Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.424
Filtrar
1.
Braz. j. biol ; 84: e252088, 2024. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345543

RESUMO

Abstract Acacia mangium is a pioneer species with fast growth and frequently used in the recovery of degraded areas. The objectives were to evaluate insects and spiders, their ecological indices and interactions on A. mangium saplings in a tropical degraded area in recovering process. The experimental design was completely randomized with 24 replications, with treatments represented by the first and second years after A. mangium seedling planted. Numbers of leaves/branch, branches/sapling, and ground cover by A. mangium saplings, Hemiptera: Phenacoccus sp. and Pachycoris torridus; Hymenoptera: Tetragonisca angustula and Trigona spinipes, Brachymyrmex sp., Camponotus sp. and Cephalotes sp.; Blattodea: Nasutitermes sp. and Neuroptera: Chrysoperla sp.; abundance, species richness of pollinating insects, tending ants, and the abundance of Sternorrhyncha predators were greatest in the second year after planting. Numbers of Hemiptera: Aethalium reticulatum, Hymenoptera: Camponotus sp., Cephalotes sp., Polybia sp., T. angustula, T. spinipes, tending ants, pollinating insects, Sternorrhyncha predators and species richness of tending ants were highest on A. mangium saplings with greatest numbers of leaves or branches. The increase in the population of arthropods with ground cover by A. mangium saplings age increase indicates the positive impact by this plant on the recovery process of degraded areas.


Resumo Acacia mangium é uma espécie pioneira, de rápido crescimento e utilizada na recuperação de áreas degradadas. Os objetivos foram avaliar insetos e aranhas, seus índices ecológicos e interações com plantas de A. mangium em área tropical degradada em processo de recuperação. O delineamento experimental foi inteiramente casualizado com 24 repetições, com os tratamentos representados pelos primeiro e segundo anos após a plantio de A. mangium. Os números de folhas/galhos, galhos/plantas e cobertura do solo por plantas de A. mangium, de Hemiptera: Phenacoccus sp. e Pachycoris torridus; Hymenoptera: Tetragonisca angustula e Trigona spinipes, Brachymyrmex sp., Camponotus sp. e Cephalotes sp.; Blattodea: Nasutitermes sp. e Neuroptera: Chrysoperla sp.; a abundância, riqueza de espécies de insetos polinizadores, formigas cuidadoras e a abundância de predadores de Sternorrhyncha foram maiores no segundo ano após o plantio. Os números de Hemiptera: Aethalium reticulatum, Hymenoptera: Camponotus sp., Cephalotes sp., Polybia sp., T. angustula, T. spinipes, formigas cuidadoras, insetos polinizadores, predadores de Sternorrhyncha e a riqueza de espécies de formigas cuidadoras foram maiores em plantas de A. mangium com maior altura e número de folhas ou galhos. O aumento populacional de artrópodes e da cobertura do solo com o processo de envelhecimento das plantas de A. mangium indicam impacto positivo dessa planta na recuperação de áreas degradadas.


Assuntos
Animais , Aranhas , Acacia , Insetos , Biomarcadores Ambientais , Recuperação e Remediação Ambiental
2.
Nature ; 615(7950): 80-86, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36859581

RESUMO

The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales1-14. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems15-18. We assessed more than 9.9 billion trees derived from more than 300,000 satellite images, covering semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and root carbon to every tree in the 0-1,000 mm year-1 rainfall zone by coupling field data19, machine learning20-22, satellite data and high-performance computing. Average carbon stocks of individual trees ranged from 0.54 Mg C ha-1 and 63 kg C tree-1 in the arid zone to 3.7 Mg C ha-1 and 98 kg tree-1 in the sub-humid zone. Overall, we estimated the total carbon for our study area to be 0.84 (±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation studies23 for our area found that the density and carbon stocks of scattered trees have been underestimated by three models and overestimated by 11 models, respectively. This benchmarking can help understand the carbon cycle and address concerns about land degradation24-29. We make available a linked database of wood mass, foliage mass, root mass and carbon stock of each tree for scientists, policymakers, dryland-restoration practitioners and farmers, who can use it to estimate farmland tree carbon stocks from tablets or laptops.


