Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.234
Filtrar
1.
Front Cell Infect Microbiol ; 12: 960892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061873

RESUMO

Bacterial infections with the genus Enterobacter are notoriously difficult to treat and often associated with resistance to penicillin, aminoglycosides, fluoroquinolones, and third-generation cephalosporins. Also, Enterobacter species have emerged as the third most common hosts for carbapenemases worldwide, forcing the use of colistin as a "last-resort" antibiotic for the treatment. Studies on the population structure of the genus Enterobacter repeatedly detect E. xiangfangensis as a common clinical species present worldwide. Here, we report on the characteristics of an extreme drug-resistant E. xiangfangensis isolate va18651 (ST88), obtained from a cervical swab of an expectant mother. The isolate was resistant to almost all the classes of antibiotics tested, including ß-lactams (viz., penicillins, carbapenems, cephalosporin, monobactams, and their combinations), quinolone, aminoglycosides, and sulfonamide/dihydrofolate reductase inhibitor, and exhibited heteroresistance towards colistin. Analysis of its complete genome sequence revealed 37 antibiotic resistance genes (ARGs), including mcr-9.1, blaKPC-2 , and blaOXA-48 , encoded on three of the four different plasmids (cumulative plasmidome size 604,632 bp). An unusually high number of plasmid-based heavy metal resistance gene (HRG) clusters towards silver, arsenate, cadmium, copper, mercury, and tellurite were also detected. Virulence genes (VGs) for the lipopolysaccharide and capsular polysaccharide structures, iron acquisition (iroBCDEN, ent/fep/fes, sitABCD, iut, and fur), and a type VI secretion system, together with motility genes and Type IV pili, were encoded chromosomally. Thus, a unique combination of chromosomally encoded VGs, together with plasmid-encoded ARGs and HRGs, converged to result in an extreme drug-resistant, pathogenic isolate with survival potential in environmental settings. The use of a disinfectant, octenidine, led to its eradication; however, the existence of a highly antibiotic-resistant isolate with significant virulence potential is a matter of concern in public health settings and warrants further surveillance for extreme drug-resistant Enterobacter isolates.


Assuntos
Colistina , Farmacorresistência Bacteriana , Aminoglicosídeos , Antibacterianos/farmacologia , Proteínas de Bactérias , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacter/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética
2.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080348

RESUMO

Nitrate-reducing iron(II) oxidation (NRFO) has been intensively reported in various bacteria. Iron(II) oxidation is found to be involved in both enzymatic and chemical reactions in nitrate-reducing Fe(II)-oxidizing microorganisms (NRFOMs). However, little is known about the relative contribution of biotic and abiotic reactions to iron(II) oxidation for the common nitrate reducers during the NRFO process. In this study, the typical nitrate reducers, four Enterobacter strains E. hormaechei, E. tabaci, E. mori and E. asburiae, were utilized as the model microorganisms. The comparison of the kinetics of nitrate, iron(II) and nitrite and N2O production in setups with and without iron(II) indicates a mixture of enzymatic and abiotic oxidation of iron(II) in all four Enterobacter strains. It was estimated that 22-29% of total oxidized iron(II) was coupled to microbial nitrate reduction by E. hormaechei, E. tabaci, E. mori, and E. asburiae. Enterobacter strains displayed an metabolic inactivity with heavy iron(III) encrustation on the cell surface in the NRFOmedium during days of incubation. Moreover, both respiratory and periplasmic nitrate-reducing genes are encoded by genomes of Enterobacter strains, suggesting that cell encrustation may occur with periplasmic iron(III) oxide precipitation as well as the surface iron(II) mineral coating for nitrate reducers. Overall, this study clarified the potential role of nitrate reducers in the biochemical cycling of iron under anoxic conditions, in turn, re-shaping their activity during denitrification because of cell encrustation with iron(III) minerals.


