Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.098
Filtrar
1.
Front Immunol ; 14: 1114586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122759

RESUMO

Background: Gut dysbiosis and gut microbiome-derived metabolites have been implicated in both disease onset and treatment response, but this has been rarely demonstrated in pemphigus vulgaris (PV). Here, we aim to systematically characterize the gut microbiome to assess the specific microbial species and metabolites associated with PV. Methods: We enrolled 60 PV patients and 19 matched healthy family members, and collected 100 fecal samples (60 treatment-naïve, 21 matched post-treatment, and 19 controls). Metagenomic shotgun sequencing and subsequent quality control/alignment/annotation were performed to assess the composition and microbial species, in order to establish the association between gut microbiome with PV onset and treatment response. In addition, we evaluated short-chain fatty acids (SCFAs) in PV patients through targeted metabolomics analysis. Results: The diversity of the gut microbiome in PV patients deviates from the healthy family members but not between responder and non-responder, or before and after glucocorticoid treatment. However, the relative abundance of several microbial species, including the pathogenic bacteria (e.g., Escherichia coli) and some SCFA-producing probiotics (e.g., Eubacterium ventriosum), consistently differed between the two groups in each comparison. Escherichia coli was enriched in PV patients and significantly decreased after treatment in responders. In contrast, Eubacterium ventriosum was enriched in healthy family members and significantly increased particularly in responders after treatment. Consistently, several gut microbiome-derived SCFAs were enriched in healthy family members and significantly increased after treatment (e.g., butyric acid and valeric acid). Conclusions: This study supports the association between the gut microbiome and PV onset, possibly through disrupting the balance of gut pathogenic bacteria and probiotics and influencing the level of gut microbiome-derived SCFAs. Furthermore, we revealed the potential relationship between specific microbial species and glucocorticoid treatment.


Assuntos
Microbioma Gastrointestinal , Pênfigo , Humanos , Pênfigo/terapia , Glucocorticoides , Eubacterium/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo
2.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37024282

RESUMO

Eubacterium limosum is an acetogenic bacterium of potential industrial relevance for its ability to efficiently metabolize a range of single carbon compounds. However, extracellular polymeric substance (EPS) produced by the type strain ATCC 8486 is a serious impediment to bioprocessing and genetic engineering. To remove these barriers, here we bioinformatically identified genes involved in EPS biosynthesis, and targeted several of the most promising candidates for inactivation, using a homologous recombination-based approach. Deletion of a single genomic region encoding homologues for epsABC, ptkA, and tmkA resulted in a strain incapable of producing EPS. This strain is significantly easier to handle by pipetting and centrifugation, and retains important wild-type phenotypes including the ability to grow on methanol and carbon dioxide and limited oxygen tolerance. Additionally, this strain is also more genetically tractable with a 2-fold increase in transformation efficiency compared to the highest previous reports. This work advances a simple, rapid protocol for gene knockouts in E. limosum using only the native homologous recombination machinery. These results will hasten the development of this organism as a workhorse for valorization of single carbon substrates, as well as facilitate exploration of its role in the human gut microbiota.


Assuntos
Eubacterium , Matriz Extracelular de Substâncias Poliméricas , Humanos , Eubacterium/genética , Eubacterium/metabolismo , Engenharia Genética
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(1): 120-124, 2023 Jan 06.
Artigo em Chinês | MEDLINE | ID: mdl-36655268

RESUMO

Intestinal flora and its metabolites are closely related to the progression of type 2 diabetes mellitus(T2DM). Eubacterium is one of the dominant intestinal flora, and its metabolites short-chain fatty acids (SCFAs) play a leading role in regulating intestinal metabolic balance. It has been reported that SCFAs can regulate the secretion of glucagon-like peptide-1, improve the function of pancreatic ß cells, participate in bile acids metabolism and regulate the production of inflammatory factors in T2DM. Based on the above research background, this article mainly reviews the relationship between Eubacterium and its metabolite SCFAs and T2DM and its regulatory mechanism.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Eubacterium/metabolismo , Ácidos Graxos Voláteis/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(6): e2216244120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716373

