Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.951
Filtrar
1.
Braz. j. biol ; 84: e257071, 2024. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364496

RESUMO

In advanced biotechnology, the utilization of enzymes to achieve new or modified compounds with antibacterial, fungicidal, and anti-cancer specifications is crucial. Mushroom lactases are a hopeful biocatalyst for the synthesis and modification of different compounds. They are an accessible and inexpensive enzyme for the preparation of reaction objects and have recently received attention. Laccase purification was performed from basidiomycete Lentinus strigosus (LS) in several stages: Stage 1. On ion-exchange chromatography on TEAE Servacell 23 (400 ml), two distinctly separated laccase activity peaks were observed, eluted from the carrier at 0.21 and 0.27 M NaCl. In order to reduce the loss of enzymes, all fractions with laccase activity were collected, concentrated, and desalted using an ultrafiltration cell (Amicon, United States) with a UM-10 membrane. Stage 2. The resulting preparation with laccase activity was applied to a Q-Sepharose column (60 ml). Two well-separated peaks with laccase activity were obtained during the elution: laccase I (0.12 M NaCl) and laccase II (0.2 M NaCl). Stage 3. In the course of further purification of both enzymes, carried out on anion-exchange carrier Resource Q (6 ml), a broken gradient was used: 0 - 10%, 10 - 20%, and 20 - 100% with 1M NaCl. Stage 4. Both laccase I and laccase II, obtained after Resource Q, were desalted, concentrated to 1 ml each, and applied to a Superdex 75 gel filtration column. As a result, two laccases were obtained in a homogeneous form.


Na biotecnologia moderna, o uso de enzimas para obter compostos novos ou modificados com propriedades antibacterianas, antifúngicas e anticancerígenas é crucial. Lactases de cogumelos são biocatalisadores promissores para síntese e modificação de diferentes compostos, por serem enzimas baratas e disponíveis para a preparação de componentes de reação, e vem recebendo a devida atenção recentemente. A purificação da lacase foi realizada a partir do basidiomiceto Lentinus strigosus em vários estágios: Etapa 1 - na cromatografia de troca iônica em TEAE Servacell 23 (400 ml), foram observados dois picos de atividade da lacase distintamente separados, com eluição do transportador a 0,21 e 0,27 M de NaCl. Para reduzir a perda de enzimas, todas as frações com atividade de lacase foram coletadas, concentradas e dessalinizadas em uma célula de ultrafiltração (Amicon, Estados Unidos) com membrana UM-10; Etapa 2 - a preparação resultante com atividade de lacase foi aplicada a uma coluna Q-Sepharose (60 ml). Durante a eluição, foram obtidos dois picos bem separados com atividade de lacase: lacase I (NaCl 0,12 M) e lacase II (NaCl 0,2 M); Etapa 3 - no decurso da purificação adicional de ambas as enzimas, realizada no Recurso Q de transportador de troca aniônica (6 ml), um gradiente quebrado foi usado: 0-10%, 10-20% e 20-100% com NaCl 1M; Etapa 4 - tanto a lacase I como a lacase II, obtidas após o Recurso Q, foram dessalinizadas e concentradas para 1 ml cada e aplicadas a uma coluna de filtração em gel Superdex 75. Como resultado, duas lacases foram obtidas de forma homogênea.


Assuntos
Basidiomycota , Biotecnologia , Lacase , Enzimas , Antibacterianos
2.
Nat Commun ; 14(1): 2618, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147292

RESUMO

Deciphering the metabolic functions of organisms requires understanding the dynamic responses of living cells upon genetic and environmental perturbations, which in turn can be inferred from enzymatic activity. In this work, we investigate the optimal modes of operation for enzymes in terms of the evolutionary pressure driving them toward increased catalytic efficiency. We develop a framework using a mixed-integer formulation to assess the distribution of thermodynamic forces and enzyme states, providing detailed insights into the enzymatic mode of operation. We use this framework to explore Michaelis-Menten and random-ordered multi-substrate mechanisms. We show that optimal enzyme utilization is achieved by unique or alternative operating modes dependent on reactant concentrations. We find that in a bimolecular enzyme reaction, the random mechanism is optimal over any other ordered mechanism under physiological conditions. Our framework can investigate the optimal catalytic properties of complex enzyme mechanisms. It can further guide the directed evolution of enzymes and fill in the knowledge gaps in enzyme kinetics.


