Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.502
Filtrar
1.
Plant Mol Biol ; 114(5): 108, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356367

RESUMO

In this paper, we have performed an in-depth study of the complete set of the satellite DNA (satDNA) families (i.e. the satellitomes) in the genome of two barley species of agronomic value in a breeding framework, H. chilense (H1 and H7 accessions) and H. vulgare (H106 accession), which can be useful tools for studying chromosome associations during meiosis. The study has led to the analysis of a total of 18 satDNA families in H. vulgare, 25 satDNA families in H. chilense (accession H1) and 27 satDNA families in H. chilense (accession H7) that constitute 46 different satDNA families forming 36 homology groups. Our study highlights different important contributions of evolutionary and applied interests. Thus, both barley species show very divergent satDNA profiles, which could be partly explained by the differential effects of domestication versus wildlife. Divergence derives from the differential amplification of different common ancestral satellites and the emergence of new satellites in H. chilense, usually from pre-existing ones but also random sequences. There are also differences between the two H. chilense accessions, which support genetically distinct groups. The fluorescence in situ hybridization (FISH) patterns of some satDNAs yield distinctive genetic markers for the identification of specific H. chilense or H. vulgare chromosomes. Some of the satellites have peculiar structures or are related to transposable elements which provide information about their origin and expansion. Among these, we discuss the existence of different (peri)centromeric satellites that supply this region with some plasticity important for centromere evolution. These peri(centromeric) satDNAs and the set of subtelomeric satDNAs (a total of 38 different families) are analyzed in the framework of breeding as the high diversity found in the subtelomeric regions might support their putative implication in chromosome recognition and pairing during meiosis, a key point in the production of addition/substitution lines and hybrids.


Assuntos
Cromossomos de Plantas , DNA Satélite , Hordeum , Hibridização in Situ Fluorescente , Hordeum/genética , DNA Satélite/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genoma de Planta/genética , Filogenia , Variação Genética , Meiose/genética , Evolução Molecular , Especificidade da Espécie
2.
Mol Ecol ; 33(21): e17536, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39360493

RESUMO

Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.


Assuntos
Secas , Redes Reguladoras de Genes , Solanum , Estresse Fisiológico , Solanum/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Adaptação Fisiológica/genética , Perfilação da Expressão Gênica , Ecossistema , Evolução Molecular , Regulação da Expressão Gênica de Plantas , América do Sul , Seleção Genética
3.
Genome Biol Evol ; 16(10)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39400049

RESUMO

Molecular evolution analysis typically involves identifying selection pressure and reconstructing evolutionary trends. This process usually requires access to specific data related to a target gene or gene family within a particular group of organisms. While recent advancements in high-throughput sequencing techniques have resulted in the rapid accumulation of extensive genomics and transcriptomics data and the creation of new databases in public repositories, extracting valuable insights from such vast data sets remains a significant challenge for researchers. Here, we elucidated the evolutionary history of THI1, a gene responsible for encoding thiamine thiazole synthase. The thiazole ring is a precursor for vitamin B1 and a crucial cofactor in primary metabolic pathways. A thorough search of complete genomes available within public repositories reveals 702 THI1 homologs of Archaea and Eukarya. Throughout its diversification, the plant lineage has preserved the THI1 gene by incorporating the N-terminus and targeting the chloroplasts. Likewise, evolutionary pressures and lifestyle appear to be associated with retention of TPP riboswitch sites and consequent dual posttranscriptional regulation of the de novo biosynthesis pathway in basal groups. Multicopy retention of THI1 is not a typical plant pattern, even after successive genome duplications. Examining cis-regulatory sites in plants uncovers two shared motifs across all plant lineages. A data mining of 484 transcriptome data sets supports the THI1 homolog expression under a light/dark cycle response and a tissue-specific pattern. Finally, the work presented brings a new look at public repositories as an opportunity to explore evolutionary trends to THI1.