RESUMO

Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO2) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic performance; however, systemic investigation on the fitness contribution of individual gene has been limited. Here, we report genome-scale CRISPR interference screening using 41,939 guide RNAs designed from the E. limosum genome, one of the model acetogenic species, where all genes were targeted for transcriptional suppression. We investigated the fitness contributions of 96% of the total genes identified, revealing the gene fitness and essentiality for heterotrophic and autotrophic metabolisms. Our data show that the Wood-Ljungdahl pathway, membrane regeneration, membrane protein biosynthesis, and butyrate synthesis are essential for autotrophic acetogenesis in E. limosum. Furthermore, we discovered genes that are repression targets that unbiasedly increased autotrophic growth rates fourfold and acetoin production 1.5-fold compared to the wild-type strain under CO2-H2 conditions. These results provide insight for understanding acetogenic metabolism and genome engineering in acetogenic bacteria.


Assuntos
Dióxido de Carbono , Eubacterium , Dióxido de Carbono/metabolismo , Eubacterium/genética , Eubacterium/metabolismo , Processos Autotróficos , Genoma Bacteriano
5.
Nat Commun ; 13(1): 7624, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494336

RESUMO

Eggerthella lenta is a prevalent human gut Actinobacterium implicated in drug, dietary phytochemical, and bile acid metabolism and associated with multiple human diseases. No genetic tools are currently available for the direct manipulation of E. lenta. Here, we construct shuttle vectors and develop methods to transform E. lenta and other Coriobacteriia. With these tools, we characterize endogenous E. lenta constitutive and inducible promoters using a reporter system and construct inducible expression systems, enabling tunable gene regulation. We also achieve genome editing by harnessing an endogenous type I-C CRISPR-Cas system. Using these tools to perform genetic knockout and complementation, we dissect the functions of regulatory proteins and enzymes involved in catechol metabolism, revealing a previously unappreciated family of membrane-spanning LuxR-type transcriptional regulators. Finally, we employ our genetic toolbox to study the effects of E. lenta genes on mammalian host biology. By greatly expanding our ability to study and engineer gut Coriobacteriia, these tools will reveal mechanistic details of host-microbe interactions and provide a roadmap for genetic manipulation of other understudied human gut bacteria.


Assuntos
Actinobacteria , Animais , Humanos , Actinobacteria/metabolismo , Bactérias/metabolismo , Eubacterium/metabolismo , Fatores de Transcrição/metabolismo , Sistemas CRISPR-Cas/genética , Mamíferos/metabolismo
6.
Science ; 378(6620): 627-634, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356138

RESUMO

Group II introns are ribozymes that catalyze their self-excision and function as retroelements that invade DNA. As retrotransposons, group II introns form ribonucleoprotein (RNP) complexes that roam the genome, integrating by reversal of forward splicing. Here we show that retrotransposition is achieved by a tertiary complex between a structurally elaborate ribozyme, its protein mobility factor, and a structured DNA substrate. We solved cryo-electron microscopy structures of an intact group IIC intron-maturase retroelement that was poised for integration into a DNA stem-loop motif. By visualizing the RNP before and after DNA targeting, we show that it is primed for attack and fits perfectly with its DNA target. This study reveals design principles of a prototypical retroelement and reinforces the hypothesis that group II introns are ancient elements of genetic diversification.


Assuntos
Íntrons , Splicing de RNA , RNA Catalítico , Retroelementos , Ribonucleoproteínas , Microscopia Crioeletrônica , Ribonucleoproteínas/química , RNA Catalítico/química , DNA Polimerase Dirigida por RNA/genética , Eubacterium/enzimologia , Eubacterium/genética
7.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432010

RESUMO

The bacterial chalcone isomerase (CHI) from Eubacterium ramulus catalyses the first step in a flavanone-degradation pathway by a reverse Michael addition. The overall fold and the constitution of the active site of the enzyme completely differ from the well-characterised chalcone isomerase of plants. For (+)-taxifolin, CHI catalyses the intramolecular ring contraction to alphitonin. In this study, Fwe perform crystal structure analyses of CHI and its active site mutant His33Ala in the presence of the substrate taxifolin at 2.15 and 2.8 Å resolution, respectively. The inactive enzyme binds the substrate (+)-taxifolin as well defined, whereas the electron density maps of the native CHI show a superposition of substrate, product alphitonin, and most probably also the reaction intermediate taxifolin chalcone. Evidently, His33 mediates the stereospecific acid-base reaction by abstracting a proton from the flavonoid scaffold. The stereospecificity of the product is discussed.


