Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Science ; 373(6550): 118-121, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210888

RESUMO

Ethane, the second most abundant hydrocarbon gas in the seafloor, is efficiently oxidized by anaerobic archaea in syntrophy with sulfate-reducing bacteria. Here, we report the 0.99-angstrom-resolution structure of the proposed ethane-activating enzyme and describe the specific traits that distinguish it from methane-generating and -consuming methyl-coenzyme M reductases. The widened catalytic chamber, harboring a dimethylated nickel-containing F430 cofactor, would adapt the chemistry of methyl-coenzyme M reductases for a two-carbon substrate. A sulfur from methionine replaces the oxygen from a canonical glutamine as the nickel lower-axial ligand, a feature conserved in thermophilic ethanotrophs. Specific loop extensions, a four-helix bundle dilatation, and posttranslational methylations result in the formation of a 33-angstrom-long hydrophobic tunnel, which guides the ethane to the buried active site as confirmed with xenon pressurization experiments.


Assuntos
Proteínas Arqueais/química , Etano/química , Methanosarcinales/enzimologia , Oxirredutases/química , Cristalografia por Raios X , Ativação Enzimática , Sequências Hélice-Alça-Hélice , Metilação , Processamento de Proteína Pós-Traducional
2.
Eur J Med Chem ; 221: 113557, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087496

RESUMO

An unprecedented amount of fungal and fungal-like infections has recently brought about some of the most severe die-offs and extinctions due to fungal drug resistance. Aimed to alleviate the situation, new effort was made to develop novel purinylthiazolylethanone derivatives, which were expected to combat the fungal drug resistance. Some prepared purinylthiazolylethanone derivatives possessed satisfactory inhibitory action towards the tested fungi, among which compound 8c gave a MIC value of 1 µg/mL against C. albicans. The active molecule 8c was able to kill C. albicans with undetectable resistance as well as low hematotoxicity and cytotoxicity. Furthermore, it could hinder the growth of C. albicans biofilm, thus avoiding the occurrence of drug resistance. Mechanism research manifested that purinylthiazolylethanone derivative 8c led to damage of cell wall and membrane disruption, so protein leakage and the cytoplasmic membrane depolarization were observed. On this account, the activity of fungal lactate dehydrogenase was reduced and metabolism was impeded. Meanwhile, the increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) disordered redox equilibrium, giving rise to oxidative damage to fungal cells and fungicidal effect.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Etano/farmacologia , Fungicidas Industriais/farmacologia , Purinas/farmacologia , Tiazóis/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Farmacorresistência Fúngica/efeitos dos fármacos , Etano/análogos & derivados , Etano/química , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Purinas/química , Relação Estrutura-Atividade , Tiazóis/química
3.
Appl Environ Microbiol ; 87(14): e0022721, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33962978

RESUMO

The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are involved not only in methane oxidation but also in short-chain alkane oxidation. Here, we describe Rhodococcus sp. strain ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source, and report on the horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMOs) of the CuMMO family and the sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear megaplasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated the mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient Rhodococcus erythropolis strain in a mating experiment and showed similar ethane- and propane-consuming activities. Finally, our findings demonstrate that the horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. IMPORTANCE CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient similar abilities to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane degradation. Our results indicate that plasmids can support the rapid evolution of enzyme-mediated biogeochemical processes.


Assuntos
Proteínas de Bactérias/genética , Oxigenases de Função Mista/genética , Rhodococcus/genética , Etano/metabolismo , Transferência Genética Horizontal , Genes Bacterianos , Oxirredução , Plasmídeos , Propano/metabolismo , Rhodococcus/metabolismo
4.
Opt Express ; 29(8): 12381-12397, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984999

RESUMO

We present a multi-species trace gas sensor based on a fast, compact home-built Fourier transform spectrometer (FTS) combined with a broadband mid-infrared supercontinuum (SC) source. The spectrometer covers the spectral bandwidth of the SC source (2 - 4 µm) and provides a best spectral resolution of 1 GHz in 6 seconds. It has a detection sensitivity of a few hundred of ppbv Hz-1/2 for different gas species. We study the performance of the developed spectrometer in terms of precision, linearity, long-term stability, and multi-species detection. We use the spectrometer for measuring fruit-produced volatiles under different atmospheric conditions and compare the performance with a previously developed scanning grating-based spectrometer.