Assuntos
Enzimas , Física , Cinética , Termodinâmica , Fenômenos Químicos , Catálise , Enzimas/metabolismo
3.
FEBS J ; 290(9): 2204-2207, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37132524

RESUMO

The study of enzymes never disappoints. Despite its long history-almost 150 years following the first documented use of the word enzyme in 1878-the field of enzymology advances apace. This long journey has witnessed landmark developments that have defined modern enzymology as a broad discipline, leading to improved understanding at the molecular level, as we aspire to discover the complex relationships between enzyme structures, catalytic mechanisms and biological function. How enzymes are regulated at the gene and post-translational levels and how catalytic activity is modulated by interactions with small ligands and macromolecules, or the broader enzyme environment, are topical areas of study. Insights from such studies guide the exploitation of natural and engineered enzymes in biomedical or industrial processes; for example, in diagnostics, pharmaceuticals manufacture and processing technologies that use immobilised enzymes and enzyme reactor-based systems. In this Focus Issue, The FEBS Journal seeks to highlight breaking science and informative reviews, as well as personal reflections, to illustrate the breadth and importance of contemporary molecular enzymology research.


Assuntos
Enzimas , Termodinâmica , Catálise , Enzimas/genética , Enzimas/química
4.
Biotechnol Adv ; 65: 108145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030553

RESUMO

Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.


Assuntos
Ração Animal , Polissacarídeos , Animais , Humanos , Polissacarídeos/metabolismo , Grão Comestível/metabolismo , Enzimas , Dieta
5.
Appl Microbiol Biotechnol ; 107(10): 3183-3190, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37052635

RESUMO

Extremophilic microorganisms, which are resistant to extreme levels of temperature, salinity, pH, etc., have become popular tools for biotechnological applications. Due to their availability and cost-efficacy, enzymes from extremophiles are getting the attention of researchers and industries in the field of biocatalysis to catalyze diverse chemical reactions in a selective and sustainable manner. In this mini-review, we discuss the advantages of Halomonas elongata as moderate halophilic bacteria to provide suitable enzymes for biotechnology. While enzymes from H. elongata are more resistant to the presence of salt compared to their mesophilic counterparts, they are also easier to produce in heterologous hosts compared with more extremophilic microorganisms. Herein, a set of different enzymes (hydrolases, transferases, and oxidoreductases) from H. elongata are showcased, highlighting their interesting properties as more efficient and sustainable biocatalysts. With this, we aim to improve the visibility of halotolerant enzymes and their uncommon properties to integrate biocatalysis in industrial set-ups. KEYPOINTS: • Production and use of halotolerant enzymes can be easier than strong halophilic ones. • Enzymes from halotolerant organisms are robust catalysts under harsh conditions. • Halomonas elongata has shown a broad enzyme toolbox with biotechnology applications.


Assuntos
Bactérias , Halomonas , Halomonas/genética , Archaea , Biotecnologia , Cloreto de Sódio , Enzimas
6.
J Phys Chem B ; 127(12): 2649-2660, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944023

RESUMO

This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.


Assuntos
Enzimas , Catálise , Enzimas/metabolismo
7.
Science ; 379(6639): 1358-1363, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996195

RESUMO

Enzyme function annotation is a fundamental challenge, and numerous computational tools have been developed. However, most of these tools cannot accurately predict functional annotations, such as enzyme commission (EC) number, for less-studied proteins or those with previously uncharacterized functions or multiple activities. We present a machine learning algorithm named CLEAN (contrastive learning-enabled enzyme annotation) to assign EC numbers to enzymes with better accuracy, reliability, and sensitivity compared with the state-of-the-art tool BLASTp. The contrastive learning framework empowers CLEAN to confidently (i) annotate understudied enzymes, (ii) correct mislabeled enzymes, and (iii) identify promiscuous enzymes with two or more EC numbers-functions that we demonstrate by systematic in silico and in vitro experiments. We anticipate that this tool will be widely used for predicting the functions of uncharacterized enzymes, thereby advancing many fields, such as genomics, synthetic biology, and biocatalysis.


Assuntos
Enzimas , Aprendizado de Máquina , Anotação de Sequência Molecular , Proteínas , Análise de Sequência de Proteína , Algoritmos , Biologia Computacional , Enzimas/química , Genômica , Proteínas/química , Reprodutibilidade dos Testes , Anotação de Sequência Molecular/métodos , Análise de Sequência de Proteína/métodos , Biocatálise
8.
Int J Biol Macromol ; 238: 124051, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36933597

RESUMO

Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.


Assuntos
Extremófilos , Solventes/química , Extremófilos/metabolismo , Biotecnologia , Engenharia de Proteínas , Biocatálise , Enzimas/metabolismo
9.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982319

RESUMO

This is the first part of a Special Issue on enzymes and enzymes inhibitors and their applications in medicine and diagnosis [...].