Assuntos
Eubacterium , Liases Intramoleculares , Liases Intramoleculares/genética
8.
Comput Math Methods Med ; 2022: 7723105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060669

RESUMO

Objective: To investigate the value of intestinal flora in predicting major adverse cardiovascular and cerebrovascular events (MACCE) in patients with refractory hypertension (RH). Methods: 359 patients with RH hospitalized in our hospital from April 2020 to March 2021 were followed up for 1 year and selected for the study. These patients were divided into a MACCE group and no-MACCE group. Results were analyzed by comparing general information, the abundance of intestinal flora at the phylum level, and the abundance of intestinal flora at the species level between the two groups. The influence factors related to MACCE were evaluated using multifactor logistic regression analysis, and the value of intestinal flora in predicting MACCE was determined using receiver operating characteristic (ROC) and the area under ROC (AUC). Results: Systolic blood pressure was higher in the MACCE group than in the no-MACCE group (P < 0.05). The abundances of Actinomycetes and Verrucomicrobia were higher in the MACCE group than in the no-MACCE group, while unnamed viruses were the opposite (P < 0.05). The abundances of Eubacterium eligens, Akkermansia muciniphila, Prevotella stercorea, and Eubacterium rectale were lower in the MACCE group than in the no-MACCE group, while Escherichia coli, Clostridium hathewayi, and Ruminococcus gnavus were opposite (P < 0.05). Systolic blood pressure, Actinomycetes, unnamed viruses, Verrucomicrobia, Eubacterium eligens, Akkermansia muciniphila, Prevotella stercorea, Eubacterium rectale, Escherichia coli, Clostridium hathewayi, and Ruminococcus gnavus were closely associated with MACCE in RH patients (P < 0.05). In addition, Akkermansia muciniphila had the highest AUC among the single indicator but was still lower than the AUC of the combined detection. Conclusion: The increases of Actinomycetes, Verrucomicrobia, Escherichia coli, Clostridium hathewayi, and Ruminococcus gnavus and the decreases of unnamed viruses, Eubacterium eligens, Akkermansia muciniphila, Prevotella stercorea, and Eubacterium rectale were associated with MACCE in RH patients, and the combined detection may provide a method and idea for predicting and preventing MACCE.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Akkermansia , Clostridiaceae , Clostridiales , Escherichia coli , Eubacterium , Humanos , Hipertensão/complicações , Prevotella
9.
Cell Host Microbe ; 30(8): 1139-1150.e7, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952646

RESUMO

Microbiota-induced tumorigenesis is well established in solid tumors of the gastrointestinal tract but rarely explored in hematologic malignancies. To determine the role of gut microbiota in lymphoma progression, we performed metagenomic sequencing on human primary gastrointestinal B cell lymphomas. We identified a distinct microbiota profile of intestinal lymphoma, with significantly decreased symbiotic microbes, particularly the genus Eubacterium and notably butyrate-producing Eubacterium rectale. Transfer of E. rectale-deficit microbiota of intestinal lymphoma patients to mice caused inflammation and tumor necrosis factor (TNF) production. Conversely, E. rectale treatment reduced TNF levels and the incidence of lymphoma in sensitized Eµ-Myc mice. Moreover, lipopolysaccharide from the resident microbiota of lymphoma patients and mice synergizes with TNF signaling and reinforces the NF-κB pathway via the MyD88-dependent TLR4 signaling, amalgamating in enhanced intestinal B cell survival and proliferation. These findings reveal a mechanism of inflammation-associated lymphomagenesis and a potential clinical rationale for therapeutic targeting of gut microbiota.