Assuntos
Gases/análise , Malus/química , Malus/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Acetaldeído/análise , Acetatos/análise , Acetona/análise , Desenho de Equipamento , Etano/análise , Etanol/análise , Etilenos/análise , Análise de Fourier , Metanol/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
Environ Pollut ; 281: 116915, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33799207

RESUMO

This study demonstrated that nitrogen-doped carbon materials (NCMs) could effectively catalyze the chlorine elimination process in hexachloroethane (HCA) declorination in sulfide-containing environments for the first time. The kobs values of HCA dechlorination by sulfide in the presence of 10 mg/L NCMs were higher than that of no mediator at pH 7.3 by one or two orders of magnitude. The catalytic capabilities of NCMs on HCA dechlorination were evident in common ranges of natural pH (5.3-8.9) and it could be accelerated by the increase of pH but be suppressed by the presence of dissolved humic acid. Moreover, NCMs exhibited much better catalytic capability on HCA dechlorination compared to the carbon materials, mainly owing to the combined contributions of pyridine N, including enhanced nucleophilic attack to HCA molecule by generating newborn C-S-S and activation of HCA molecule by elongating C-Cl bonds. The functions of pyridine N in micron-sized NCMs with mesopores were better than in nano-sized NCMs on HCA dechlorination. These findings displayed the potential of NCMs, when released into sulfide-containing environments, may significantly increase the dechlorination of chlorinated aliphatic hydrocarbons.


Assuntos
Carbono , Nitrogênio , Catálise , Etano/análogos & derivados , Humanos , Hidrocarbonetos Clorados , Recém-Nascido , Sulfetos
6.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531396

RESUMO

In aquifers, acetylene (C2H2) is a product of abiotic degradation of trichloroethene (TCE) catalyzed by in situ minerals. C2H2 can, in turn, inhibit multiple microbial processes including TCE dechlorination and metabolisms that commonly support dechlorination, in addition to supporting the growth of acetylenotrophic microorganisms. Previously, C2H2 was shown to support TCE reductive dechlorination in synthetic, laboratory-constructed cocultures containing the acetylenotroph Pelobacter sp. strain SFB93 and Dehalococcoides mccartyi strain 195 or strain BAV1. In this study, we demonstrate TCE and perchloroethene (PCE) reductive dechlorination by a microbial community enriched from contaminated groundwater and amended with C2H2 as the sole electron donor and organic carbon source. The metagenome of the stable, enriched community was analyzed to elucidate putative community functions. A novel anaerobic acetylenotroph in the phylum Actinobacteria was identified using metagenomic analysis. These results demonstrate that the coupling of acetylenotrophy and reductive dechlorination can occur in the environment with native bacteria and broaden our understanding of biotransformation at contaminated sites containing both TCE and C2H2 IMPORTANCE Understanding the complex metabolisms of microbial communities in contaminated groundwaters is a challenge. PCE and TCE are among the most common groundwater contaminants in the United States that, when exposed to certain minerals, exhibit a unique abiotic degradation pathway in which C2H2 is a product. C2H2 can act as both an inhibitor of TCE dechlorination and of supporting metabolisms and an energy source for acetylenotrophic bacteria. Here, we combine laboratory microcosm studies with computational approaches to enrich and characterize an environmental microbial community that couples two uncommon metabolisms, demonstrating unique metabolic interactions only yet reported in synthetic, laboratory-constructed settings. Using this comprehensive approach, we have identified the first reported anaerobic acetylenotroph in the phylum Actinobacteria, demonstrating the yet-undescribed diversity of this metabolism that is widely considered to be uncommon.