Assuntos
Inibidores Enzimáticos , Medicina , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Enzimas
10.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835238

RESUMO

Food enzymes have an important role in the improvement of certain food characteristics, such as texture improvement, elimination of toxins and allergens, production of carbohydrates, enhancing flavor/appearance characteristics. Recently, along with the development of artificial meats, food enzymes have been employed to achieve more diverse functions, especially in converting non-edible biomass to delicious foods. Reported food enzyme modifications for specific applications have highlighted the significance of enzyme engineering. However, using direct evolution or rational design showed inherent limitations due to the mutation rates, which made it difficult to satisfy the stability or specific activity needs for certain applications. Generating functional enzymes using de novo design, which highly assembles naturally existing enzymes, provides potential solutions for screening desired enzymes. Here, we describe the functions and applications of food enzymes to introduce the need for food enzymes engineering. To illustrate the possibilities of using de novo design for generating diverse functional proteins, we reviewed protein modelling and de novo design methods and their implementations. The future directions for adding structural data for de novo design model training, acquiring diversified training data, and investigating the relationship between enzyme-substrate binding and activity were highlighted as challenges to overcome for the de novo design of food enzymes.


Assuntos
Alimento Funcional , Engenharia de Proteínas , Engenharia de Proteínas/métodos , Proteínas/química , Enzimas/metabolismo
11.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834666

RESUMO

Enzymes are viewed as the most desirable targets for drug development by the pharmaceutical community [...].


Assuntos
Desenvolvimento de Medicamentos , Descoberta de Drogas , Enzimas , Preparações Farmacêuticas
12.
J Chem Inf Model ; 63(4): 1323-1337, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36782360

RESUMO

Computational enzyme design has been successfully applied to identify new alternatives to natural enzymes for the biosynthesis of important compounds. However, the moderate catalytic activities of de novo designed enzymes indicate that the modeling accuracy of current computational enzyme design methods should be improved. Here, high-throughput molecular dynamics simulations were used to enhance computational enzyme design, thus allowing the identification of variants with higher activities in silico. Different time schemes of high-throughput molecular dynamics simulations were tested to identify the catalytic features of evolved Kemp eliminases. The 20 × 1 ns molecular dynamics simulation scheme was sufficiently accurate and computationally viable to screen the computationally designed massive variants of Kemp elimination enzymes. The developed hybrid computational strategy was used to redesign the most active Kemp eliminase, HG3.17, and five variants were generated and experimentally confirmed to afford higher catalytic efficiencies than that of HG3.17, with one double variant (D52Q/A53S) exhibiting a 55% increase. The hybrid computational enzyme design strategy is general and computationally economical, with which we anticipate the efficient creation of practical enzymes for industrial biocatalysis.


Assuntos
Enzimas , Simulação de Dinâmica Molecular , Biocatálise , Catálise , Enzimas/metabolismo , Engenharia de Proteínas
13.
Comput Biol Chem ; 103: 107832, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805170

RESUMO

DapE is a microbial metalloenzyme that hosts two Zn ions in its active site, although it shows catalytic activity with varying efficiency when the Zn ions in one or both of its metal-binding sites (MBS) are replaced by other transition-metal ions. The metal-ion promiscuity of DapE is believed to be a microbial strategy to overcome the homeostatic regulation of Zn ions by the mammalian host. Here, a hybrid QM/MM study is performed on a series of mixed-metal DapEs, where the Zn ion in the first MBS (MBS-1) is substituted by Mn, Co, Ni, and Cu ions, while the MBS-2 is occupied by Zn(II). The substrate binding affinity and the mechanism of catalytic action are estimated by optimizing the intermediates and the transition states with hybrid QM/MM method. Comparison of the binding affinity of the MBS-1 and MBS-2 substituted DapEs reveals that the MBS-1 substitution does not affect the substrate binding affinity in the mixed-metal DapEs, while a strong metal specificity was observed in MBS-2 substituted DapEs. On the contrary, the activation energy barriers show a high metal specificity at MBS-1 compared to MBS-2. Taken together, the QM/MM studies indicate that MBS-2 leads the substrate binding process, while MBS-1 steers the catalytic activity of the DapE enzyme.


Assuntos
Enzimas , Metais , Sítios de Ligação , Domínio Catalítico , Enzimas/química , Proteínas de Bactérias/química
14.
Science ; 379(6634): 795-802, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821679

RESUMO

Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.


Assuntos
Biopolímeros , Encéfalo , Condutividade Elétrica , Enzimas , Sistema Nervoso Periférico , Animais , Biopolímeros/biossíntese , Encéfalo/enzimologia , Eletrodos , Eletrônica , Enzimas/metabolismo , Sanguessugas , Modelos Animais , Sistema Nervoso Periférico/enzimologia , Polimerização , Peixe-Zebra
15.
Curr Opin Chem Biol ; 72: 102246, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599282

RESUMO

The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.