Assuntos
Ferro , Nitratos , Enterobacter/genética , Enterobacter/metabolismo , Compostos Ferrosos , Ferro/metabolismo , Minerais/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio , Oxirredução
3.
Microb Drug Resist ; 28(8): 882-892, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35972764

RESUMO

The study describes the first isolation of multidrug-resistant (MDR) Klebsiella pneumoniae ST16, Escherichia coli ST131 (Esc), and Enterobacter hormaechei subsp. steigerwaltii ST93 (Enterobacter cloacae complex [ECC]) in Sri Lanka. Eight MDR strains of uropathogenic Enterobacterales isolated from hospital acquired urinary tract infections (UTIs) were analyzed using genomic sequencing and comparative genomics. Isolates carried multiple carbapenemase, AmpC, and ESBL (extended-spectrum ß-lactamase) genes. ECC manifested both blaNDM-4 and blaOXA-181. The K. pneumoniae strains harbored fimbrial genes that facilitate pathogenesis of UTI. Several extraintestinal pathogenic E. coli associated virulence genes were identified in Esc. The efflux pump gene, acrA, and the T6SS gene cluster were detected in ECC. Many antimicrobial resistance (AMR) and virulence genes were identified associated with mobile genetic elements. ISEcp1 flanked upstream of blaCTX-M-15. The carbapenemase genes were carried on ColKP3 plasmids and were associated with ISEcp1. In Esc, the AMR gene blaTEM-1B and virulence gene traT were found on an IncF plasmid replicon. In K. pneumoniae the AMR genes sul1 and tetB present on IncR plasmid replicons and were associated with the insertion sequence IS6100. In Kp5, blaLAP-2 and qnrS1 coexisted and were flanked by ISEcl. AMR gene clusters, conferring resistance to multiple antimicrobial classes, flanked by mobile elements were identified in seven isolates.


Assuntos
Farmacorresistência Bacteriana Múltipla , Enterobacter , Escherichia coli , Klebsiella pneumoniae , Infecções Urinárias , Antibacterianos/farmacologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Enterobacter/efeitos dos fármacos , Enterobacter/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Sequências Repetitivas Dispersas , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Sri Lanka/epidemiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Virulência/genética , beta-Lactamases/genética
4.
Cell Rep ; 40(9): 111308, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044853

RESUMO

Commensal intestinal bacteria play key roles in regulating host immune tolerance; however, bacterial strains and related metabolites directly involved in this regulation are largely unknown. Here, using a mouse model of dextran sulfate sodium (DSS)-induced colitis combined with different antibiotic treatment, Enterobacter ludwigii, abundant in microbiota of mice treated with metronidazole, is screened out to have prophylactic and therapeutic effects on DSS-induced colitis with or without the presence of complex intestinal bacteria. E. ludwigii is found to induce CD103+DC and regulatory T (Treg)-mediated immune tolerance for colitis remission using in vitro and in vivo experiments. Moreover, choline, one metabolite of E. ludwigii, is identified to increase dendritic cells' (DCs) immune tolerance to promote Treg differentiation. E. ludwigii is found to induce DCs' immune tolerance ability for Treg differentiation through choline and α7nAChR-mediated retinoic acid (RA) and transforming growth factor beta (TGF-ß) upregulation, resulting in protecting mice against DSS-induced colitis. This study suggests potential therapeutic approaches for inflammatory bowel diseases (IBDs).


Assuntos
Colina , Colite , Animais , Colina/metabolismo , Células Dendríticas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Enterobacter , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores
5.
Int J Antimicrob Agents ; 60(4): 106650, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934231

RESUMO

Enterobacter hormaechei, a member of the Enterobacter cloacae complex, has emerged as an important pathogen in healthcare-associated infections. Advancements in phylogenetic analyses and whole-genome sequencing techniques have led to the identification of E. hormaechei in numerous locations worldwide. The emergence of antibiotic-resistant E. hormaechei isolates, including those that produce extended-spectrum ß-lactamases (ESBLs), AmpC ß-lactamases and carbapenemases, has been reported worldwide. In this article, we review the different resistance genes of antibiotic-resistant E. hormaechei.