Assuntos
Carbono , Clima Desértico , Ecossistema , Árvores , Carbono/análise , Carbono/metabolismo , Árvores/anatomia & histologia , Árvores/química , Árvores/metabolismo , Dessecação , Imagens de Satélites , África Subsaariana , Aprendizado de Máquina , Madeira/análise , Raízes de Plantas , Agricultura , Recuperação e Remediação Ambiental , Bases de Dados Factuais , Biomassa , Computadores
3.
Artigo em Inglês | MEDLINE | ID: mdl-36901323

RESUMO

Organochlorine pesticides (OCPs) were typical persistent organic pollutants that posed great hazards and high risks in soil. In this study, a peanut shell biochar-loaded nano zero-valent iron (BC/nZVI) material was prepared in combination with soil indigenous microorganisms to enhance the degradation of α-hexachlorocyclohexane(α-HCH) and γ-hexachlorocyclohexane(γ-HCH) in water and soil. The effects of BC/nZVI on indigenous microorganisms in soil were investigated based on the changes in redox potential and dehydrogenase activity in the soil. The results showed as follows: (1) The specific surface area of peanut shell biochar loaded with nano-zero-valent iron was large, and the nano-zero-valent iron particles were evenly distributed on the peanut shell biochar; (2) peanut shell BC/nZVI had a good degradation effect on α-HCH and γ-HCH in water, with degradation rates of 64.18% for α-HCH and 91.87% for γ-HCH in 24 h; (3) peanut shell BC/nZVI also had a good degradation effect on α-HCH and γ-HCH in soil, and the degradation rates of α-HCH and γ-HCH in the 1% BC/nZVI reached 55.2% and 85.4%, second only to 1% zero-valent iron. The degradation rate was the fastest from 0 to 7 days, while the soil oxidation-reduction potential (ORP) increased sharply. (4) The addition of BC/nZVI to the soil resulted in a significant increase in dehydrogenase activity, which further promoted the degradation of HCHs; the amount of HCHs degradation was significantly negatively correlated with dehydrogenase activity. This study provides a remediation strategy for HCH-contaminated sites, reducing the human health risk of HCHs in the soil while helping to improve the soil and increase the activity of soil microorganisms.


Assuntos
Recuperação e Remediação Ambiental , Hidrocarbonetos Clorados , Praguicidas , Poluentes do Solo , Poluentes Químicos da Água , Humanos , Ferro , Hexaclorocicloexano , Solo , Poluentes do Solo/análise , Carvão Vegetal , Água , Arachis , Oxirredutases
4.
Water Res ; 233: 119777, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868118

RESUMO

The mechanistic study of soil and groundwater remediation in petroleum contaminated lands significantly demands rapid qualitative and quantitative identification of petroleum substances. However, most traditional detection methods cannot provide the on-site or in-situ information of petroleum compositions and contents simultaneously even with multi-spot sampling and complex sample preparation. In this work, we developed a strategy for the on-site detection of petroleum compositions and in-situ monitoring of petroleum contents in soil and groundwater using dual-excitation Raman spectroscopy and microscopy. The detection time was 0.5 h for the Extraction-Raman spectroscopy method and one minute for the Fiber-Raman spectroscopy method. The limit of detection was 94 ppm for the soil samples and 0.46 ppm for the groundwater samples. Meanwhile, the petroleum changes at the soil-groundwater interface were successfully observed by Raman microscopy during the in-situ chemical oxidation remediation processes. The results revealed that hydrogen peroxide oxidation released petroleum from the interior to the surface of soil particles and then to groundwater during the remediation process, while persulfate oxidation only degraded petroleum on the soil surface and in groundwater. This Raman spectroscopic and microscopic method can shed light on the petroleum degradation mechanism in contaminated lands, and facilitate the selection of suitable soil and groundwater remediation plans.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Petróleo , Poluentes do Solo , Petróleo/metabolismo , Solo/química , Análise Espectral Raman , Água Subterrânea/química , Poluentes do Solo/análise
5.
Ecotoxicol Environ Saf ; 254: 114697, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889210

