 to 90 nM, with a detection limit of 0.10 nM. We have demonstrated its potential and wide use in the detection of ENR in biological samples (human urine and blood serum) and environmental samples (tap water and seawater) with a recovery rate of 98- 108%. The current approach has demonstrated that the 2D GdSn-PQ nanosheet is a novel and powerful platform for future biological and environmental studies.


Assuntos
Enrofloxacina , Corantes Fluorescentes , Enrofloxacina/análise , Enrofloxacina/sangue , Enrofloxacina/urina , Corantes Fluorescentes/química , Gadolínio/química , Nanoestruturas/química , Antibacterianos/química , Antibacterianos/análise , Antibacterianos/urina , Humanos , Limite de Detecção , Espectrometria de Fluorescência , Naftacenos/química
6.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791259

RESUMO

Avian pathogenic Escherichia coli (APEC) causes a variety of infections outside the intestine. The treatment of these infections is becoming increasingly difficult due to the emergence of multi-drug resistant (MDR) strains, which can also be a direct or indirect threat to humans as consumers of poultry products. Therefore, alternative antimicrobial agents are being sought, which could be essential oils, either administered individually or in interaction with antibiotics. Sixteen field isolates of E. coli (originating from 1-day-old broilers) and the ATCC 25922 reference strain were tested. Commercial cinnamon bark, clove bud, lavender flower essential oils (EOs) and enrofloxacin were selected to assess the sensitivity of the selected E. coli strains to antimicrobial agents. The checkerboard method was used to estimate the individual minimum inhibitory concentration (MIC) for each antimicrobial agent as well as to determine the interactions between the selected essential oil and enrofloxacin. In the case of enrofloxacin, ten isolates were resistant at MIC ≥ 2 µg/mL, three were classified as intermediate (0.5-1 µg/mL) and three as sensitive at ≤0.25 µg/mL. Regardless of the sensitivity to enrofloxacin, the MIC for cinnamon EO was 0.25% v/v and for clove EO was 0.125% v/v. All MDR strains had MIC values for lavender EO of 1% v/v, while drug-sensitive isolates had MIC of 0.5% v/v. Synergism between enrofloxacin and EO was noted more frequently in lavender EO (82.35%), followed by cinnamon EO (64.7%), than in clove EO (47.1%). The remaining cases exhibited additive effects. Owing to synergy, the isolates became susceptible to enrofloxacin at an MIC of ≤8 µg/mL. A time-kill study supports these observations. Cinnamon and clove EOs required for up to 1 h and lavender EO for up to 4 h to completely kill a multidrug-resistant strain as well as the ATCC 25922 reference strain of E. coli. Through synergistic or additive effects, blends with a lower than MIC concentration of enrofloxacin mixed with a lower EO content required 6 ± 2 h to achieve a similar effect.


Assuntos
Galinhas , Cinnamomum zeylanicum , Farmacorresistência Bacteriana Múltipla , Enrofloxacina , Escherichia coli , Lavandula , Testes de Sensibilidade Microbiana , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Animais , Escherichia coli/efeitos dos fármacos , Enrofloxacina/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Cinnamomum zeylanicum/química , Lavandula/química , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Sinergismo Farmacológico , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Doenças das Aves Domésticas/microbiologia
7.
Molecules ; 29(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792155

RESUMO

With the rising incidence of various diseases in China and the constant development of the pharmaceutical industry, there is a growing demand for floxacin-type antibiotics. Due to the large-scale production and high cost of waste treatment, the parent drug and its metabolites constantly enter the water environment through domestic sewage, production wastewater, and other pathways. In recent years, the pollution of the aquatic environment by floxacin has become increasingly serious, making the technology to degrade floxacin in the aquatic environment a research hotspot in the field of environmental science. Metal-organic frameworks (MOFs), as a new type of porous material, have attracted much attention in recent years. In this paper, four photocatalytic materials, MIL-53(Fe), NH2-MIL-53(Fe), MIL-100(Fe), and g-C3N4, were synthesised and applied to the study of the removal of ofloxacin and enrofloxacin. Among them, the MIL-100(Fe) material exhibited the best photocatalytic effect. The degradation efficiency of ofloxacin reached 95.1% after 3 h under visible light, while enrofloxacin was basically completely degraded. The effects of different materials on the visible photocatalytic degradation of the floxacin were investigated. Furthermore, the photocatalytic mechanism of enrofloxacin and ofloxacin was revealed by the use of three trappers (▪O2-, h+, and ▪OH), demonstrating that the role of ▪O2- promoted the degradation effect of the materials under photocatalysis.