Assuntos
Infecções por Enterobacteriaceae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Enterobacter , Enterobacter cloacae , Infecções por Enterobacteriaceae/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Filogenia , beta-Lactamases/genética
6.
Antimicrob Agents Chemother ; 66(9): e0050622, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35950843

RESUMO

Bacteriophages and bacteriophage-derived peptidoglycan hydrolases (endolysins) present promising alternatives for the treatment of infections caused by multidrug resistant Gram-negative and Gram-positive pathogens. In this study, Gp105, a putative lysozyme murein hydrolase from Enterobacter phage myPSH1140 was characterized in silico, in vitro as well as in vivo using the purified protein. Gp105 contains a T4-type lysozyme-like domain (IPR001165) and belongs to Glycoside hydrolase family 24 (IPR002196). The putative endolysin indeed had strong antibacterial activity against Gram-negative pathogens, including E. cloacae, K. pneumoniae, P. aeruginosa, S. marcescens, Citrobacter sp., and A. baumannii. Also, an in vitro peptidoglycan hydrolysis assay showed strong activity against purified peptidoglycans. This study demonstrates the potential of Gp105 to be used as an antibacterial protein to combat Gram-negative pathogens.


Assuntos
Bacteriófagos , N-Acetil-Muramil-L-Alanina Amidase , Antibacterianos/farmacologia , Bacteriófagos/metabolismo , Endopeptidases/metabolismo , Enterobacter/metabolismo , Glicosídeo Hidrolases/metabolismo , Klebsiella pneumoniae/metabolismo , Muramidase/farmacologia , Myoviridae/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/metabolismo
7.
Curr Microbiol ; 79(9): 252, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834125

RESUMO

An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Lagos , Águas Residuárias/microbiologia , Purificação da Água , Bactérias/classificação , Bactérias/isolamento & purificação , Desnitrificação , Enterobacter/classificação , Enterobacter/crescimento & desenvolvimento , Enterobacter/metabolismo , Quênia , Klebsiella/classificação , Klebsiella/crescimento & desenvolvimento , Klebsiella/isolamento & purificação , Klebsiella/metabolismo , Lagos/química , Lagos/microbiologia , Nitrificação , Proteobactérias/classificação , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rios/microbiologia , Águas Residuárias/química
8.
Appl Environ Microbiol ; 88(14): e0047122, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862664

RESUMO

Surface waters are one of the main sources for drinking water production, and thus microbial contamination should be as minimal as possible. However, high concentrations of coliform bacteria were detected in reservoirs and lakes used for drinking water production during summer months due to autochthonous proliferation processes. Here, we present the genomic analyses of 17 strains of Enterobacter asburiae and Lelliottia spp. proliferating in reservoirs and lakes with special focus on the hygienic relevance, antibiotic resistance, and adaptations to the oligotrophic environments. The genomes contain neither genes for the type III secretion system nor cytotoxins or hemolysins, which are considered typical virulence factors. Examination of antibiotic resistance genes revealed mainly efflux pumps and ß-lactamase class C (ampC) genes. Phenotypically, single isolates of Enterobacter asburiae showed resistance to fosfomycin and ceftazidime. The genome analyses further suggest adaptations to oligotrophic and changing environmental conditions in reservoirs and lakes, e.g., genes to cope with low nitrate and phosphate levels and the ability to utilize substances released by algae, like amino acids, chitin, alginate, rhamnose, and fucose. This leads to the hypothesis that the proliferation of the coliform bacteria could occur at the end of summer due to algae die-off. IMPORTANCE Certain strains of coliform bacteria have been shown to proliferate in the oligotrophic water of drinking water reservoirs and lakes, reaching values above 104 per 100 mL. Such high concentrations challenge drinking water treatment, and occasionally the respective coliform bacteria have been detected in the treated drinking water. Thus, the question of their hygienic relevance is of high importance for water suppliers and authorities. Our genomic analyses suggest that the strains are not hygienically relevant, as typical virulence factors are absent and antibiotic resistance genes in the genomes most likely are of natural origin. Furthermore, their presence in the water is not related to fecal contamination. The proliferation in reservoirs and lakes during stable summer stratification is an autochthonic process of certain E. asburiae and Lelliottia strains that are well adapted to the surrounding oligotrophic environment.