Assuntos
Mineração de Dados , Evolução Molecular , Plantas/genética , Filogenia
4.
Mol Genet Genomics ; 299(1): 96, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382723

RESUMO

DNA transposons are diverse in fish genomes and have been described to generate genomic evolutionary novelties. hAT transposable element data are scarce in Teleostei genomes, making it challenging to conduct comparative genomic studies to understand their neutrality or function. This study aimed to perform a genomic and molecular characterization of hAT copies to assess the diversity of these elements and associate changes in these sequences to genomic and karyotypic novelties in Apareiodon sp. The data revealed that hAT TEs are highly abundant in the Apareiodon sp. genome, with few possibly autonomous copies. Highly conserved sequences with likely functional transposases were observed in nine hAT elements. A great diversity of hAT subgroups was observed, especially from Ac, Charlie, Blackjack, Tip100, hAT6, and hAT5, and a similar wave of hAT genomic invasion was identified in the genome for these six groups of hAT sequences. The data also revealed a distinct number of microsatellites within degenerated hAT copies. hAT sites were demonstrated to be dispersed in the Apareiodon sp. chromosomes and not involved in W chromosome-specific region differentiation. In conclusion, the genomic analysis revealed a great diversity of hAT elements, possible autonomous copies, and differentiation of degenerated transposable elements into tandem sequences.


Assuntos
Elementos de DNA Transponíveis , Genoma , Filogenia , Elementos de DNA Transponíveis/genética , Animais , Genoma/genética , Evolução Molecular , Repetições de Microssatélites/genética , Genômica/métodos , Peixes/genética , Peixes/classificação
5.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408680

RESUMO

Eight porcine parvovirus (PPV) species, designated as PPV1 through PPV8, have been identified in swine. Despite their similarities, knowledge about their distribution and genetic differences remains limited, resulting in a gap in the genetic classification of these viruses. In this study, we conducted a comprehensive analysis using PPV1 to PPV7 genome sequences from Colombia and others available in the GenBank database to propose a classification scheme for all PPVs. Sera from 234 gilts aged 180 to 200 days were collected from 40 herds in Colombia. Individual detection of each PPV (PPV1 through PPV7) was performed using end-point PCR. Complete nucleotide (nt) sequencing was performed on the PPV1 viral protein (VP), and near-complete genome (NCG) sequencing was carried out for novel porcine parvoviruses (nPPVs) (PPV2 through PPV7). Phylogenetic analyses were conducted by comparing PPV1-VP sequences to 94 available sequences and nPPVs with 565 NCG, 846 nPPV-VP, and 667 nPPV-nonstructural protein (NS) sequences. Bayesian phylogenetic analysis was used to estimate substitution rates and the time to the most recent common ancestor for each PPV. The highest prevalence was detected for PPV3 (40.1%), followed by PPV5 (20.5%), PPV6 (17%), PPV1 (14.5%), PPV2 (9.8%), PPV4 (4.2%), and PPV7 (1.3%). Notably, all tested sera were negative for PPV8 genomes. An analysis of the PPV1-VP sequences revealed two main clades (PPV1-I and PPV1-II), with the sequences recovered in this study grouped in the PPV1-II clade. Comparative analysis showed significant genetic distances for PPV2 to PPV7 at the NCG (>6.5%), NS (>6.3%), and VP (>7.5%) regions, particularly when compared to equivalent regions of PPV genomes recovered worldwide. This study highlights the endemic circulation of nPPVs in Colombian pig herds, specifically among gilts. Additionally, it contributes to the phylogenetic classification and evolutionary studies of these viruses. The proposed method aims to categorize and divide subtypes based on current knowledge and the genomes available in databanks.


Assuntos
Genoma Viral , Infecções por Parvoviridae , Parvovirus Suíno , Filogenia , Doenças dos Suínos , Animais , Suínos , Parvovirus Suíno/genética , Parvovirus Suíno/classificação , Parvovirus Suíno/isolamento & purificação , Colômbia/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/virologia , Feminino , Epidemiologia Molecular , Evolução Molecular , Teorema de Bayes
6.
Proc Natl Acad Sci U S A ; 121(42): e2411672121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39392668

RESUMO

Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.