Assuntos
Biologia Computacional , Genômica , Filogenia , Enzimas/metabolismo
16.
Int J Biol Macromol ; 230: 123136, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621739

RESUMO

Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.


Assuntos
Organismos Aquáticos , Indústrias , Animais , Organismos Aquáticos/química , Oceanos e Mares , Biotecnologia , Enzimas
17.
Chemistry ; 29(21): e202203752, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36683008

RESUMO

Natural machinery such as proteins and enzymes can bind substrates and perform intricate functions on these molecules. This behaviour is mediated by highly ordered but conformationally flexible structures dictated through favourable intra- and intermolecular interactions. Metallosupramolecular architectures (MSAs) function as synthetic machinery that are responsive to their environment, and display similar, but less impressive, abilities to their biological counterparts. Natural and synthetic systems share the properties of molecular recognition and catalysis facilitated through the often complex structures of these architectures. This article outlines efforts to use metallosupramolecular structures to mimic the properties of biological enzymes and machines using important recent examples from the field.


Assuntos
Enzimas , Proteínas , Proteínas/química , Enzimas/química
18.
Biochem J ; 480(8): 539-553, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36688417

RESUMO

The self-assembly of bacterial microcompartments is the result of several genetic, biochemical, and physical stimuli orchestrating inside the bacterial cell. In this work, we use 1,2-propanediol utilization microcompartments as a paradigm to identify the factors that physically drive the self-assembly of MCP proteins in vitro using its major shell protein and major encapsulated enzyme. We find that a major shell protein PduBB' tends to self-assemble under macromolecular crowded environment and suitable ionic strength. Microscopic visualization and biophysical studies reveal phase separation to be the principle mechanism behind the self-association of shell protein in the presence of salts and macromolecular crowding. The shell protein PduBB' interacts with the enzyme diol-dehydratase PduCDE and co-assemble into phase separated liquid droplets. The co-assembly of PduCDE and PduBB' results in the enhancement of catalytic activity of the enzyme. The shell proteins that make up PduBB' (PduB and PduB') have contrasting self-assembly behavior. While N-terminal truncated PduB' has a high self-associating property and forms solid assemblies that separates out of solution, the longer component of the shell protein PduBM38L is more soluble and shows least tendency to undergo phase separation. A combination of spectroscopic, imaging and biochemical techniques shows the relevance of divalent cation Mg2+ in providing stability to intact PduMCP. Together our results suggest a combination of protein-protein interactions and phase separation guiding the self-assembly of Pdu shell protein and enzyme in the solution phase.


Assuntos
Proteínas de Bactérias , Enzimas , Proteínas de Bactérias/química , Enzimas/química
19.
ACS Appl Mater Interfaces ; 15(1): 761-771, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580579

RESUMO

Due to differences in the chemical properties or optimal reaction conditions of the catalysts, the challenge in the design of bio-chemical hybrid catalysts is that the bio-catalysts or chemical catalysts usually cannot maintain the initial catalytic performance. Herein, we report a general bio-chemical hybrid catalyst synthesis method using a natural enzyme scaffold-confined metal nanocluster. A redox-active enzyme is a nanoreactor that allows access to and reduces metal ions into metal nanoclusters in situ, resulting in the enzyme-confined metal nanocluster hybrid catalyst with a synergistic effect to boost catalytic performance. Specifically, bilirubin oxidase-Ir nanoclusters (BOD-Ir NCs) with catalytic properties for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are designed. The BOD-Ir NCs exhibit an approximately 2-fold ORR activity compared with pure BOD and a 4-fold OER activity compared with pure Ir NCs. BOD-Ir NCs exhibit stability for over 50,000 s, exceeding that of pure Ir NCs (22,000 s). The synergistic catalytic performance is attributed to the following: the mild preparation condition and matched sizes of BOD and the Ir NCs maintain the natural activity of BOD; the highly conductive Ir NCs improve the ORR activity of BOD; and the confining effect of BOD, which improves the stability and activity of the Ir NCs during the OER. In particular, BOD-Ir NCs exhibit a high half-wave potential of 0.97 V for the ORR and a low overpotential of 319 mV at 10 mA cm-2 for the OER, surpassing most of reported catalysts under neutral conditions. Furthermore, laccase-Ir NCs and glucose oxidase-Pd NCs with synergistic catalytic performances are fabricated, proving the universality of this synthetic method. This facile strategy for designing synergistic hybrid catalysts is expected to be applied to more complex chemical transformations.


Assuntos
Catálise , Enzimas , Nanopartículas Metálicas , Humanos , Condutividade Elétrica , Glucose Oxidase , Hipóxia , Metais , Oxigênio , Nanopartículas Metálicas/química , Enzimas/biossíntese
20.
Mol Ther ; 31(2): 304, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549301
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...