Assuntos
Estruturas Metalorgânicas , Quinolonas , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Catálise , Quinolonas/química , Poluentes Químicos da Água/química , Fotólise , Luz , Ofloxacino/química , Processos Fotoquímicos , Antibacterianos/química , Enrofloxacina/química
8.
J Hazard Mater ; 472: 134555, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728864

RESUMO

This study aimed to isolate marine bacteria to investigate their stress response, inhibition mechanisms, and degradation processes under high-load conditions of salinity and enrofloxacin (ENR). The results demonstrated that marine bacteria exhibited efficient pollutant removal efficiency even under high ENR stress (up to 10 mg/L), with chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) and ENR removal efficiencies reaching approximately 88%, 83%, 61%, and 73%, respectively. The predominant families of marine bacteria were Bacillaceae (50.46%), Alcanivoracaceae (32.30%), and Rhodobacteraceae (13.36%). They responded to ENR removal by altering cell membrane properties, stimulating the activity of xenobiotic-metabolizing enzymes and antioxidant systems, and mitigating ENR stress through the secretion of extracellular polymeric substance (EPS). The marine bacteria exhibited robust adaptability to environmental factors and effective detoxification of ENR, simultaneously removing carbon, nitrogen, phosphorus, and antibiotics from the wastewater. The attapulgite carrier enhanced the bacteria's resistance to the environment. When treating actual mariculture wastewater, the removal efficiencies of COD and TN exceeded 80%, TP removal efficiency exceeded 90%, and ENR removal efficiency approached 100%, significantly higher than reported values in similar salinity reactors. Combining the constructed physical and mathematical models of tolerant bacterial, this study will promote the practical implementation of marine bacterial-based biotechnologies in high-loading saline wastewater treatment.


Assuntos
Antibacterianos , Enrofloxacina , Nitrogênio , Fósforo , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Enrofloxacina/metabolismo , Poluentes Químicos da Água/metabolismo , Antibacterianos/metabolismo , Fósforo/metabolismo , Fósforo/química , Nitrogênio/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Aquicultura , Eliminação de Resíduos Líquidos/métodos
9.
Sci Total Environ ; 934: 173251, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750731

RESUMO

Citizen scientist-based environmental monitoring and public education are becoming increasingly popular. However, current technologies for antibiotic-based novel contaminant identification are still restricted to laboratory sample collection and analysis due to detection methodologies and apparatus limitations. This study developed a time-resolved immunofluorescence-based simultaneous field-based assay for ciprofloxacin (CIP) and enrofloxacin (ENR) that matches test results to geographic locations. The assay helps the public understand the potential levels of antibiotic exposures in their environments and helps them take appropriate action to reduce risk. The assay was developed using smartphones and social software in addition to rapid testing. The method uses a portable, low-cost analytical kit with a smartphone app to build a field-based detection platform for the detection and analysis of ENR and CIP in water and aquatic products. The methodological evaluation was good, with detection limits of 0.4 ng/mL and 0.5 ng/g for ENR in water and fish, and quantification limits of 1.2 ng/mL and 1.4 ng/g, with recoveries of 89.0 %-101.0 % and 78.0 %-97.0 %. For CIP in water and fish, the limits of detection were 0.3 ng/mL and 0.4 ng/g, the limits of quantification were 0.9 ng/mL and 1.2 ng/g, and the recoveries were 75.0 %-91.0 % and 72.0 %-89.0 %, both with coefficients of variation <15 %. These limits were sufficient to prevent the two antibiotics from crossing over during simultaneous detection. The assay was validated using real samples to assess the effectiveness of the assay platform in field deployments, and the results were consistent with those obtained through liquid chromatography-tandem mass spectrometry (LC-MS) and enzyme-linked immunoassay (ELISA) techniques. In addition, the TRFIA assay process requires less time, uses more portable instruments, and is less complex than traditional methods. This study provides a new scientific, accurate, and rapid detection method for antibiotic detection by citizen scientists, helping scientists to obtain a wider range of data and providing more opportunities to solve scientific problems.