Assuntos
Água Potável , Lagos , Antibacterianos/farmacologia , Enterobacter/genética , Enterobacteriaceae/genética , Bactérias Gram-Negativas , Lagos/microbiologia , Fatores de Virulência
9.
Rev Chilena Infectol ; 39(2): 218-220, 2022 04.
Artigo em Espanhol | MEDLINE | ID: mdl-35856997

RESUMO

There are few cases reports of Enterobacter cancerogenus infections. Although it has been isolated in contaminated wounds associated with trauma, it has also been reported as an etiological agent in a wide variety of other infections, with the presence of bacteremia being infrequent. We present the first case reported in Chile of a bacteremia caused by this agent, in a 28-year-old patient with a stable pelvic fracture due a high-energy traffic accident. He had a good clinical response to treatment with ertapenem.


Assuntos
Bacteriemia , Infecções por Enterobacteriaceae , Adulto , Bacteriemia/tratamento farmacológico , Chile , Enterobacter , Infecções por Enterobacteriaceae/tratamento farmacológico , Ertapenem , Humanos , Masculino
10.
Viruses ; 14(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35891499

RESUMO

In an era of antibiotic therapy crisis caused by spreading antimicrobial resistance, and when recurrent urinary tract infections constitute a serious social and medical problem, the isolation and complex characterization of phages with a potential therapeutic application represents a promising solution. It is an inevitable, and even a necessary direction in the development of current phage research. In this paper, we present two newly isolated myoviruses that show lytic activity against multidrug-resistant clinical isolates of Enterobacter spp. (E. cloacae, E. hormaechei, and E. kobei), the genomes of which belong to a poorly represented phage group. Both phages were classified as part of the Tevenvirinae subfamily (Entb_43 was recognized as Karamvirus and Entb_45 as Kanagawavirus). Phage lytic spectra ranging from 40 to 60% were obtained. The most effective phage-to-bacteria ratios (MOI = 0.01 and MOI = 0.001) for both the phage amplification and their lytic activity against planktonic bacteria were also estimated. Complete adsorption to host cells were obtained after about 20 min for Entb_43 and 10 min for Entb_45. The phage lysates retained their initial titers even during six months of storage at both -70 °C and 4 °C, whereas storage at 37 °C caused a complete loss in their activity. We showed that phages retained their activity after incubation with solutions of silver and copper nanoparticles, which may indicate possible synergistic antibacterial activity. Moreover, a significant reduction in phage titers was observed after incubation with a disinfectant containing octenidinum dihydrochloridum and phenoxyethanol, as well as with 70% ethanol. The observed maintenance of phage activity during incubation in a urine sample, along with other described properties, may suggest a therapeutic potential of phages at the infection site after intravesical administration.


Assuntos
Bacteriófagos , Infecções Urinárias , Antibacterianos/farmacologia , Bacteriófagos/genética , Enterobacter , Humanos , Myoviridae/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-35805215

RESUMO

Eutrophication has become an increasingly serious environmental issue and has contributed towards an explosion in harmful algal blooms (HABs) affecting local development. HABs can cause serious threats to ecosystems and human health. A newly isolated algicidal strain, Enterobacter hormaechei F2, showed high algicidal activity against the typical HAB species Microcystis aeruginosa. Potential algicides were detected through liquid chromatograph-mass spectrometer analysis, revealing that prodigiosin is an algicide and PQS is a quorum sensing molecule. RNA-seq was used to understand the algicidal mechanisms and the related pathways. We concluded that the metabolism of prodigiosin and PQS are active at the transcriptional level. The findings indicate that E. hormaechei F2 can be used as a potential biological agent to control harmful algal blooms to prevent the deterioration of the ecological and economic value of water bodies.