Assuntos
Acetileno/metabolismo , Actinobacteria/metabolismo , Água Subterrânea , Tricloroetileno/metabolismo , Biodegradação Ambiental , Etano/análogos & derivados , Etano/metabolismo , Água Subterrânea/análise , Halogenação , Hidrocarbonetos Clorados/metabolismo , Metagenômica , Microbiota
7.
Environ Sci Technol ; 55(5): 3210-3218, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33576222

RESUMO

Atmospheric emissions from oil and gas production operations are composed of multiple hydrocarbons and can have large variations in composition. Accurate estimates of emission compositions are needed to estimate the fate and impacts of emissions and to attribute emissions to sources. This work presents a database, constructed with empirical data and thermodynamic models, that can be queried to estimate hydrocarbon compositions from emission sources present at oil and gas production sites. The database can be searched for matches using between two and seven well parameters as query inputs (gas-to-oil ratio, API gravity, separator pressure, separator temperature, methane molar fraction in produced gas, ethane molar fraction of produced gas, and propane molar fraction in produced gas). Database query performance was characterized by comparing returns from database queries to a test data set. Application of the database to well parameters for tens of thousands of wells in the Barnett, Eagle Ford, and Fayetteville production regions demonstrates variations in emission compositions. Ethane to methane ratio varies by more than an order of magnitude from well to well and source to source. VOC to methane ratios are comparable in variability to ethane to methane ratios for most emission sources, but have a higher variability for emissions from flashing of liquid hydrocarbon tanks.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Etano/análise , Hidrocarbonetos/análise , Metano/análise , Gás Natural , Campos de Petróleo e Gás , Poços de Água
8.
Environ Sci Technol ; 55(5): 2811-2819, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587606

RESUMO

The methane emission intensity (methane emitted/gas produced or methane emitted/methane produced) of individual unconventional oil and gas production sites in the United States has a characteristic temporal behavior, exhibiting a brief period of decrease followed by a steady increase, with intensities after 10 years of production reaching levels that are 2-10 times the 10 year production-weighted average. Temporal patterns for methane emission intensity for entire production regions are more complex. Historical production data and facility data were used with a detailed basin-wide methane emission model to simulate the collective behavior of tens of thousands of wells and associated midstream facilities. For production regions with few to no new wells being brought to production, and existing wells having reached a mature stage, as in the Barnett Shale production region in north central Texas, the methane emission intensity gradually increases, as natural gas production decreases faster than emissions decrease, following the general pattern exhibited by individual wells. In production regions that are rapidly evolving, either with large numbers of new wells being put into production or with the introduction of source-specific regulations, the behavior is more complex. In the Eagle Ford Shale, which has had both a large number of new wells and the introduction of source-specific regulations, the methane emission intensity stays within relatively narrow bounds but the distribution of sources varies. As source distributions vary, basin-wide propane-to-methane and ethane-to-methane emission ratios vary, impacting methods used in source attribution.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Etano/análise , Metano/análise , Gás Natural/análise , Campos de Petróleo e Gás , Texas , Estados Unidos
9.
Environ Sci Technol ; 55(3): 2006-2015, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434000

RESUMO

Previous studies demonstrated that methane can be used as an electron donor to microbially remove various oxidized contaminants in groundwater. Natural gas, which is more widely available and less expensive than purified methane, is potentially an alternative source of methane. However, natural gas commonly contains a considerable amount of ethane (C2H6) and propane (C3H8), in addition to methane. It is important that these gaseous alkanes are also utilized along with methane to avoid emissions. Here, we demonstrate that perchlorate (ClO4-), a frequently reported contaminant in groundwater, can be microbially reduced to chloride (Cl-) driven by C2H6 or C3H8 under oxygen-limiting conditions. Two independent membrane biofilm reactors (MBfRs) supplied with C2H6 and C3H8, respectively, were operated in parallel to biologically reduce ClO4-. The continuous ClO4- removal during long-term MBfR operation combined with the concurrent C2H6/C3H8 consumption and ClO4- reduction in batch tests confirms that ClO4- reduction was associated with C2H6 or C3H8 oxidation. Polyhydroxyalkanoates (PHAs) were synthesized in the presence of C2H6 or C3H8 and were subsequently utilized for supporting ClO4- bio-reduction in the absence of gaseous alkanes. Analysis by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that transcript abundance of bmoX (encoding alpha hydroxylase subunit of C2H6/C3H8 monooxygenase) was positively correlated to the consumption rates of C2H6/C3H8, while pcrA (encoding a catalytic subunit of perchlorate reductase) was positively correlated to the consumption of ClO4-. High-throughput sequencing targeting 16S rRNA, bmoX, and pcrA indicated that Mycobacterium was the dominant microorganism oxidizing C2H6/C3H8, while Dechloromonas may be the major perchlorate-reducing bacterium in the biofilms. These findings shed light on microbial ClO4- reduction driven by C2H6 and C3H8, facilitating the development of cost-effective strategies for ex situ groundwater remediation.