Assuntos
Antibacterianos , Ciência do Cidadão , Enrofloxacina , Monitoramento Ambiental , Poluentes Químicos da Água , Antibacterianos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Enrofloxacina/análise , Ciprofloxacina/análise , Smartphone , Imunofluorescência/métodos
10.
Poult Sci ; 103(6): 103720, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652949

RESUMO

This study investigated the effects of the early administration of enrofloxacin (E) or doxycycline (D) for the first 5 consecutive days of life, or the continuous administration of the coccidiostat monensin (M) throughout the rearing period on gastrointestinal function in turkeys infected with avian pathogenic Escherichia coli (APEC) in an early or later stage of rearing. Experiment 1 lasted 21 d, and turkeys in groups E, D, and M were infected with APEC on d 15. Experiment 2 lasted 56 d, and it had a factorial arrangement of treatments where birds in groups E, D, and M were infected with APEC on d 15 or d 50. In both experiments, control groups (C) consisted of infected and uninfected birds without antibiotic or coccidiostat administration. On d 21 (Experiment 1) and d 56 (Experiment 2), 8 birds from each subgroup were killed, and the ileal and cecal digesta were sampled to analyze the activity of bacterial enzymes and the concentrations of short-chain fatty acids (SCFA). The experimental treatments did not affect the final body weight or body weight gain of birds. Both experiments demonstrated that APEC contributed to an increase in ammonia levels of the cecal digesta (means from 2 experiments: 0.311 vs. 0.225 mg/g in uninfected birds) and ileal pH (6.79 vs. 6.00) and viscosity (2.43 vs. 1.83 mPa⋅s). Moreover, the E. coli challenge enhanced the extracellular activity of several cecal bacterial enzymes, especially in older turkeys infected with APEC in a later stage of life. The continuous administration of monensin throughout the rearing period resulted in a weaker gastrointestinal response in older birds, compared with the other 2 antibiotics administered for the first 5 d of life. The results of the study are inconclusive as both desirable and undesirable effects of preventive early short-term antibiotic therapy were observed in turkeys, including normalization of ileal viscosity and cecal ammonia concentration (positive effect), and disruption in cecal SCFA production (negative effect).


Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Doenças das Aves Domésticas , Perus , Animais , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Enrofloxacina/administração & dosagem , Monensin/administração & dosagem , Monensin/farmacologia , Masculino , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/efeitos dos fármacos , Distribuição Aleatória
11.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610339

RESUMO

Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.


Assuntos
Antibacterianos , Ressonância de Plasmônio de Superfície , Enrofloxacina , Ciprofloxacina , Tecnologia de Fibra Óptica
12.
Artigo em Inglês | MEDLINE | ID: mdl-38643813

RESUMO

Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.


Assuntos
Antibacterianos , Chlorella , Fotossíntese , Poluentes Químicos da Água , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Fotossíntese/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Tetraciclina/farmacologia , Tetraciclina/toxicidade , Claritromicina/farmacologia , Enrofloxacina/farmacologia , Enrofloxacina/toxicidade , Sulfametazina/toxicidade , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Luz , Clorofila/metabolismo
13.
ACS Appl Mater Interfaces ; 16(17): 22704-22714, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640487

RESUMO

Balancing the accuracy and simplicity of aptasensors is a challenge in their construction. This study addresses this issue by leveraging the remarkable loading capacity and peroxidase-like catalytic activity of PtPdCu trimetallic nanoparticles, which reduces the reliance on precious metals. A dual-signal readout aptasensor for enrofloxacin (ENR) detection is designed, incorporating DNA dynamic network cascade reactions to further amplify the output signal. Exploiting the strong loading capacity of PtPdCu nanoparticles, they are self-assembled with thionine (Thi) to form a signal label capable of generating signals in two independent modes. The label exhibits excellent enzyme-like catalytic activity and enhances electron transfer capabilities. Differential pulse voltammetry (DPV) and square-wave voltammetry (SWV) are employed to independently read signals from the oxidation-reduction reaction of Thi and the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) by H2O2. The introduced DNA dynamic network cascade reaction modularizes sample processing and electrode surface signal generation, avoiding electrode contamination and efficiently increasing the output of the catalyzed hairpin assembly (CHA) cycle. Under optimized conditions, the developed aptasensor demonstrates detection limits of 0.112 (DPV mode) and 0.0203 pg/mL (SWV mode). Additionally, the sensor successfully detected enrofloxacin in real samples, expanding avenues for designing dual-mode signal amplification strategies.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Enrofloxacina , Nanopartículas Metálicas , Platina , Enrofloxacina/análise , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Cobre/química , Platina/química , Rutênio/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Oxirredução , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Catálise , Antibacterianos/análise , Antibacterianos/química
14.
Chemosphere ; 356: 141971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604519

RESUMO

The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 µg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.


