RESUMO
We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.
Assuntos
Meduloblastoma , Células-Tronco Neoplásicas , Humanos , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Rombencéfalo/metabolismo , Rombencéfalo/embriologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Células Endoteliais/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Técnicas de Cocultura , Estruturas Embrionárias , Metencéfalo/embriologiaRESUMO
The transgenic (TG) zebrafish allows researchers to bio-image specific biological phenomena in cells and tissues in vivo. We established TG lines to monitor changes in the ovaries of live fish. The original TG line with ovarian fluorescence was occasionally established. Although the cDNA integrated into the line was constructed for the expression of enhanced green fluorescent protein (EGFP) driven by the medaka ß-actin promoter, the expression of EGFP is restricted to the oocytes and gills in adult fish. Furthermore, we found that germinal vesicles (GVs) in oocytes of the established line can be observed by relatively strong fluorescence around the GV. In this study, we tried to capture the dynamic processes of germinal vesicle breakdown (GVBD) during meiotic cell division using the GV fluorescent oocytes. As a result, GV migration and GVBD could be monitored in real time. We also succeeded in observing actin filaments involved in the migration of GV to the animal pole. This strain can be used for education in the process of oocyte meiotic cell division.
Assuntos
Ectoderma/embriologia , Estruturas Embrionárias , Ovário , Peixe-Zebra , Feminino , Animais , Oócitos , Animais Geneticamente Modificados , Divisão CelularRESUMO
BACKGROUND: Medulloblastoma (MB) is a rare primitive neuroectodermal tumors originating from the cerebellum. MB is the most common malignant primary brain tumor of childhood. MB originates from neural precursor cells in distinctive regions of the rhombic lip, and their maturation occurs in the cerebellum or the brain stem during embryonal development. Also, apoptosis is a programmed cell death associated with numerous physiological as well as pathological regulations. RECENT FINDINGS: Irradiation (IR)-induce apoptosis triggers cell death, with or without intervening mitosis within a few hours of IR and these share different morphologic alteration such as, loss of normal nuclear structure as well as degradation of DNA. Moreover, MB is strikingly sensitive to DNA-damaging therapies and the role of apoptosis a key treatment modality. Furthermore, in MB, the apoptotic pathways are made up of several triggers, modulators, as well as effectors. Notably, IR-induced apoptotic mechanisms in MB therapy are very complex and they either induce radiosensitivity or inhibit radioresistance leading to potential effective treatment strategies for MB. CONCLUSION: This review explicitly explores the pivotal roles of IR-induced apoptosis in the pathogenesis and therapy of MB.
Assuntos
Neoplasias Cerebelares , Estruturas Embrionárias , Meduloblastoma , Metencéfalo/embriologia , Células-Tronco Neurais , Humanos , Meduloblastoma/radioterapia , Meduloblastoma/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Apoptose , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , DNARESUMO
An 8-month-old girl referred from her pediatrician with a diagnosis of neurofibromatosis type 1 (NF1) presented with an enlarged cloudy cornea of the left eye and a swollen left side of the face. Her left eye had intraocular pressure (IOP) of 21 mm Hg, corneal diameter of 16 mm, ectropion uvea, cup:disk ratio of 0.9, axial length of 28.06 mm, and S-shaped upper lid deformity. Uneventful combined trabeculotomy-trabeculectomy with mitomycin C was performed. On postoperative day 1, there was a new total hyphema that persisted for 2 weeks. An anterior chamber washout was performed, revealing the source of bleeding to be a persistent tunica vasculosa lentis along the zonules of the lens. Viscotamponade was performed, and the corneal wounds were closed, with the ocular tension slightly elevated. Bleeding did not recur for the following 5 months, and IOP was controlled until final follow-up.
Assuntos
Hifema , Pressão Intraocular , Neurofibromatose 1 , Trabeculectomia , Humanos , Feminino , Hifema/etiologia , Hifema/diagnóstico , Pressão Intraocular/fisiologia , Neurofibromatose 1/complicações , Neurofibromatose 1/diagnóstico , Lactente , Glaucoma/etiologia , Glaucoma/cirurgia , Glaucoma/diagnóstico , Cristalino/cirurgia , Complicações Pós-Operatórias , Mitomicina/administração & dosagem , Mitomicina/uso terapêutico , Doenças do Cristalino/diagnóstico , Doenças do Cristalino/etiologia , Doenças do Cristalino/cirurgia , Estruturas Embrionárias , Vasos Retinianos/embriologiaRESUMO
This Viewpoint discusses the Alabama Supreme Court's opinion on in vitro fertilization and how it plays into a larger push for fetal and embryonic personhood.
Assuntos
Política , Direitos Sexuais e Reprodutivos , Criança , Humanos , Alabama , Estados Unidos , Direitos Sexuais e Reprodutivos/legislação & jurisprudência , Estruturas EmbrionáriasRESUMO
The organization of neurons into distinct layers, known as lamination, is a common feature of the nervous system. This process, which arises from the direct coupling of neurogenesis and neuronal migration, plays a crucial role in the development of the cerebellum, a structure exhibiting a distinct folding cytoarchitecture with cells arranged in discrete layers. Disruptions to neuronal migration can lead to various neurodevelopmental disorders, highlighting the significance of understanding the molecular regulation of lamination. We report a role Mllt11/Af1q/Tcf7c (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q, also known as Mllt11 transcriptional cofactor 7; henceforth referred to Mllt11) in the migration of cerebellar granule cells (GCs). We now show that Mllt11 plays a role in both the tangential and radial migration of GCs. Loss of Mllt11 led to an accumulation of GC precursors in the rhombic lip region and a reduction in the number of GCs successfully populating developing folia. Consequently, this results in smaller folia and an overall reduction in cerebellar size. Furthermore, analysis of the anchoring centers reveals disruptions in the perinatal folia cytoarchitecture, including alterations in the Bergmann glia fiber orientation and reduced infolding of the Purkinje cell plate. Lastly, we demonstrate that Mllt11 interacts with non-muscle myosin IIB (NMIIB) and Mllt11 loss-reduced NMIIB expression. We propose that the dysregulation of NMIIB underlies altered GC migratory behavior. Taken together, the findings reported herein demonstrate a role for Mllt11 in regulating neuronal migration within the developing cerebellum, which is necessary for its proper neuroanatomical organization.