Assuntos
Etano , Percloratos , Reatores Biológicos , Oxirredução , Propano , RNA Ribossômico 16S/genética
10.
Molecules ; 25(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266077

RESUMO

The direct, one-pot oxidation of ethane to acetic acid was, for the first time, performed using a C-scorpionate complex anchored onto a magnetic core-shell support, the Fe3O4/TiO2/[FeCl2{κ3-HC(pz)3}] composite. This catalytic system, where the magnetic catalyst is easily recovered and reused, is highly selective to the acetic acid synthesis. The performed green metrics calculations highlight the "greeness" of the new ethane oxidation procedure.


Assuntos
Ácido Acético/química , Complexos de Coordenação/química , Etano/química , Compostos de Ferro/química , Catálise , Modelos Moleculares , Conformação Molecular , Oxirredução
11.
Molecules ; 25(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260601

RESUMO

We report on a fiber-coupled, quartz-enhanced photoacoustic spectroscopy (QEPAS) near-IR sensor for sequential detection of methane (CH4 or C1) and ethane (C2H6 or C2) in air. With the aim of developing a lightweight, compact, low-power-consumption sensor suitable for unmanned aerial vehicles (UAVs)-empowered environmental monitoring, an all-fiber configuration was designed and realized. Two laser diodes emitting at 1653.7 nm and 1684 nm for CH4 and C2H6 detection, respectively, were fiber-combined and fiber-coupled to the collimator port of the acoustic detection module. No cross talk between methane and ethane QEPAS signal was observed, and the related peak signals were well resolved. The QEPAS sensor was calibrated using gas samples generated from certified concentrations of 1% CH4 in N2 and 1% C2H6 in N2. At a lock-in integration time of 100 ms, minimum detection limits of 0.76 ppm and 34 ppm for methane and ethane were achieved, respectively. The relaxation rate of CH4 in standard air has been investigated considering the effects of H2O, N2 and O2 molecules. No influence on the CH4 QEPAS signal is expected when the water vapor concentration level present in air varies in the range 0.6-3%.


Assuntos
Monitoramento Ambiental/métodos , Etano/análise , Metano/análise , Técnicas Fotoacústicas/métodos , Quartzo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos
12.
Environ Sci Technol ; 54(24): 15829-15839, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33210923

RESUMO

Abiotic transformation of trichloroethene (TCE) in fractured porous rock such as sandstone is challenging to characterize and quantify. The objective of this study was to estimate the pseudo first-order abiotic reaction rate coefficients in diffusion-dominated intact core microcosms. The microcosms imitated clean flow through a fracture next to a contaminated rock matrix by exchanging uncontaminated groundwater, unamended or lactate-amended, in a chamber above a TCE-infused sandstone core. Rate coefficients were assessed using a numerical model of the microcosms that were calibrated to monitoring data. Average initial rate coefficients for complete dechlorination of TCE to acetylene, ethene, and ethane were estimated as 0.019 y-1 in unamended microcosms and 0.024 y-1 in lactate-amended microcosms. Moderately higher values (0.026 y-1 for unamended and 0.035 y-1 for lactate-amended) were obtained based on 13C enrichment data. Abiotic transformation rate coefficients based on gas formation were decreased in unamended microcosms after ∼25 days, to an average of 0.0008 y-1. This was presumably due to depletion of reductive capacity (average values of 0.12 ± 0.10 µeeq/g iron and 18 ± 15 µeeq/g extractable iron). Model-derived rate coefficients and reductive capacities for the intact core microcosms aligned well with results from a previous microcosm study using crushed sandstone from the same site.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Etano , Etilenos , Tricloroetileno/análise , Poluentes Químicos da Água/análise
13.
J Contam Hydrol ; 235: 103728, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33069942