Assuntos
Antibacterianos , Enrofloxacina , Microbioma Gastrointestinal , Neurotransmissores , Peixe-Zebra , Animais , Neurotransmissores/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Enrofloxacina/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Poluentes Químicos da Água/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Malondialdeído/metabolismo , Lipopolissacarídeos
15.
Food Chem ; 449: 139050, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581779

RESUMO

Ensuring the safety of animal-derived foods requires the reliable and swift identification of enrofloxacin residues to monitor the presence of antibiotics. In this regard, we synthesized, tuned, and investigated the optical properties of a bimetallic metal-organic framework (Ce/Zr-UiO 66). The investigation was facilitated by employing a polydopamine-coated pipette tip with high adsorption efficiency, serving as an immunoreactive carrier. Subsequently, an immunofunctionalized variant of Ce/Zr-UiO 66, referred to as Ce/Zr-UiO 66@ Bovine serum albumin-enrofloxacin, was developed as an optical probe for the rapid and sensitive identification of enrofloxacin across a variety of samples. The method can accurately detect enrofloxacin at concentrations as low as 0.12 ng/mL, with a determination time of under 15 min; furthermore, it demonstrates exceptional efficacy when applied to food, environmental, and clinical samples. The implementation of this methodology offers a valuable means for cost-effective, rapid, and on-site enrofloxacin determination.


Assuntos
Antibacterianos , Enrofloxacina , Contaminação de Alimentos , Estruturas Metalorgânicas , Leite , Enrofloxacina/análise , Estruturas Metalorgânicas/química , Animais , Leite/química , Contaminação de Alimentos/análise , Antibacterianos/análise , Bovinos , Imunoensaio/métodos , Imunoensaio/instrumentação , Imunoensaio/economia , Técnicas Biossensoriais/instrumentação , Limite de Detecção
16.
Chemosphere ; 356: 141916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583536

RESUMO

This study presents an assessment of inorganic and organic modification of biochar on physicochemical properties, dissolved organic carbon (DOC) release, sorption efficiency towards enrofloxacin (E) and silver nanoparticles (Ag-NPs), as well as an evaluation of addition of prepared materials on hydro-physical properties and adsorption capacity of montmorillonite (M). The biochar was derived from wheat straw at 650 °C. An inorganic modification was performed using ammonia hydroxide, whereas an organic modification, using citric acid. The ammonia hydroxide and citric acid changed the biochar nature and surface chemistry by introducing amino and ester groups. The lowest DOC release was from ammonia-biochar (BCN) and the highest, from citric acid-biochar (BCC). The adsorption data were better described by pseudo-II order equation and Marczewski-Jaroniec isotherm. Results showed that BCN exhibited the highest efficiency in adsorption of E and Ag-NPs. It also improved the adsorptive abilities and saturated hydraulic conductivity of M. This provides the chemically modified biochars have an excellent potential to improve pollution removal from aqueous media and hydro-physical/sorption properties of soil sorption complex. They can be used with advantageous in environmental applications.


Assuntos
Carvão Vegetal , Ácido Cítrico , Nanopartículas Metálicas , Triticum , Triticum/química , Carvão Vegetal/química , Ácido Cítrico/química , Adsorção , Nanopartículas Metálicas/química , Bentonita/química , Prata/química , Enrofloxacina/química , Hidróxidos/química , Amônia/química
17.
Vet Res ; 55(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594744

RESUMO

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Tianfenicol/análogos & derivados , Suínos , Animais , Sorogrupo , Testes de Sensibilidade Microbiana/veterinária , Enrofloxacina , Fazendas , Estudos Retrospectivos , Pleuropneumonia/epidemiologia , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Itália/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Sorotipagem/veterinária
18.
Environ Sci Pollut Res Int ; 31(16): 23780-23789, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430444

RESUMO

We investigated 14 antibiotic residues in 8 marketed freshwater fish species from southeast China and estimated the associated health risks to local consumers. The antibiotic residues were determined by UPLC-MS/MS. Our findings revealed widespread distribution of quinolones (QNs), tetracyclines (TCs), and chloramphenicols (CAPs) in the freshwater fish. Notably, the average concentrations of enrofloxacin and ciprofloxacin reached levels as high as 62.5 µg/kg wet weight (ww) and 11.7 µg/kg ww, respectively, and detection frequencies were 68.7% for enrofloxacin and 31.6% for ciprofloxacin. Additionally, we detected chloramphenicol, a prohibited antibiotic, in samples with a detection frequency of 0.76%. Among the fish species, the mean concentration of total antibiotic residues was highest in bluntnose black bream (263.3 µg/kg), followed by English perch (52.4 µg/kg), crucian carp (46.3 µg/kg), black carp (28.6 µg/kg), yellowcheek carp (21.0 µg/kg), grass carp (15.3 µg/kg), bighead carp (3.78 µg/kg), and mandarin fish (3.69 µg/kg). We estimated the daily intake values of these antibiotic residues which were lower than the acceptable daily intake values and hazard indexes were much less than 1. It indicates that there is very low direct health risk to consumers. Despite that, investigation on the chronic impact, such as antibiotic-resistant bacteria, gut microbiota disruption, and allergic reactions, is urgently needed.