Assuntos
Fator 88 de Diferenciação Mieloide , NF-kappa B , Animais , Butiratos , Eubacterium/metabolismo , Humanos , Inflamação/tratamento farmacológico , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
10.
Front Cell Infect Microbiol ; 12: 873048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992168

RESUMO

Purpose: In this study, we examined the changes to the composition and function of the gut microbiota from patients with metabolic dysfunction-associated fatty liver disease (MAFLD).We compared patients in a case group (liver stiffness (LSM) ≥ 7.4 kPa) with a matched control group (LSM < 7.4 kPa) and investigated the correlation between characteristics of the microbiota and other biochemical indicators. Methods: The study looked at a total of 85 men with MAFLD, 17 of whom were in the case group and 68 of whom were in the control group. We measured waist circumference, blood pressure, and body mass index, as well as clinical parameters including liver stiffness, enzyme levels, cholesterol levels, and fat attenuation. Whole-genome shotgun sequencing technology and the MetaCyc database were then used to detect the composition and major pathways of the gut microbiota for each patient. Statistical analyses were performed, including the chi-square test, the student's t-test, the Wilcoxon rank-sum test, and the Mann-Whitney test. Results: Whole-genome sequencing showed that the composition of the gut microbiota in patients with an LSM of above 7.4 kPa was significantly different to that of the control group. There were seven bacterial species that were different between the two groups. Prevotella copri, Phascolarctobacterium succinatutens, Eubacterium biforme, and Collinsella aerofaciens were enriched in the case group (P < 0.05). Conversely, Bacteroides coprocola, Bacteroides stercoris and Clostridiales bacterium 1_7_47FAA were decreased in the case group (P < 0.05). Furthermore, after removing low abundance pathways, a total of 32 microbial pathways were found to be significantly different between the two groups. Most pathways enriched in the case group over the control were related to biosynthesis of metabolites including amino acids, vitamins, nucleosides, and nucleotides. Conclusion. The composition and function of the gut microbiota in patients with increased liver stiffness are significantly altered. This observation may provide new avenues to better understand the mechanism of liver fibrosis.


Assuntos
Microbioma Gastrointestinal , Bactérias/genética , Clostridiales , Eubacterium , Microbioma Gastrointestinal/fisiologia , Humanos , Fígado , Masculino
11.
PLoS One ; 17(8): e0273523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998186

RESUMO

No microbiological criteria were included in the 2018 EFP-AAP classification of periodontal diseases that could be used to differentiate between stages and grades. Furthermore, differences in the subgingival microbiome depending on stage and grade have not been established. Sixty subgingival biofilm samples were collected in Spain (n = 30) and Colombia (n = 30) from three distinct patient categories: those with periodontal health/gingivitis (n = 20), those with stage I-II periodontitis (n = 20), and those with stage III-IV periodontitis (n = 20). Patients were evaluated by 16S rRNA gene amplification sequencing. Amplicon sequence variants were used to assign taxonomic categories compared to the Human Oral Microbiome Database (threshold ≥97% identity). Alpha diversity was established by Shannon and Simpson indices, and principal coordinate analysis, ANOSIM, and PERMANOVA of the UNIFRAC distances were performed using QIIME2. Although differences in the alpha diversity were observed between samples according to country, Filifactor alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Fretibacterium fastidiosum, Lachnospiraceae [G-8] bacterium HMT 500, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, Peptostreptococcus stomatis, and Tannerella forsythia were associated with periodontitis sites in all stages. However, only F. alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Peptostreptococcaceae [XI][G-9] [Eubacterium] brachy, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, and Desulfobulbus sp. HMT 041 were consistent in stage III-IV periodontitis in both countries. Porphyromonas gingivalis and Tannerella forsythia were differentially expressed in severe lesions in the countries studied. Although some non-cultivable microorganisms showed differential patterns between the different stages of periodontitis, they were not the same in the two countries evaluated. Further studies using larger samples with advanced next-generation techniques for high-throughput sequencing of phyla and non-cultivable bacteria within the subgingival microbiome could provide more insight into the differences between stages of periodontitis.