RESUMO

A complex mixture of dissolved organic contaminants, emanating from a many decades-old, residual, dense non-aqueous phase liquid (DNAPL) source, migrates through unconfined, moderately heterogeneous, glacial-derived sediments and sedimentary rock in a residential area of Dane County, Wisconsin, USA. A portion of this contaminant plume intersects a large man-made pond, roughly 400 m downgradient of the source zone. Depth-discrete, multilevel groundwater sampling, detailed sedimentological logs, and hydraulic head profiles were used to delineate the spatial distribution of hydraulic, geologic, organic contaminant, and redox hydrochemical conditions within the established plume along two transects immediately upgradient of the pond. Twenty-one contaminants were detected and classified into four major contaminant groups: chlorinated ethenes, chlorinated ethanes, aromatics (BTEX: benzene, toluene, ethylbenzene, xylene), and aliphatic ketones. Within the glacial sediments and shallow bedrock, zones of reductive dechlorination of chlorinated ethenes and ethanes were juxtaposed with zones of BTEX and ketone degradation. Spatial heterogeneity in the concentration and distribution of contaminant groups and redox conditions was observed over lateral distances of tens of meters and vertical distances of tens of centimeters along the two transects. Although the site was situated in a complex glacial depositional environment, lithologic and hydraulic heterogeneity surprisingly only had a modest influence on the spatial distribution of plume contaminants. Depth-discrete sampling along paired, closely spaced transects (~20 m apart) was essential to assess internal plume composition/concentration evolution along flow paths with strong attenuation over short migration distances. This study shows how paired, highly resolved transects can enhance understanding of transverse and longitudinal variability in areas where contaminant-induced redox conditions control reaction zones and strong plume attenuation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Idoso , Etano , Geologia , Humanos , Poluentes Químicos da Água/análise
14.
PLoS One ; 15(9): e0239706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976530

RESUMO

Flash-cooling of macromolecular crystals for X-ray diffraction analysis is usually performed in liquid nitrogen (LN2). Cryogens different than LN2 are used as well for this procedure but are highly underrepresented, e.g., liquid propane and liquid ethane. These two cryogens have significantly higher cooling rates compared with LN2 and may thus be beneficial for flash-cooling of macromolecular crystals. Flash-cooling in liquid propane or liquid ethane results in sample vitrification but is accompanied by solidification of these cryogens, which is not compatible with the robotic systems nowadays used for crystal mounting at most synchrotrons. Here we provide a detailed description of a new double-chambered device and procedure to flash-cool loop mounted macromolecular crystals in different cryogenic liquids. The usage of this device may result in specimens of better crystal- and optical quality in terms of mosaic spread and ice contamination. Furthermore, applying the described procedure with the new double-chambered device provides the possibility to screen for the best flash-cooling cryogen for macromolecular crystals on a routine basis, and, most importantly, the samples obtained allow the usage of state-of-the-art robotic sample-loading systems at synchrotrons.


Assuntos
Temperatura Baixa , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Etano/química , Nitrogênio/química , Propano/química
15.
Environ Sci Process Impacts ; 22(9): 1898-1907, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32856031

RESUMO

Understanding the mechanisms controlling the redox transformation of organic contaminants mediated by biochar is of great significance for application of biochar in remediation of contaminated soils and sediments. Here we investigated the mediation effect of a pine wood-derived biochar (P-char) in comparison with multiwalled carbon nanotubes (MCNTs) and graphite on the reductive dechlorination of hexachloroethane by sulfide. Upon normalization of the mediator's surface area, the reduction rate of hexachloroethane follows an order of P-char < MCNTs < graphite. Aqueous polysulfides and polysulfide free radicals were readily produced by reacting sulfide only with P-char, and the supernatant separated from the reaction system could account for 83.4% of the pseudo-kinetic rate constant of hexachloroethane mediated by P-char. In contrast, MCNTs and graphite had weak abilities to produce reactive sulfur species, and the supernatant exhibited very low reduction capability (<20.7%) of hexachloroethane. Electron paramagnetic resonance (EPR) analysis demonstrated that the surface quinone moieties on P-char induced the formation of polysulfides and polysulfide free radicals from sulfide by serving as one-electron acceptors. Consistently, polysulfides prepared by reacting elemental sulfur with sulfide showed much stronger reducing capability compared to sulfide. Thus, the mediation effect of P-char was dominantly attributed to the surface quinone-induced formation of reactive reducing sulfur species, whereas the mediation effect of MCNTs and graphite mainly stemmed from the enhanced electron transfer by the graphitized carbon. These results showed for the first time that surface quinone-induced formation of aqueous reactive sulfur species could control biochar-mediated reductive dechlorination of chloroorganic contaminants by sulfides.