Assuntos
Herbicidas , Microcystis , Ecossistema , Enterobacter , Proliferação Nociva de Algas , Herbicidas/metabolismo , Humanos , Prodigiosina/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-35805383

RESUMO

Antibiotic resistance is a global public health threat and is associated with high mortality due to antibiotics' inability to treat bacterial infections. Enterobacter xiangfangensis is an emerging antibiotic-resistant bacterial pathogen from the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. Currently, there is no effective vaccine against Enterobacter species. In this study, a chimeric vaccine is designed comprising different epitopes screened from E. xiangfangensis proteomes using immunoinformatic and bioinformatic approaches. In the first phase, six fully sequenced proteomes were investigated by bacterial pan-genome analysis, which revealed that the pathogen consists of 21,996 core proteins, 3785 non-redundant proteins and 18,211 redundant proteins. The non-redundant proteins were considered for the vaccine target prioritization phase where different vaccine filters were applied. By doing so, two proteins; ferrichrome porin (FhuA) and peptidoglycan-associated lipoprotein (Pal) were shortlisted for epitope prediction. Based on properties of antigenicity, allergenicity, water solubility and DRB*0101 binding ability, three epitopes (GPAPTIAAKR, ATKTDTPIEK and RNNGTTAEI) were used in multi-epitope vaccine designing. The designed vaccine construct was analyzed in a docking study with immune cell receptors, which predicted the vaccine's proper binding with said receptors. Molecular dynamics analysis revealed that the vaccine demonstrated stable binding dynamics, and binding free energy calculations further validated the docking results. In conclusion, these in silico results may help experimentalists in developing a vaccine against E. xiangfangensis in specific and Enterobacter in general.


Assuntos
Proteoma , Vacinas , Antibacterianos , Biologia Computacional , Computadores , Enterobacter , Epitopos/química , Simulação de Acoplamento Molecular
13.
Environ Pollut ; 309: 119775, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843452

RESUMO

While biogenic Mn oxides (BioMnOx) generated by Mn(II)-oxidizing bacteria (MOB) have attracted increasing attention, a MOB strain isolated from Mn-polluted sediments was identified and assigned as Enterobacter hormaechei DS02Eh01. Its Mn(II) immobilization activity, plant growth-promoting traits, and biofilm formation capability were investigated. The results showed that strain DS02Eh01 was found to be able to tolerate Mn(II) up to 122 mM. The strain immobilized Mn(II) in aquatic media mainly through extracellular adsorption, bio-oxidation and pH-induced precipitation as well as manganese oxidation. DS02Eh01-derived BioMnOx are negatively charged and have a larger specific surface area (86.70 m2/g) compared to the previously reported BioMnOx. The strain can immobilize Mn(II) at extreme levels, for instance, when it was exposed to 20 mM Mn(II), about 59% of Mn(II) were found immobilized and 17% of Mn(II) were converted to MnOx. The SEM and TEM observation revealed that the DS02Eh01-derived BioMnOx were aggregates doped with granules and microbial pellets. The precipitated Mn(II) and the Mn(III)/Mn(IV) oxides co-existed in BioMnOx, in which Mn(II) and Mn(IV) were found dominant with Mn(II) accounting for 49.6% and Mn(IV) accounting for 41.3%. DS02Eh01 possesses plant growth-promoting traits and biofilm formation capacity even under Mn(II) exposure. Mn(II) exposure at 5 mM was found to stimulate strain DS02Eh01 to form biofilms, from which, the extracted EPS was mainly composed of aromatic proteins. This study reveals that E. hormaechei strain DS02Eh01 possesses the potential in environmental ecoremediation via coupling processes of macrophytes extraction, biochemical immobilization and biosorption.