Assuntos
Núcleo Celular , DNA Mitocondrial , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , Mutação , Modelos Genéticos , Evolução Molecular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Animais , Seleção Genética , Evolução Biológica , Taxa de Mutação
7.
J Virol ; 98(11): e0036124, 2024 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-39404263

RESUMO

Chloroviruses exhibit a close relationship with their hosts with the phenotypic aspect of their ability to form lytic plaques having primarily guided the taxonomy. However, with the isolation of viruses that are only able to complete their replication cycle in one strain of Chlorella variabilis, systematic challenges emerged. In this study, we described the genomic features of 53 new chlorovirus isolates and used them to elucidate part of the evolutionary history and taxonomy of this clade. Our analysis revealed new chloroviruses with the largest genomes to date (>400 kbp) and indicated that four genomic features are statistically different in the viruses that only infect the Syngen 2-3 strain of C. variabilis (OSy viruses). We found large regions of dissimilarity in the genomes of viruses PBCV-1 and OSy-NE5 when compared with the other genomes. These regions contained genes related to the interaction with the host cell machinery and viral capsid proteins, which provided insights into the evolution of the replicative and structural modules in these giant viruses. Phylogenetic analysis using hallmark genes of Nucleocytoviricota revealed that OSy-viruses evolved from the NC64A-viruses, possibly emerging as a result of the strict relationship with their hosts. Merging phylogenetics and nucleotide identity analyses, we propose strategies to demarcate viral species, resulting in seven new species of chloroviruses. Collectively, our results show how genomic data can be used as lines of evidence to demarcate viral species. Using the chloroviruses as a case study, we expect that similar initiatives will emerge using the basis exhibited here.IMPORTANCEChloroviruses are a group of giant viruses with long dsDNA genomes that infect different species of Chlorella-like green algae. They are host-specific, and some isolates can only replicate within a single strain of Chlorella variabilis. The genomics of these viruses is still poorly explored, and the characterization of new isolates provides important data on their genetic diversity and evolution. In this work, we describe 53 new chlorovirus genomes, including many isolated from alkaline lakes for the first time. Through comparative genomics and molecular phylogeny, we provide evidence of genomic gigantism in chloroviruses and show that a subset of viruses became highly specific for their hosts at a particular point in evolutionary history. We propose criteria to demarcate species of chloroviruses, paving the way for an update in the taxonomy of other groups of viruses. This study is a new and important piece in the complex puzzle of giant algal viruses.


Assuntos
Chlorella , Evolução Molecular , Genoma Viral , Genômica , Vírus Gigantes , Phycodnaviridae , Filogenia , Chlorella/virologia , Chlorella/genética , Genômica/métodos , Phycodnaviridae/genética , Phycodnaviridae/classificação , Vírus Gigantes/genética , Vírus Gigantes/classificação
8.
Nucleic Acids Res ; 52(20): 12112-12129, 2024 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-39404067

RESUMO

The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.


Assuntos
Processamento Alternativo , Isoformas de Proteínas , Proteína Supressora de Tumor p53 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Humanos , Animais , Evolução Molecular , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Sítio de Iniciação de Transcrição , Regulação da Expressão Gênica
9.
Funct Integr Genomics ; 24(6): 190, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412676

RESUMO

Plant Snakin/GASA and defensin peptides are cysteine-rich molecules with a wide range of biological functions. They are included within the large family of plant antimicrobial peptides (AMPs), characterized by their structural stability, broad spectrum of activity, and diverse mechanisms of action. The Dilatata group of Paspalum includes five allotetraploids that share an equivalent genomic formula IIJJ. From RNA-seq data of seedling tissues, we performed an in silico characterization of the defensin and Snakin/GASA genes in these species and diploids with a II and JJ genome formula and studied the evolutionary consequences of polyploidy on the expression of the two AMPs families. A total of 107 defensins (distributed in eight groups) and 145 Snakin/GASA (grouped in three subfamilies) genes were identified. Deletions, duplications and/or gene silencing seem to have mediated the evolution of these genes in the allotetraploid species. In defensin genes, the IIJJ allopolyploids retained the I subgenome defensin copies in some of the identified groups supporting the closeness of their nuclear genome with the I subgenome species. In both AMPs families, orthologous genes in tetraploids exhibit higher similarity to each other than with diploids. This data supports the theory of a single origin for the allotetraploids. Several copies of both defensin and Snakin/GASA genes were detected in the five polyploids which could have arisen due to duplication events occurring independently during the diploidization processes in the allotetraploid taxa.