Assuntos
Nanotubos de Carbono , Pinus , Carvão Vegetal , Etano/análogos & derivados , Hidrocarbonetos Clorados , Oxirredução , Quinonas , Sulfetos , Enxofre
16.
Water Res ; 183: 116008, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634677

RESUMO

Selenate (Se(VI)) contamination in groundwater is one of major concerns for human health, in particular in shale gas extraction sites. Microbial selenate reduction coupled to methane (CH4) oxidation has been demonstrated very recently. Little is known whether ethane (C2H6) and butane (C3H8) are able to drive selenate reduction, although they are also important components in shale gas. In this study, we demonstrated Se(VI) bio-reduction could be achieved using C2H6 and C3H8 as electron donors and carbon sources. Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDX) confirmed elemental Se (Se0) was the major final product formed from Se(VI) bio-reduction. Polyhydroxyalkanoates (PHAs) were generated in the biofilms as the internal electron-storage materials, which were consumed for sustaining Se(VI) bio-reduction in absence of C2H6 and C3H8. Microbial community analysis showed that two genera capable of oxidizing gaseous alkanes dominated in the biofilms, including Mycobacterium (in both C2H6 and C3H8-fed biofilms) and Rhodococcus (in C3H8-fed biofilm). In addition, several potential Se(VI) reducers (e.g., Variovorax) were detected in the biofilms. Investigation of Communities by Reconstruction of Unobserved States analysis supported that predictive genes associated with alkanes oxidation, denitrification and PHAs cycle were enriched in the biofilms. These findings offer insights into the process of selenate reduction driven by C2H6 and C3H8, which ultimately may help to develop a solution to use shale gas for groundwater remediation, especially near shale gas exploitation sites.


Assuntos
Etano , Propano , Biofilmes , Reatores Biológicos , Elétrons , Oxirredução , Ácido Selênico
17.
Bioprocess Biosyst Eng ; 43(11): 2107-2115, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32594315

RESUMO

Lipase stability in organic solvent is crucial for its application in many biotechnological processes as biocatalyst. One way to improve lipase's activity and stability in unusual reaction medium is its immobilization on inert supports. Here, lipases from different sources and immobilized through weak chemical interactions on hydrophobic and ionic supports had their transesterification ability dramatically dependent on the support and also on the solvent that had been used. The ethanolysis of sardine oil was carried out at the presence of cyclohexane and tert-amyl alcohol, in which Duolite A568-Thermomyces lanuginosa lipase derivative achieved 49% of ethyl esters production after 24 h in cyclohexane. The selectivity of immobilized lipases was also studied and, after 3 h of synthesis, the reaction with Duolite A568-Thermomyces lanuginosa derivative in cyclohexane produced 24% ethyl ester of eicosapentaenoic acid and 1.2% ethyl ester of docosahexaenoic acid, displaying a selectivity index of 20 times the ethyl ester of eicosapentaenoic acid. Different derivatives of Candida antarctica lipases fraction B (CALB) and phospholipase Lecitase® Ultra (Lecitase) were also investigated. Along these lines, a combination between these factors may be applied to improve the activity and selectivity of immobilized lipases, decreasing the total cost of the process.


Assuntos
Álcoois/química , Ésteres/química , Proteínas Fúngicas/química , Hexanos/química , Lipase/química , Compostos Orgânicos/química , Solventes/química , Adsorção , Animais , Biocatálise , Candida/metabolismo , Catálise , Colorimetria/métodos , Cicloexanos/química , Enzimas Imobilizadas/química , Esterificação , Etano/química , Etanol/química , Peixes , Interações Hidrofóbicas e Hidrofílicas , Íons , Pentanóis
18.
Biodegradation ; 31(3): 171-182, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32361902