Assuntos
Gengivite , Microbiota , Periodontite , Eubacterium , Humanos , Microbiota/genética , Periodontite/microbiologia , Porphyromonas gingivalis/genética , RNA Ribossômico 16S/genética
12.
J Ind Microbiol Biotechnol ; 49(5)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-35881468

RESUMO

Acetogenic bacteria are an increasingly popular choice for producing fuels and chemicals from single carbon (C1) substrates. Eubacterium limosum is a promising acetogen with several native advantages, including the ability to catabolize a wide repertoire of C1 feedstocks and the ability to grow well on agar plates. However, despite its promise as a strain for synthetic biology and metabolic engineering, there are insufficient engineering tools and molecular biology knowledge to leverage its native strengths for these applications. To capitalize on the natural advantages of this organism, here we extended its limited engineering toolbox. We evaluated the copy number of three common plasmid origins of replication and devised a method of controlling copy number and heterologous gene expression level by modulating antibiotic concentration. We further quantitatively assessed the strength and regulatory tightness of a panel of promoters, developing a series of well-characterized vectors for gene expression at varying levels. In addition, we developed a black/white colorimetric genetic reporter assay and leveraged the high oxygen tolerance of E. limosum to develop a simple and rapid transformation protocol that enables benchtop transformation. Finally, we developed two new antibiotic selection markers-doubling the number available for this organism. These developments will enable enhanced metabolic engineering and synthetic biology work with E. limosum.


Assuntos
Engenharia Genética , Engenharia Metabólica , Ágar , Antibacterianos , Carbono , Eubacterium , Engenharia Metabólica/métodos , Oxigênio
13.
Biomolecules ; 12(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883423

RESUMO

Vascular calcification (VC) is a frequent condition in chronic kidney disease (CKD) and a well-established risk factor for the development of cardiovascular disease (CVD). Gut dysbiosis may contribute to CVD and inflammation in CKD patients. Nonetheless, the role of gut and blood microbiomes in CKD-associated VC remains unknown. Therefore, this pilot study aimed to explore the link between gut and blood microbiomes and VC in CKD patients on peritoneal dialysis (CKD-PD). Our results showed relative changes in specific taxa between CKD-PD patients with and without VC, namely Coprobacter, Coprococcus&nbsp;3, Lactobacillus, and Eubacterium eligens group in the gut, and Cutibacterium, Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in the blood. An association between VC and all-cause mortality risk in CKD-PD patients was also observed, and patients with higher mortality risk corroborate the changes of Eubacterium eligens in the gut and Devosia genus in the blood. Although we did not find differences in uremic toxins, intestinal translocation markers, and inflammatory parameters among CKD-PD patients with and without VC, soluble CD14 (sCD14), a nonspecific marker of monocyte activation, positively correlated with VC severity. Therefore, gut Eubacterium eligens group, blood Devosia, and circulating sCD14 should be further explored as biomarkers for VC, CVD, and mortality risk in CKD.


Assuntos
Doenças Cardiovasculares , Microbiota , Diálise Peritoneal , Insuficiência Renal Crônica , Calcificação Vascular , Doenças Cardiovasculares/complicações , Eubacterium , Humanos , Receptores de Lipopolissacarídeos , Diálise Peritoneal/efeitos adversos , Projetos Piloto
14.
Front Cell Infect Microbiol ; 12: 873161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755831

RESUMO

The combination of maxillofacial infections (MI) with descending necrotizing mediastinitis (DNM) is a complex disease characterized by rapid development and high mortality. Here, we performed metagenomic next-generation sequencing (mNGS) using samples from 21 patients with MI and eight patients with DNM. In this study, we found that the species richness of the DNM group was higher than that of the MI group, and the species diversity of the DNM group was higher than that of the MI group, with no statistically significant differences between groups (P > 0.05). LefSE analysis revealed that the main species differing between groups were Bacillus, Lactobacillus, Streptococcaceae, and Streptococcus (S. constellatus and S. anginosus). In addition, the PLS-DA analysis revealed that the dominant groups in the DNM group at the species level were S. constellatus, S. anginosus, Streptococcus intermedius, Prevotella oris, Mogibacterium timidum, and Eubacterium nodatum. Next, we correlated the clinical characteristics of the patients with the relative abundance of the pathogens identified in the LefSe and PLS-DA analyses. The relative abundance of S. anginosus was positively correlated with C-reactive protein (CRP) and calcitoninogen (PCT) but negatively correlated with the percentage of lymphocytes (Lymph%) (P < 0.05). On the other hand, M. timidum was positively correlated with the percentage of neutrophils (Neut%) and glycated hemoglobin (GLU) (P < 0.05), and Parvimonas micra was positively correlated with CRP (P < 0.05).