RESUMO

Advanced oxidation processes (AOPs) are a class of highly efficient pollution remediation technologies that produce oxidising radicals under specific conditions to degrade organic pollutants. The Fenton reaction is a commonly applied AOP. To combine the advantages of AOPs and biodegradation in the remediation of organic pollutants, some studies have developed coupled systems between Fenton AOPs and white rot fungi (WRF) for environmental organic pollutant remediation and have achieved some success. Moreover, a promising system, termed as advanced bio-oxidation processes (ABOPs), mediated by the quinone redox cycling of WRF, has attracted increasing attention in the field. In this ABOP system, the radicals and H2O2 produced through the quinone redox cycling of WRF can strengthen Fenton reaction. Meanwhile, in this process, the reduction of Fe3+ to Fe2+ ensures the maintenance of Fenton reaction, leading to a promising application potential for the remediation of environmental organic pollutants. ABOPs combine the advantages of bioremediation and advanced oxidation remediation. Further understanding the coupling of Fenton reaction and WRF in the degradation of organic pollutants will be of great significance for the remediation of organic pollutants. Therefore, in this study, we reviewed recent remediation techniques for organic pollutants involving the coupled application of WRF and the Fenton reaction, focusing on the application of new ABOPs mediated by WRF, and discussed the reaction mechanism and conditions of ABOPs. Finally, we discussed the application prospects and future research directions of the joint application of WRF and advanced oxidation technologies for the remediation of environmental organic pollutants.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Peróxido de Hidrogênio , Oxirredução , Fungos/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Environ Res ; 224: 115533, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36828248

RESUMO

The bamboo family of plants is one of the fastest-growing species in the world. As such, there is an abundance of bamboo residues available for exploitation, especially in southeast Asian, central African and south American regions. The preparation of efficient adsorbents from bamboo residues is an emerging exploitation pathway. Biochars, activated carbons or raw bamboo fibers embedded with nanoparticles, each class of materials has been shown to be highly efficient in adsorption processes. This review aims to summarize recent findings in the application of bamboo-based adsorbents in the removal of organic, inorganic, or gaseous pollutants. Therefore, this review first discusses the preparation methods and surface modification methodologies and their effects on the adsorbent elemental content and other basic properties. The following sections assess the recent progress in the adsorption of heavy metals, organics, and gaseous substances by bamboo-based adsorbents, focusing on the optimum adsorption capacities, adsorption mechanisms and the optimum-fitting kinetic models and isotherms. Finally, research gaps were identified and directions for future research are proposed.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/análise
7.
Chemosphere ; 323: 138108, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804252

RESUMO

Heterojunction engineering in catalyst structures is a promising approach for solving the main restriction of the narrow photoabsorption range and quick recombination of photogenerated charge carriers in the photocatalysts. Herein, a simple, eco-friendly, non-toxic, and novel Z-scheme heterojunction of nanoflower-like NiS/BiOI was systematically designed using the low-temperature solvothermal and precipitation methods. The physicochemical and photo-electrochemical properties of the as-synthesized nanomaterials were characterized using XRD, FESEM, FT-IR, XPS, BET, UV-vis, PL, and EIS. NiS/BiOI nanomaterials exhibited a wide photoabsorption range (200-1000 nm), a narrow bandgap energy (1.76 eV), a large surface area (35.82 m2 g-1), and a low charge carrier recombination rate because of the synergistic effects of the NiS and BiOI photocatalysts, which could be the basis for superior photocatalytic efficiency. Particularly, the optimal 40% NiS/BiOI nanocomposite exhibited better stability and efficiency than the pure NiS and BiOI. The maximum degradation efficiency of rhodamine B (RhB) was 99.8% after 200 min, tetracycline (TC) was 96.3% after 140 min, and the photoreduction of Cr(VI) was 92.8% after 180 min rather than the pure NiS and BiOI under visible light irradiation. The constant rate (k) of RhB was approximately 10 and 4, TC was 12 and 4, and Cr(VI) was 10 and 8 times that of pristine NiS and BiOI, respectively. Radical trapping experiments and Tauc plot analysis proposed the design of the plausible Z-scheme reaction mechanism between NiS and BiOI, which has a crucial role in the rate of transportation and separation of electron/hole pairs. This investigation provides a venue for the design of a photoactive NiS-based nanocomposite for environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Nanocompostos , Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Cromo
8.
J Hazard Mater ; 448: 130867, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758429