Assuntos
Defensinas , Diploide , Proteínas de Plantas , Tetraploidia , Defensinas/genética , Defensinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Poliploidia , Filogenia , Perfilação da Expressão Gênica , Evolução Molecular
10.
J Mol Evol ; 92(5): 527-529, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39304551

RESUMO

The early evolution of life spans an extensive period preceding the emergence of the first eukaryotic cell. This epoch, which transpired from 4.5 to 2.5 billion years ago, marked the advent of many fundamental cellular attributes and witnessed the existence of the Last Common Ancestor (LCA) of all life forms. Uncovering and reconstructing this elusive LCA's characteristics and genetic makeup represents a formidable challenge and a pivotal pursuit in early evolution. While most scientific accounts concur that the LCA resembles contemporary prokaryotes, its precise definition, genome composition, metabolic capabilities, and ecological niche remain subjects of contentious debate.


Assuntos
Evolução Biológica , Células Procarióticas/metabolismo , Filogenia , Origem da Vida , Evolução Molecular
11.
Mol Biol Rep ; 51(1): 957, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230768

RESUMO

BACKGROUND: Recent studies have revealed atypical features in the plastomes of the family Cactaceae, the largest lineage of succulent species adapted to arid and semi-arid regions. Most plastomes sequenced to date are from short-globose and cylindrical cacti, while little is known about plastomes of epiphytic cacti. Published cactus plastomes reveal reduction and complete loss of IRs, loss of genes, pseudogenization, and even degeneration of tRNA structures. Aiming to contribute with new insights into the plastid evolution of Cactaceae, particularly within the tribe Rhipsalideae, we de novo assembled and analyzed the plastomes of Lepismium cruciforme and Schlumbergera truncata, two South American epiphytic cacti. METHODS AND RESULTS: Our data reveal many gene losses in both plastomes and the first loss of functionality of the trnT-GGU gene in Cactaceae. The trnT-GGU is a pseudogene in L. cruciforme plastome and appears to be degenerating in the tribe Rhipsalideae. Although the plastome structure is conserved among the species of the tribe Rhipsalideae, with tribe-specific rearrangements, we mapped around 200 simple sequence repeats and identified nine nucleotide polymorphism hotspots, useful to improve the phylogenetic resolutions of the Rhipsalideae. Furthermore, our analysis indicated high gene divergence and rapid evolution of RNA editing sites in plastid protein-coding genes in Cactaceae. CONCLUSIONS: Our findings show that some characteristics of the Rhipsalideae tribe are conserved, such as plastome structure with IRs containing only the ycf2 and two tRNA genes, structural degeneration of the trnT-GGU gene and ndh complex, and lastly, pseudogenization of rpl33 and rpl23 genes, both plastid translation-related genes.


Assuntos
Cactaceae , Filogenia , Plastídeos , Cactaceae/genética , Plastídeos/genética , Evolução Molecular , Genes de Plantas/genética , Pseudogenes/genética , Genomas de Plastídeos/genética , RNA de Transferência/genética , Rearranjo Gênico/genética
12.
Sci Rep ; 14(1): 20656, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232109

RESUMO

Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.


Assuntos
DNA Satélite , Evolução Molecular , Heterocromatina , Cromossomos Sexuais , Animais , DNA Satélite/genética , Cromossomos Sexuais/genética , Feminino , Masculino , Heterocromatina/genética , Hibridização Genômica Comparativa , Repetições de Microssatélites/genética , Passeriformes/genética , Hibridização in Situ Fluorescente
13.
Sci Rep ; 14(1): 20402, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223262

RESUMO

Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.


Assuntos
Caraciformes , DNA Satélite , Hibridização in Situ Fluorescente , Cromossomos Sexuais , Animais , DNA Satélite/genética , Cromossomos Sexuais/genética , Masculino , Caraciformes/genética , Feminino , Evolução Molecular , Meiose/genética , Cariótipo , Cromossomo Y/genética
14.
Mol Biol Evol ; 41(10)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241178