Assuntos
Mediastinite , Eubacterium , Humanos , Mediastinite/microbiologia , Mediastinite/patologia , Streptococcus/genética
15.
Metab Eng ; 72: 215-226, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364280

RESUMO

Acetogenic bacteria demonstrate industrial potential for utilizing carbon dioxide (CO2) for biochemical production using the Wood-Ljungdahl pathway. However, the metabolic engineering of acetogenic bacteria has been hampered by the limited number of available genetic bioparts for gene expression. Here, we integrated RNA sequencing, ribosome profiling, differential RNA sequencing, and RNA 3'-end sequencing results of Eubacterium limosum to establish genetic bioparts, such as promoters, 5' untranslated regions, and transcript terminators, to regulate transcriptional and translational expression of genes composing of biosynthetic pathways. In addition, a transformation method for the strain was developed to efficiently deliver the obtained genetic bioparts into cells, resulting in a transformation efficiency of 2.5 × 105 CFU/µg DNA. Using this method, the genetic bioparts were efficiently introduced, and their strengths were measured, which were then applied to optimize the heterologous expression of acetolactate synthase and acetolactate decarboxylase for non-native biochemical acetoin production. The strategy developed in this study is the first report on integrating multi-omics data for biopart development of CO2 or syngas utilizing acetogenic bacteria, which lays a foundation for the efficient production of biochemicals from CO2 or syngas as a carbon feedstock under autotrophic growth conditions.


Assuntos
Dióxido de Carbono , Eubacterium , Processos Autotróficos , Dióxido de Carbono/metabolismo , Eubacterium/genética , Eubacterium/metabolismo , Expressão Gênica
17.
Environ Microbiol ; 24(1): 517-534, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34978130

RESUMO

Eubacterium maltosivorans YIT is a human intestinal isolate capable of acetogenic, propionogenic and butyrogenic growth. Its 4.3-Mb genome sequence contains coding sequences for 4227 proteins, including 41 different methyltransferases. Comparative proteomics of strain YIT showed the Wood-Ljungdahl pathway proteins to be actively produced during homoacetogenic growth on H2 and CO2 while butyrogenic growth on a mixture of lactate and acetate significantly upregulated the production of proteins encoded by the recently identified lctABCDEF cluster and accessory proteins. Growth on H2 and CO2 unexpectedly induced the production of two related trimethylamine methyltransferases. Moreover, a set of 16 different trimethylamine methyltransferases together with proteins for bacterial microcompartments were produced during growth and deamination of the quaternary amines, betaine, carnitine and choline. Growth of strain YIT on 1,2-propanediol generated propionate with propanol and induced the formation of bacterial microcompartments that were also prominently visible in betaine-grown cells. The present study demonstrates that E. maltosivorans is highly versatile in converting low-energy fermentation end-products in the human gut into butyrate and propionate whilst being capable of preventing the formation of the undesired trimethylamine by converting betaine and other quaternary amines in bacterial microcompartments into acetate and butyrate.