Assuntos
Compostos de Manganês , Manganês , Biofilmes , Enterobacter/metabolismo , Manganês/metabolismo , Oxirredução , Óxidos/metabolismo
14.
Microbiol Spectr ; 10(4): e0109422, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862955

RESUMO

The occurrence of transferable tigecycline resistance determinants, tmexCD1-toprJ1, tmexCD2-toprJ2, tmexCD3-toprJ1b, and multiple tet(A) and tet(X) variants, presents an unprecedented challenge to clinical therapeutic options. tmexCD-toprJ-like gene clusters can mediate multidrug resistance and have been detected in a variety of bacteria. Here, we characterized the fourth tmexCD-toprJ-like gene cluster, tmexCD4-toprJ4, identified on untypeable plasmids of Klebsiella quasipneumoniae and Enterobacter roggenkampii isolated from chicken meat and environmental samples from farm markets, respectively. TMexCD4-TOprJ4 was closely related (92 to 99% amino acid identity) to TMexCD1-TOprJ1, TMexCD2-TOprJ2, and TMexCD3-TOprJ1. Phylogenetic analysis revealed that tmexCD4-toprJ4 was not in the same branch as the other three variants. Expression of tmexCD4-toprJ4 increased tigecycline efflux in Escherichia coli and resulted in a 4- to 8-fold increase in MICs of tigecycline in E. coli and Klebsiella pneumoniae. Moreover, tmexCD4-toprJ4 can act synergistically with its upstream gene tet(A) to reduce the susceptibility of E. coli and K. pneumoniae strains to tigecycline. The tmexCD4-toprJ4-containing plasmid is a novel plasmid type and can be transferred to E. coli and K. pneumoniae only via electrotransformation. The increasing emergence of plasmid-mediated tigecycline resistance gene clusters suggests that the spread of tmexCD-toprJ-like gene clusters requires widespread attention. IMPORTANCE The plasmid-mediated tigecycline resistance gene cluster tmexCD1-toprJ1 and other variants have been detected in a variety of strains from multiple sources, including human-derived strains. In addition to tigecycline, these tmexCD-toprJ-like gene clusters reduce susceptibility of the host strain to many other antimicrobials. Here, we identified tmexCD4-toprJ4 in K. quasipneumoniae and E. roggenkampii, suggesting that this gene cluster is already present in the human-associated environment and the risk of transmission to humans is increased. Monitoring tigecycline-resistant Gram-negative bacteria is essential for understanding and addressing the spread of this gene cluster in agriculture and health care.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Enterobacter , Escherichia coli/metabolismo , Humanos , Klebsiella , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Família Multigênica , Filogenia , Plasmídeos/genética , Tigeciclina/metabolismo , Tigeciclina/farmacologia
16.
Physiol Plant ; 174(4): e13742, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35770943

RESUMO

Salinity is one of the principal abiotic stresses that limit the growth and productivity of crops. The use of halotolerant plant growth-promoting rhizobacteria (PGPR) that increase the growth of salt-stressed crops is an environmentally friendly alternative to promote plant yield under salinity. The aim of this study was to test native PGPR, isolated according to their tolerance to NaCl, and to evaluate their influence on morphological, physiological, and biochemical traits promoted by salt stress in tomato plants. Enterobacter 64S1 and Pseudomonas 42P4 were selected as the most efficient strains in terms of salt tolerance. Both strains were classified as moderately resistant to salinity (NaCl) and maintained their plant growth-promoting activities, such as nitrogen fixation and phosphate solubilization, even in the presence of high levels of salt. The results of a greenhouse experiment demonstrated that PGPR inoculation increased root and shoot dry weight, stem diameter, plant height, and leaf area compared to control noninoculated plants under nonsaline stress conditions, reversing the effects of salinity. Inoculated plants showed increased tolerance to salt conditions by reducing electrolyte leakage (improved membrane stability) and lipid peroxidation and increasing chlorophyll quantum efficiency (Fv/Fm) and the performance index. Also, inoculation increased the accumulation of proline and antioxidant nonenzymatic compounds, such as carotenes and total phenolic compounds. The catalase and peroxidase activities increased with salinity, but the effect was reversed by Enterobacter 64S1. In conclusion, Enterobacter 64S1 and Pseudomonas 42P4 isolated from salt-affected regions have the potential to alleviate the deleterious effects of salt stress in tomato crops.