Assuntos
Carpas , Cyprinidae , Animais , Humanos , Antibacterianos , Enrofloxacina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Água Doce , China , Ciprofloxacina , Medição de Risco
19.
Antimicrob Agents Chemother ; 68(5): e0005724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526080

RESUMO

Enterohemorrhagic Escherichia coli causes watery to bloody diarrhea, which may progress to hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that antibiotic treatment may worsen the pathology of an enterohemorrhagic Escherichia coli (EHEC) infection, recent work has shown that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can alleviate colonization resistance, facilitate secondary infections, and potentially lead to more severe illness. To address the consequences in the context of an EHEC infection, we used the established mouse infection model organism Citrobacter rodentium ϕstx2dact and monitored changes in fecal microbiota composition during infection and antibiotic treatment. C. rodentium ϕstx2dact infection resulted in minor changes compared to antibiotic treatment. The infection caused clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae and a transient increase in Enterobacteriaceae distinct from Citrobacter. Antibiotic treatments of the infection resulted in marked and distinct variations in microbiota composition, diversity, and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Shiga toxin-mediated organ damage, had the least disruptive effects on the intestinal microbiota, while kanamycin and tetracycline, which rapidly cleared the infection without causing organ damage, caused a severe reduction in diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera, whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the need to address the impact of individual antibiotics in the clinical care of life-threatening infections and consider microbiota-regenerating therapies.IMPORTANCEUnderstanding the impact of antibiotic treatment on EHEC infections is crucial for appropriate clinical care. While discouraged by early studies, recent findings suggest certain antibiotics can impede disease progression. Here, we investigated the impact of individual antibiotics on the fecal microbiota in the context of an established EHEC mouse model using C. rodentium ϕstx2dact. The infection caused significant variations in the microbiota, leading to a transient increase in Enterobacteriaceae distinct from Citrobacter. However, these effects were minor compared to those observed for antibiotic treatments. Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental effect on the fecal microbiota, causing a substantial reduction in microbial diversity. Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a reduced impact on microbiota composition and diversity. Taken together, our findings emphasize the delicate balance required to weigh the harmful effects of infection and antibiosis in treatment.


Assuntos
Antibacterianos , Citrobacter rodentium , Infecções por Enterobacteriaceae , Fezes , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Citrobacter rodentium/efeitos dos fármacos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/efeitos adversos , Fezes/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Enrofloxacina/farmacologia , Enrofloxacina/uso terapêutico , Feminino , Modelos Animais de Doenças , Disbiose/microbiologia
20.
Vet Microbiol ; 292: 110046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471428

RESUMO

Pasteurella multocida is a leading cause of respiratory disorders in pigs. However, the genotypes and antimicrobial resistance characteristics of P. multocida from pigs in China have not been reported frequently. In this study, we investigated 381 porcine strains of P. multocida collected in China between 2013 and 2022. These strains were assigned to capsular genotypes A (69.55%, n = 265), D (27.82%, n =106), and F (2.62%, n = 10); or lipopolysaccharide genotypes L1 (1.31%, n = 5), L3 (24.41%, n = 93), and L6 (74.28%, n = 283). Overall, P. multocida genotype A:L6 (46.46%) was the most-commonly identified type, followed by D:L6 (27.82%), A:L3 (21.78%), F:L3 (2.62%), and A:L1 (1.31%). Antimicrobial susceptibility testing showed that a relatively high proportion of strains were resistant to tetracycline (66.67%, n = 254), and florfenicol (35.17%, n = 134), while a small proportion of strains showed resistance phenotypes to enrofloxacin (10.76%, n = 41), ampicillin (8.40%, n = 32), tilmicosin (7.09%, n = 27), and ceftiofur (2.89%, n = 11). Notably, Illumina short-read and Nanopore long-read sequencing identified a chromosome-borne tigecycline-resistance gene cluster tmexCD3-toprJ1 in P. multocida. The structure of this cluster was highly similar to the respective structures found in several members of Proteus or Pseudomonas. It is assumed that the current study identified the tmexCD3-toprJ1 cluster for the first time in P. multocida.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Suínos , Animais , Pasteurella multocida/genética , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enrofloxacina , Família Multigênica , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/tratamento farmacológico , Doenças dos Suínos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...