RESUMO

Antibiotics pollution in soil poses increasing threats to human health due to stimulated proliferation and transmission of antibiotic resistance genes (ARGs). Nanoscale zero-valent iron (NZVI) is a promising material for the remediation of antibiotics, but how NZVI affects the diversity, abundance, and horizontal gene transfer potentials of ARGs remains unclear. Herein, the biotic and abiotic effects of NZVI at different concentrations on tetracyclines (TCs) and the associated ARGs were investigated. Results showed NZVI could effectively accelerate the degradation of TCs, which increased from 51.38% (without NZVI) to 57.96%- 71.66% (1-10 g NZVI/kg) in 20 days. Biotic degradation contributed to 66.10%- 76.30% of the total TCs removal. NZVI induced TCs biodegradation was probably due to alleviated toxicity of TCs on cells and increased microbial biomass and enzyme activities. Additionally, TCs-related ARGs were attenuated with decreased horizontal gene transfer potentials of intI1 and ISCR1, but opposite effects were observed for non TC-related ARGs, especially during excess exposure to NZVI. This study illustrated the possibility of remediating of antibiotic contaminated soil by NZVI and meanwhile reducing the potential risks of ARGs.


Assuntos
Recuperação e Remediação Ambiental , Tetraciclinas , Humanos , Tetraciclinas/farmacologia , Solo , Ferro , Antibacterianos/farmacologia , Biodegradação Ambiental
9.
Artigo em Inglês | MEDLINE | ID: mdl-36767236

RESUMO

Reducing the mobility and bioavailability of heavy metals in soils by adding exogenous materials is a technology for remediating soils contaminated with heavy metals. Unlike industrial sites, the use of such techniques in agricultural soils requires consideration of not only reducing the mobility of heavy metals but also avoiding adverse effects on soil fertility and the growth of plants. Due to the uncertainty of the stability of amendments applied to agricultural soil, the application of amendments in farmland soil is controversial. This article reviewed the field studies in which amendments were used to immobilize heavy metals, and identified the potential environmental impacts of all aspects of soil amendment usage, including production and processing, transportation, storage, application to soil, long-term stability, and plant absorption. Results of the study indicated that after identifying the environmental risks of the whole process of the application of improvers in agricultural fields, it is necessary to classify the risks according to their characteristics, and design differentiated risk control measures for the safe application of this type of technology.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Plantas , Disponibilidade Biológica
10.
J Environ Manage ; 332: 117343, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758361

RESUMO

Groundwater quality is deteriorating due to contamination from both natural and anthropogenic sources. Traditional "Pump and Treat" techniques of treating the groundwater suffer from the disadvantages of a small-scale and energy-intensive approach. Permeable reactive barriers (PRBs), owing to their passive operation, offer a more sustainable strategy for remediation. This promising technique focuses on eliminating heavy metal pollutants and hazardous aromatic compounds by physisorption, chemisorption, precipitation, denitrification, and/or biodegradation. Researchers have utilized ZVI, activated carbon, natural and manufactured zeolites, and other by-products as reactive media barriers. Environmental parameters, i.e., pH, initial pollutant concentration, organic substance, dissolved oxygen, and reactive media by-products, all influence a PRB's performance. Although their long-term impact and performance are uncertain, PRBs are still evolving as viable alternatives to pump-and-treat techniques. The use of PRBs to remove anionic contaminants (e.g., Fluoride, Nitrate, etc.) has received less attention since precipitates can clog the reactive barrier and hinder groundwater flow. In this paper, we present an insight into this approach and the tremendous implications for future scientific study that integrates this strategy using sustainability and explores the viability of PRBs for anionic pollutants.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Biodegradação Ambiental , Água Subterrânea/química , Nitratos , Ferro/química
11.
Huan Jing Ke Xue ; 44(2): 965-974, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775619