Assuntos
Lycopersicon esculentum , Enterobacter , Raízes de Plantas , Pseudomonas , Cloreto de Sódio/farmacologia
17.
Microbiol Spectr ; 10(3): e0207821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35647691

RESUMO

Many species of bacteria change their morphology and behavior under external stresses. In this study, we report transient elongation and swimming motility of a novel Enterobacter sp. strain, SM1_HS2B, in liquid broth under a standard growth condition. When growing in the Luria-Bertani medium, HS2B cells delay their cell division and elongate. Although transient over a few hours, the average cell length reaches over 10 times that of the stationary-state cells. The increase is also cumulative following repeated growth cycles stimulated by taking cells out of the exponential phase and adding them into fresh medium every 2 hours. The majority of the cells attain swimming motility during the exponential growth phase, and then they lose swimming motility over the course of several hours. Both daughter cells due to division of a long swimming cell retain the ability to swim. We confirm that the long HS2B cells swim with rigid-body rotation along their body axis. These findings based on microscopic observation following repeated cycles of growth establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. IMPORTANCE Bacteria undergo morphological changes in order to cope with external stresses. Among the best-known examples are cell elongation and hyperflagellation in the context of swarming motility. The subject of this report, SM1_HS2B, is a hyperswarming strain of a newly identified species of enterobacteria, noted as Enterobacter sp. SM1. The key finding that SM1_HS2B transiently elongates to extreme length in fresh liquid medium offers new insights on regulation in bacterial growth and division. SM1_HS2B also manifests transient but vigorous swimming motility during the exponential phase of growth in liquid medium. These properties establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. Such a dependence may be relevant to swarming behavior with a significant environmental or physiological outcome.


Assuntos
Enterobacter , Flagelos , Proteínas de Bactérias/genética , Divisão Celular , Enterobacter/genética , Enterobacter/metabolismo , Flagelos/metabolismo
18.
Braz J Microbiol ; 53(3): 1339-1344, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690653

RESUMO

New Delhi metallo-ß-lactamase (NDM)-producing Enterobacterales was first detected in Brazil in 2014, in a Providencia rettgeri isolate recovered from surveillance swabs in the Southern region. Since then, an increasing number of NDM enzymes have been reported in different species. Nevertheless, comprehensive data on the current epidemiology of NDM-producing Enterobacterales in Brazil are lacking. Therefore, this study reviewed the available information on the status of NDM-producing bacteria in Brazil. The main finding was the diversity of bacteria producing NDM, including Klebsiella, Enterobacter, Morganella, Proteus, Escherichia, and Providencia. Limited data on clonality are available, but a few studies report different clonal backgrounds in NDM-producing K. pneumoniae, likely indicating local outbreaks. Over the years, a rise in the number of reported strains in different locations has been verified; however, different biases may have contributed to this finding. Therefore, a national surveillance study is warranted to identify the actual prevalence and incidence of NDM-producing Enterobacterales in Brazil and their role in patient management and outcome.


Assuntos
Enterobacter , beta-Lactamases , Antibacterianos/farmacologia , Brasil/epidemiologia , Enterobacter/genética , Enterobacter/metabolismo , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
19.
Microbiol Spectr ; 10(4): e0096422, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35703554