Assuntos
Metiltransferases , Proteômica , Eubacterium , Humanos , Estilo de Vida , Metilaminas , Metiltransferases/genética
18.
J Biol Chem ; 298(2): 101511, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929162

RESUMO

Anaerobic microbes in the human gut produce beneficial and harmful compounds, as well as neutral compounds like trimethylamine, which undergoes microbial metabolism or host-catalyzed transformation into proatherogenic trimethylamine-N-oxide. Ellenbogen et al. identified a microbiome-associated demethylase that short-circuits the production of trimethylamine-N-oxide from the metabolite γ-butyrobetaine and instead produces methyltetrahydrofolate, a key intermediate in the microbial production of beneficial small-chain fatty acids. This article highlights an example of how the microbiome is integrally involved in producing metabolites that support our health and in preventing the formation of compounds that promote disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Betaína/análogos & derivados , Carnitina , Eubacterium , Humanos , Metilaminas/metabolismo , Metiltransferases/metabolismo , Óxidos , Vitamina B 12
19.
Microb Biotechnol ; 15(5): 1542-1549, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34841673

RESUMO

Unlike gaseous C1 feedstocks for acetogenic bacteria, there has been less attention on liquid C1 feedstocks, despite benefits in terms of energy efficiency, mass transfer and integration within existing fermentation infrastructure. Here, we present growth of Eubacterium limosum ATCC8486 using methanol and formate as substrates, finding evidence for the first time of native butanol production. We varied ratios of methanol-to-formate in batch serum bottle fermentations, showing butyrate is the major product (maximum specific rate 220 ± 23 mmol-C gDCW-1 day-1 ). Increasing this ratio showed methanol is the key feedstock driving the product spectrum towards more reduced products, such as butanol (maximum titre 2.0 ± 1.1 mM-C). However, both substrates are required for a high growth rate (maximum 0.19 ± 0.011 h-1 ) and cell density (maximum 1.2 ± 0.043 gDCW l-1 ), with formate being the preferred substrate. In fact, formate and methanol are consumed in two distinct growth phases - growth phase 1, on predominately formate and growth phase 2 on methanol, which must balance. Because the second growth varied according to the first growth on formate, this suggests butanol production is due to overflow metabolism, similar to 2,3-butanediol production in other acetogens. However, further research is required to confirm the butanol production pathway in E. limosum, particularly given, unlike other substrates, methanol likely results in mostly NADH generation, not reduced ferredoxin.


Assuntos
Butanóis , Metanol , 1-Butanol/metabolismo , Butanóis/metabolismo , Eubacterium/metabolismo , Fermentação , Formiatos/metabolismo , Metanol/metabolismo
20.
J Appl Microbiol ; 132(4): 2906-2924, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34820968

RESUMO

AIM: Swine manure foaming is a major problem, causing damage to property, livestock, and people. Here, we identified the main chemicals and microbes that contribute to foaming. METHODS AND RESULTS: Foaming and non-foaming swine manure were sampled from farms in Iowa and Illinois. Targeted and untargeted metabolomics analyses identified chemical markers that differed between foaming and non-foaming manure and between manure layers. Microbial community analysis and metagenomics were performed on a subset of samples. Foam contained significantly higher levels of total bile acids and long chain fatty acids like palmitic, stearic and oleic acid than the other manure layers. Foam layers also had significantly higher levels of ubiquinone 9 and ubiquinone 10. The slurry layer of foaming samples contained more alanine, isoleucine/leucine, diacylglycerols (DG), phosphtatidylethanolamines, and vitamin K2, while ceramide was significantly increased in the slurry layer of non-foaming samples. Eubacterium coprostanoligenes and Methanoculleus were more abundant in foaming samples, and E. coprostanoligenes was significantly correlated with levels of DG. Genes involved in diacylglycerol biosynthesis and in the biosynthesis of branched-chain hydrophobic amino acids were overrepresented in foaming samples. CONCLUSIONS: A mechanism for manure foaming is hypothesized in which proliferation of Methanoculleus leads to excessive production of methane, while production of DG by E. coprostanoligenes and hydrophobic proteins by Methanosphaera stadtmanae facilitates bubble formation and stabilization. SIGNIFICANCE AND IMPACT OF STUDY: While some chemical and biological treatments have been developed to treat swine manure foaming, its causes remain unknown. We identified key microbes and metabolites that correlate with foaming and point to possible roles of other factors like animal feed.


Assuntos
Esterco , Methanomicrobiaceae , Animais , Eubacterium/metabolismo , Humanos , Esterco/microbiologia , Metano/metabolismo , Methanomicrobiaceae/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...