RESUMO

Biochar has a range of advantages including large porosity, high specific surface area, and strong adsorption capacity. It has been widely used in environmental pollution remediation, soil improvement, and carbon sequestration and emission reduction. Arsenic (As) is a highly toxic pollutant widely distributed throughout the soil. In typical surface soils, the most common forms of As are arsenite (AsO33-) and arsenate (AsO43-). Since most biochar surfaces are negatively charged, the adsorption efficiency of biochar to arsenic is usually low, and the biochar material needs to be modified to enhance its As adsorption performance. Iron-based materials, such as zero valent iron and iron oxide, are excellent As adsorption materials with wide environmental sources. They can be loaded to biochar to form iron-modified biochar via precipitation, pyrolysis, ball-milling, and micro-biological methods. The combined advantages of the iron-modified biochar will expand the application of biochar materials in environmental remediation. Based on a systematic analysis of the literature on iron-modified biochar in recent years, this study reviewed the common preparation methods of iron-modified biochars; analyzed biochar substrates, iron-modified biochar, and their synergistic mechanisms on As adsorption; and briefly expounded the application status of iron-modified biochar in soil pollution remediation. The prospects of the future research direction of iron-modified biochar were put forward as a reference for the large-scale application of biochar materials in the future.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Poluentes do Solo , Ferro , Arsênio/análise , Poluentes do Solo/análise , Carvão Vegetal , Poluição Ambiental , Solo
12.
Sci Total Environ ; 871: 162023, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739032

RESUMO

Soil pollution caused by complex organochloride mixtures has been increasing in many parts of the world in recent years; as a result, countless numbers of people are exposed to dangerous pollutions; hence, the treatment of organochlorides-polluted soils is gaining considerable attention. In this study, the potential of unactivated peroxymonosulfate (KHSO5) in remediating soil co-contaminated with trichlorophenol, para-dichlorobenzene, and para-chloro-meta-cresol was investigated. In addition, the treatment's collateral effect on critical soil properties was explored. The result revealed that treating 10 g of soil with 20 mL of 5 mM KHSO5 for 60 min could oxidize 70.49% of the total pollutants. The pH of the soil was decreased following the treatment. The significant decrease, (p < 0.05), in the soil organic matter following the remediation has affected cation exchange capacity, and available nitrogen. It was also observed that the treatment reduced the ß-glucosidase, urease, invertase, and cellulase activities significantly, (p < 0.05). The treatment, on the other hand, brought negligible effects on available phosphorus, available potassium, and particle size distribution. The phytotoxicity tests, which included seed germination and root elongation and soil respiration tests revealed that the treatment did not leach toxins into the treated soil. The treatment method was found to be relatively ecofriendly and cost effective.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/análise , Poluição Ambiental/análise , Compostos Orgânicos
13.
Sci Total Environ ; 871: 161953, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740071

RESUMO

The Po plain (Italy) is one of the largest floodplains in Europe that needs environmental restoration. To achieve this goal, the knowledge of the 'environment' (water, bed sediments and vegetation) of the canals crossing such floodplain is necessary. The water flow of the canals was kept low for hydraulic safety purposes from October to March (NIR), and high for irrigation purposes from April to September (IR). Within this framework, this study aimed to assess in 9 sites of the east part of Po plain 1) the canals' environment quality in terms of vegetation diversity, and water and bed sediment physicochemical properties; and 2) how these features are influenced by canal managements and landscape properties. Water was monthly sampled both in NIR and IR periods, the bed sediments were sampled in summer and winter periods, while the vegetation was recorded in spring and autumn. The low water flow during NIR worsened the water quality by increasing the concentrations of nutrients and salts. A higher salt and nutrient concentrations were observed both in water and bed sediments of canals crossing areas with fine texture alluvial deposits than in those flowing through medium texture alluvial deposits. Further, higher nutrient and salt concentrations were observed for the canals used as collectors of the water coming from other canals. Despite the differences observed for the bed sediments and water quality, the vegetation type and biodiversity did not show differences among the study sites probably because affected by the land use of the surrounding landscape. Indeed, the canals cross agricultural land which limit the developments of natural vegetation and do not promote plant biodiversity. Overall, the present study found out the key role of landscape properties and canal managements on 'canal environment' quality which need to be considered to perform an appropriate reclamation of such environments.