Assuntos
Cerebelo , Estruturas Embrionárias , Metencéfalo/embriologia , Neurônios , Gravidez , Feminino , Humanos , Neurônios/metabolismo , Neuroglia/metabolismo , Movimento Celular/fisiologiaAssuntos
Aborto Induzido , Estruturas Embrionárias , Assistência ao Paciente , Saúde Reprodutiva , Técnicas de Reprodução Assistida , Saúde da Mulher , Humanos , Alabama , Ativismo Político , Estados Unidos , Aborto Legal/legislação & jurisprudência , Aborto Induzido/legislação & jurisprudência , Assistência ao Paciente/normas , Saúde da Mulher/legislação & jurisprudência , Saúde da Mulher/normas , Saúde Reprodutiva/legislação & jurisprudência , Saúde Reprodutiva/normas , Técnicas de Reprodução Assistida/legislação & jurisprudênciaRESUMO
Lymphatic vessel development studies in mice and zebrafish models have demonstrated that lymphatic endothelial cells (LECs) predominantly differentiate from venous endothelial cells via the expression of the transcription factor Prox1. However, LECs can also be generated from undifferentiated mesoderm, suggesting potential diversity in their precursor cell origins depending on the organ or anatomical location. Despite these advances, recapitulating human lymphatic malformations in animal models has been difficult, and considering lymphatic vasculature function varies widely between species, analysis of development directly in humans is needed. Here, we examined early lymphatic development in humans by analyzing the histology of 31 embryos and three 9-week-old fetuses. We found that human embryonic cardinal veins, which converged to form initial lymph sacs, produce Prox1-expressing LECs. Furthermore, we describe the lymphatic vessel development in various organs and observe organ-specific differences. These characterizations of the early development of human lymphatic vessels should help to better understand the evolution and phylogenetic relationships of lymphatic systems, and their roles in human disease.
Assuntos
Estruturas Embrionárias , Células Endoteliais , Vasos Linfáticos , Sistema Porta/embriologia , Humanos , Animais , Camundongos , Filogenia , Peixe-Zebra , Fatores de TranscriçãoRESUMO
Heart failure (HF) is a multifactorial, heterogeneous systemic disease that is considered one of the leading causes of death and morbidity worldwide. It is well-known that endothelial dysfunction (ED) plays an important role in cardiac disease etiology. A reduction in the bioavailability of nitric oxide (NO) in the bloodstream leads to vasoconstriction and ED. Many studies indicated diminishment of peripheral arteries vasodilation that is mediated by the endothelium in the of patients with chronic HF. With the advancement of nanomedicine, nanotechnology can provide adequate solutions for delivering exogenous NO with the aid of nanoparticles (NPs) to treat ED. The properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable both passive and active delivery of drugs. This prompted us to investigate the efficacy of our newly-developed hydrogel nanoparticles (NO-RPs) for the delivery and sustained release of NO gas to alleviate cardiac failure and inflammation in the heart failure zebrafish model. The hydrogel NO-RPs incorporate SPIONS and NO precursor. The sustainend release of NO in the NO-RPs (4200 s), overcomes the problem of the short half life of NO in vivo which is expected to ameliorate the reduced NO bioavailabilty, and its consequences in endothelial and cardiac dysfunction. Zebrafish embryos were used as the animal model in this study to determine the effect of SPIONs-loaded NO-RPs on the cardiovascular system. Cardiac failure was induced in 24hpf embryos by exposure to aristolochic acid (AA)(0.25, 0.5 µM) for 8 h, followed by the SPIONs-loaded NO-RPs (0.25, 0.5 mg/ml) for 48 h, experimental groups included: control group which is healthy non treated zebrafish embryos, AA injured zebrafish embryos (HF) model,and NO-RP treated HF zebrafish embryos. Survival rate was assessed at 72hpf. Cardiac function was also evaluated by analyzing cardiac parameters including heartbeat, major blood vessels primordial cardinal vein and dorsal aorta (PCV &DA) diameter, blood flow velocity in PCV & DA vessels, cardiac output, and PCV & DA shear stresses. All cardiac parameters were analyzed with the aid of MicroZebraLab blood flow analysis software from Viewpoint. In addition, we studied the molecular effects of the developed NO-RPs on the mRNA expression of selected pro-inflammatory markers: IL-6, and Cox-2. Our findings demonstrated that the NO-RPs improved the survival rate in the heart failure zebrafish model and reversed heart failure by enhancing blood flow perfusion in Zebrafish embryos, significantly. In addition, RT-PCR results showed that the NO-RPs significantly reduced the expression of pro-inflammatory markers (lL-6&COX-2) in the heart failure zebrafish model. Our study confirmed that the developed SPIONs-loaded NO-RPs are effective tool to alleviate cardiac failure and inflammation in the HF zebrafish model.