RESUMO

Cometabolic biodegradation of 1,4-dioxane (dioxane) in the presence of primary substrates is a promising strategy for treating dioxane at environmentally relevant concentrations. Seven aqueous amendments (i.e., tetrahydrofuran (THF), butanone, acetone, 1-butanol, 2-butanol, phenol and acetate) and five gaseous amendments (i.e., C1-C4 alkanes and ethylene) were evaluated as the primary substrates for dioxane degradation by mixed microbial consortia. The aqueous amendments were tested in microcosm bottles and the gaseous amendments were tested in a continuous-flow membrane biofilm reactor with hollow fibers pressurized by the gaseous amendments. Ethane was found to be the most effective gaseous substrate and THF was the only aqueous substrate that promoted dioxane degradation. A diverse microbial community consisting of several putative dioxane degraders-Mycobacterium, Flavobacterium and Bradyrhizobiaceae-were enriched in the presence of ethane. This is the first study showing that ethane was the most effective substrate among the short-chain alkanes and it promoted dioxane degradation by enriching dioxane-degraders that did not harbor the well-known dioxane/tetrahydrofuran monooxygenase.


Assuntos
Furanos , Consórcios Microbianos , Biodegradação Ambiental , Dioxanos , Etano
19.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403410

RESUMO

We report, to our knowledge, the first optical detection scheme for short-chained hydrocarbon isotopologues. The sensor system is based on photoacoustic spectroscopy (PAS). Two continuous wave, thermoelectrically cooled, distributed feedback interband cascade lasers (DFB-ICLs) with emission wavelengths around 3.33 and 3.38 µm, respectively, served as light sources. The investigations comprised the main stable carbon isotopologues of methane (12CH4, 13CH4), ethane (12CH3-12CH3, 13CH3-12CH3, 13CH3-13CH3), and propane (12CH3-12CH2-12CH3, 13CH3-12CH2-12CH3). They were selected because of their importance for numerous applications from climate and planetary research to natural gas exploration. Multiple measurements of single components in nitrogen and synthetic mixtures were conducted at room temperature and atmospheric pressure. Depending on the investigated hydrocarbon isotopologue, detection limits ranging from 0.043 ppmv to 3.4 ppmv were achieved. For a selective concentration determination, multivariate analysis (MVA) was applied. Partial least-squares regression (PLSR) was used to calculate concentrations from the PA spectra. The implementation of MVA has shown that the PA setup in principle works reliably and that the selective concentration determination of short-chained hydrocarbon isotopologues is possible.


Assuntos
Hidrocarbonetos/análise , Isótopos/análise , Análise Multivariada , Gás Natural/análise , Técnicas Fotoacústicas/métodos , Análise Espectral/métodos , Pressão Atmosférica , Etano/análise , Hidrocarbonetos/química , Lasers , Análise dos Mínimos Quadrados , Metano/análise , Nitrogênio/análise , Técnicas Fotoacústicas/instrumentação , Propano/análise , Análise Espectral/instrumentação , Temperatura
20.
Environ Sci Pollut Res Int ; 27(18): 22749-22757, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323238

RESUMO

Multi-elemental C-Br-Cl compound-specific isotope analysis was applied for characterizing abiotic and biotic degradation of the environmental pollutant 1-bromo-2-chloroethane (BCE). Isotope effects were determined in the model processes following hydrolytic dehalogenation and dihaloelimination pathways as well as in a microcosm experiment by the microbial culture from the contaminated site. Hydrolytic dehalogenation of BCE under alkaline conditions and by DhaA enzyme resulted in similar dual isotope slopes (ɅC/Br 21.9 ± 4.7 and 19.4 ± 1.8, respectively, and ɅC/Cl ~ ∞). BCE transformation by cyanocobalamin (B12) and by Sulfurospirillum multivorans followed dihaloelimination and was accompanied by identical, within the uncertainty range, dual isotope slopes (ɅC/Br 8.4 ± 1.7 and 7.9 ± 4.2, respectively, and ɅC/Cl 2.4 ± 0.3 and 1.5 ± 0.6, respectively). Changes over time in the isotope composition of BCE from the contaminated groundwater showed only a slight variation in δ13C values and were not sufficient for the elucidation of the BCE degradation pathway in situ. However, an anaerobic microcosm experiment with the enrichment cultures from the contaminated groundwater presented dual isotope slopes similar to the hydrolytic pathway, suggesting that the potential for BCE degradation in situ by the hydrolytic dehalogenation pathway exists in the contaminated site.


Assuntos
Água Subterrânea , Hidrocarbonetos Halogenados , Biodegradação Ambiental , Campylobacteraceae , Isótopos de Carbono , Etano/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...