Assuntos
Agricultura , Recuperação e Remediação Ambiental , Biodiversidade , Itália , Qualidade da Água , Sedimentos Geológicos , Rios
14.
Chemosphere ; 322: 138122, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775037

RESUMO

Soil washing is a rapid and efficient method for heavy metals removal. In this study, a kind of novel environmentally friendly eluent is proposed, consisting of ethylenediamine tetra methylene phosphonic acid and saponin (E-S). In a response surface optimization design (RSOD), the operating parameters were optimized and ecological effects were investigated. Additionally, soil microbial diversity and composition were discussed. Finally, an optimal method for chelator recovery was presented. The single-factor and RSOD results showed that E-S had higher remediation efficiency for Pb-Cd contaminated soil with the best parameters of duration 240 min, temperature 40 °C, E/S ratio 1:1. Under these operating conditions, the removal rates of Pb and Cd were (72.2 ± 0.5)% and (61.2 ± 0.4)% for the artificially contaminated soil and (69.2 ± 0.1)% and (65.2 ± 0.2)% for in situ contaminated soil, respectively. The contents of Pb and Cd decreased from 562.36 mg/kg to 180.41 mg/kg and 80.96 mg/kg to 27.2 mg/kg respectively, and the soil ecological risk indexes reduced from 32% to 24% for Pb and 36%-27% for Cd. Owing to the efficient enrichment of Stenotrophomonas in soil, E-S has a potential of simultaneous removal effect on organic pollutants as well. Furthermore, the results revealed that E-S can be effectively recovered (>95%) by sodium sulfide precipitation.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Saponinas , Poluentes do Solo , Cádmio , Chumbo , Ácidos Fosforosos , Solo , Poluentes do Solo/análise , Metais Pesados/análise
15.
Chemosphere ; 322: 138235, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841457

RESUMO

Because of the excessive use of fossil fuels, CO2 emissions into the environment are increasing. An efficient method of converting CO2 to useful carbonaceous products in the presence of light is one way to address the issues associated with energy and environmental remediation. In2S3/WS2 heterostructure has been fabricated using the efficient hydrothermal method. The results of structural, morphological, optical, and photo/electrochemical characterization confirm the formation of a hierarchical, layered heterostructure of type-II. Enhanced photocatalytic activity is observed in InS/WS heterostructure compared to pristine In2S3 and WS2. InS/WS heterostructure exhibit higher photocatalytic activity than pure In2S3 and WS2. For 12 h, photocatalytic CO2 reduction produces 213.4 and 188.6 µmol of CO and CH4, respectively. Furthermore, the photocatalytic ability of the synthesized materials to degrade different parabens (Methyl: MPB, Ethyl: EPB, and Benzyl: BPB) under visible radiation was evaluated. Under optimized conditions, the InS/WS heterostructure degraded 88.6, 90.4, and 95.8% of EPB, BPB, and MPB, respectively, in 90 min. The mechanism of photocatalysis was discussed in detail. MCF-7 cell viability was assessed and found to exhibit low mortality in InS/WS treated MPB aqueous solution. InS/WS heterostructure could improve the fabrication of more sulphide-based layered materials to combat environmental pollution.


Assuntos
Recuperação e Remediação Ambiental , Água , Dióxido de Carbono , Parabenos , Poluição Ambiental
16.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768251

RESUMO

Oil-contaminated soil is one of the most concerning problems due to its potential damage to human, animals, and the environment. Nanoparticles have effectively been used to degrade oil pollution in soil in the lab and in the field for a long time. In recent years, surfactant foam and nanoparticles have shown high removal of oil pollutants from contaminated soil. This review provides an overview on the remediation of oil pollutants in soil using nanoparticles, surfactant foams, and nanoparticle-stabilized surfactant foams. In particular, the fate and transport of oil compounds in the soil, the interaction of nanoparticles and surfactant foam, the removal mechanisms of nanoparticles and various surfactant foams, the effect of some factors (e.g., soil characteristics and amount, nanoparticle properties, surfactant concentration) on remediation efficiency, and some advantages and disadvantages of these methods are evaluated. Different nanoparticles and surfactant foam can be effectively utilized for treating oil compounds in contaminated soil. The treatment efficiency is dependent on many factors. Thus, optimizing these factors in each scenario is required to achieve a high remediation rate while not causing negative effects on humans, animals, and the environment. In the future, more research on the soil types, operating cost, posttreatment process, and recycling and reuse of surfactants and nanoparticles need to be conducted.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanopartículas , Surfactantes Pulmonares , Poluentes do Solo , Humanos , Lipoproteínas , Solo , Poluentes do Solo/metabolismo , Tensoativos , Óleos
17.
Sci Total Environ ; 871: 162148, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758696