RESUMO

The genus Enterobacter includes species responsible for nosocomial outbreaks in fragile patients, especially in neonatal intensive care units (NICUs). Determining the primary source of infection is critical to outbreak management and patient outcomes. In this investigation, we report the management and control measures implemented during an Enterobacter outbreak of bloodstream infections in premature babies. The study was conducted in a French NICU over a 3-year period (2016 to 2018) and included 20 premature infants with bacteremia. The clinical and microbiological characteristics were identified, and whole-genome sequencing (WGS) was performed on bacteremia isolates. Initially, several outbreak containment strategies were carried out with no success. Next, outbreak investigation pinpointed the neonatal incubators as the primary reservoir and source of contamination in this outbreak. A new sampling methodology during "on" or "in use" conditions enabled its identification, which led to their replacement, thus resulting in the containment of the outbreak. WGS analysis showed a multiclonal outbreak. Some clones were identified in different isolation sources, including patients and neonatal incubators. In addition, microbiological results showed a multispecies outbreak with a high prevalence of Enterobacter bugandensis and Enterobacter xiangfangensis. We conclude that the NICU health care environment represents an important reservoir for Enterobacter transmission and infection. Finally, extracting samples from the neonatal incubator during active use conditions improves the recovery of bacteria from contaminated equipment. This method should be used more frequently to achieve better monitoring of the NICU for HAIs prevention. IMPORTANCE Neonatal incubators in the NICU can be an important reservoir of pathogens responsible for life-threatening outbreaks in neonatal patients. Traditional disinfection with antiseptics is not sufficient to eradicate the microorganisms that can persist for long periods in the different reservoirs. Identification and elimination of the reservoirs are crucial for outbreak prevention and control. In our investigation, using a new strategy of microbiological screening of neonatal incubators, we demonstrated that these were the primary source of contamination. After their replacement, the outbreak was controlled. This new methodology was effective in containing this outbreak and could be a viable alternative for infection prevention and control in outbreak situations involving incubators as a reservoir.


Assuntos
Bacteriemia , Infecção Hospitalar , Sepse Neonatal , Bacteriemia/epidemiologia , Bacteriemia/prevenção & controle , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Surtos de Doenças/prevenção & controle , Enterobacter/genética , Humanos , Incubadoras , Lactente , Recém-Nascido , Sepse Neonatal/epidemiologia , Sepse Neonatal/prevenção & controle
20.
Int J Food Microbiol ; 372: 109692, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504161

RESUMO

The convergence of blaNDM and tet(X4) in a single strain has been sporadically detected in diverse pathogens from different sources, causing widespread concerns. However, the genomic characterization of blaNDM-positive or blaNDM- and tet(X4)-coharboring Enterobacteriaceae in the pork production chain, as well as how they emerged, remains mostly unclear. In this study, forty blaNDM-positive Enterobacteriaceae, including eleven tet(X4)- and blaNDM-coharboring isolates, were isolated from a pig slaughterhouse and a retail pork market in Yangzhou, China. This is the first report presenting the coexistence of blaNDM and tet(X4) in Enterobacter hormaechei, and it was demonstrated that they could spread clonally from the slaughterhouse to the retail market. Furthermore, we also discovered that the slaughterhouse served as a possible reservoir for blaNDM-positive ST48 E. coli strains. The blaNDM-bearing IncX3 plasmid was found in twenty blaNDM-positive strains as well as all blaNDM-5- and tet(X4)-coharboring strains, and most of them (30/31) were conjugative. In Klebsiella aerogenes NTT31XS, blaNDM was found on a nonconjugative ~17 kb IncX3 plasmid. When compared to the typical IncX3 plasmid, it deleted large-scale regions, which might imply a low fitness cost dissemination strategy for the IncX3 plasmid. Despite being from different species, tet(X4)-bearing plasmids carried by all blaNDM-5- and tet(X4)-coharboring strains were nonconjugative and had identical architectures. Phylogenetic analysis suggested that the formation of K. aerogenes NTT31XS may have been mediated by translocation of tet(X4)-positive circular intermediates and recombination events of regions in typical blaNDM-bearing IncX3 plasmids. Overall, this study expounded the prevalence and transmission characteristics of blaNDM-positive Enterobacteriaceae strains in the two links of pork production chain before they were exposed to humans, and expanded our knowledge of the molecular features and evolutionary history of tet(X4)- and blaNDM-5-coharboring strains. Strict control measures should be implemented to prevent the spread of such pathogens along food production chains.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Antibacterianos/farmacologia , China , Enterobacter , Enterobacteriaceae/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Suínos , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...