RESUMO

Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Metais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos , Poluentes do Solo/análise
18.
Environ Res ; 224: 115479, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796605

RESUMO

The microbially induced carbonate precipitation (MICP) technique is widely used in soil heavy metal pollution control. Microbial mineralization involves extended mineralization times and slow crystallization rates. Thus, it is important to discover a method to accelerate mineralization. In this study, we selected six nucleating agents to screen and investigated the mineralization mechanism using polarized light microscopy, scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. The results showed that sodium citrate removed 90.1% Pb better than traditional MICP and generated the highest amount of precipitation. Interestingly, due to the addition of sodium citrate (NaCit), the rate of crystallization increased and vaterite was stabilized. Moreover, we constructed a possible model to explain that NaCit increases the aggregation capacity of calcium ions during microbial mineralization to accelerate the formation of calcium carbonate (CaCO3). Thus, sodium citrate can increase the rate of MICP bioremediation, which is important for improving MICP efficiency.


Assuntos
Carbonato de Cálcio , Cálcio , Citrato de Sódio , Microbiologia do Solo , Biodegradação Ambiental , Carbonato de Cálcio/química , Íons , Citrato de Sódio/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo
19.
J Hazard Mater ; 448: 130870, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709742

RESUMO

Thermal desorption technology has been widely used for the remediation of organic contaminated soil, but the heating process may alter the soil properties and its safety reutilization. After thermal remediation, the target pollutants including chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane and vinyl chloride in the chlorinated hydrocarbon contaminated site were reduced significantly. The soil microbial α-diversity was also reduced by more than half. Notably, the relative abundance of Chloroflexi decreased by 9.0%, while Firmicutes had a 9.0% increase after thermal remediation. By water regulation and exogenous microorganism addition, the soil microbial community could not be restored to its initial state before thermal remediation in a relatively short time (30 days). The relative abundance of Proteobacteria increased from 25.4% to 41.7% and 51.0% by water regulation and exogenous microorganism addition, respectively. The modularity of the microbial co-occurrence network was strengthened after microbial restoration, but the interaction among microorganisms was weakened. Thermal remediation might be conducive to the C- and N-cycle related processes, but severely weakened the sulfide oxidation processes. Notably, microbial restoration would benefit the recovery of the S-cycle functional groups. These results provided a new perspective for the safety reutilization of soil after thermal remediation.


Assuntos
Recuperação e Remediação Ambiental , Hidrocarbonetos Clorados , Microbiota , Poluentes do Solo , Solo , Água , Poluentes do Solo/análise
20.
Chemosphere ; 317: 137815, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640970

RESUMO

The huge amount of plastic waste accumulated in landfills has caused serious microplastic (MP) pollution to the soil environment, which has become an urgent issue in recent years. It is challenging to deal with the non-biodegradable MP pollutants in actual soil from landfills. In this study, a coaxial dielectric barrier discharge (DBD) system was proposed to remediate actual MP-contaminated landfill soil due to its strong oxidation capacity. The influence of carrier gas type, applied voltage, and air flow rate was investigated, and the possible degradation pathways of MP pollutants were suggested. Results showed the landfill soil samples contained four common MP pollutants, including polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC) with sizes ranging from 50 to 1500 µm. The MP pollutants in the soil were rapidly removed under the action of reactive oxygen species (ROS) generated by DBD plasma. Under the air flow rate of 1500 mL min-1, the maximum remediation efficiency represented by mass loss reached 96.5% after 30 min treatment. Compared with nitrogen, when air was used as the carrier gas, the remediation efficiency increased from 41.4% to 81.6%. The increased applied voltage from 17.5 to 24.1 kV could also promote the removal of MP contaminants. Sufficient air supply was conducive to thorough removal. However, when the air flow rate reached 1500 mL min-1 and continued to rise, the final remediation efficiency would be reduced due to the shortened residence time of ROS. The DBD plasma treatment proposed in this study showed high energy efficiency (19.03 mg kJ-1) and remediation performance (96.5%). The results are instructive for solving MP pollution in the soil environment.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Microplásticos , Plásticos , Espécies Reativas de Oxigênio , Instalações de Eliminação de Resíduos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...