RESUMO

It has been proposed that the phenotypic differences in cognitive abilities between humans and our closest living relatives, chimpanzees, are largely due to changes in the regulation of neurodevelopmental genes. We have previously found that the neurodevelopmental transcription factor gene NPAS3 accumulates the largest number of human accelerated regions (HARs), suggesting it may play some role in the phenotypic evolution of the human nervous system. In this work, we performed a comparative functional analysis of NPAS3-HAR202 using enhancer reporter assays in transgenic zebrafish and mice. We found that the Homo sapiens HAR202 ortholog failed to drive reporter expression to the zebrafish nervous system, in high contrast to the strong expression displayed by the rest of the vertebrate ortholog sequences tested. Remarkably, the HAR202 ortholog from archaic humans (Neanderthals/Denisovans) also displayed a pan-vertebrate expression pattern, despite the fact that archaic and modern humans have only one nucleotide substitution. Moreover, similar results were found when comparing enhancer activity in transgenic mice, where we observed a loss of activity of the modern human version in the mouse developing brain. To investigate the functional importance of HAR202, we generated mice lacking HAR202 and found a remarkable decrease of Npas3 expression in the forebrain during development. Our results place HAR202 as one of the very few examples of a neurodevelopmental transcriptional enhancer displaying functional evolution in the brain as a result of a fast molecular evolutionary process that specifically occurred in the human lineage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Elementos Facilitadores Genéticos , Proteínas do Tecido Nervoso , Prosencéfalo , Peixe-Zebra , Animais , Humanos , Prosencéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Camundongos , Peixe-Zebra/genética , Evolução Molecular , Camundongos Transgênicos , Regulação da Expressão Gênica no Desenvolvimento
15.
Sci Rep ; 14(1): 19925, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261501

RESUMO

The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle.


Assuntos
Águias , Genoma , Animais , Águias/genética , Feminino , Elementos de DNA Transponíveis/genética , Filogenia , Evolução Molecular , Retroelementos/genética , Genômica/métodos
16.
PLoS One ; 19(9): e0307380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39241029

RESUMO

Despite their importance as members of the Glires group, lagomorph diversification processes have seldom been studied using molecular data. Notably, only a few phylogenetic studies have included most of the examined lagomorph lineages. Previous studies that included a larger sample of taxa and markers used nonconservative tests to support the branches of their proposed phylogeny. The objective of this study was to test the monophyly of families and genera of lagomorphs and to evaluate the group diversification process. To that end, this work expanded the sampling of markers and taxa in addition to implementing the bootstrap, a more rigorous statistical test to measure branch support; hence, a more robust phylogeny was recovered. Our supermatrix included five mitochondrial genes and 14 nuclear genes for eighty-eight taxa, including three rodent outgroups. Our maximum likelihood tree showed that all tested genera and both families, Leporidae and Ochotonidae, were recovered as monophyletic. In the Ochotona genus, the subgenera Conothoa and Pika, but not Ochotona, were recovered as monophyletic. Six calibration points based on fossils were used to construct a time tree. A calibration test was performed (via jackknife) by removing one calibration at a time and estimating divergence times for each set. The diversification of the main groups of lagomorphs indicated that the origin of the order's crown group was dated from the beginning of the Palaeogene. Our diversification time estimates for Lagomorpha were compared with those for the largest mammalian order, i.e., rodent lineages in Muroidea. According to our time-resolved phylogenetic tree, the leporids underwent major radiation by evolving a completely new morphospace-larger bodies and an efficient locomotor system-that enabled them to cover wide foraging areas and outrun predators more easily than rodents and pikas.


Assuntos
Lagomorpha , Filogenia , Animais , Lagomorpha/genética , Lagomorpha/classificação , Fósseis , Evolução Molecular , Funções Verossimilhança , Fatores de Tempo
17.
Sci Rep ; 14(1): 21358, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266625

RESUMO

Simarouba, a neotropical genus in the family Simaroubaceae, currently lacks comprehensive genomic data in existing databases. This study aims to fill this gap by providing genomic resources for three Simarouba species, S. amara, S. versicolor, and S. glauca. It also aims to perform comparative molecular evolutionary analyses in relation to other species within the order Sapindales. The analysis of these three Simarouba species revealed the presence of the typical quadripartite structure expected in plastomes. However, some pseudogenization events were identified in the psbC, infA, rpl22, and ycf1 genes. In particular, the CDS of the psbC gene in S. amara was reduced from 1422 bp to 584 bp due to a premature stop codon. Nucleotide diversity data pointed to gene and intergenic regions as promising candidates for species and family discrimination within the group, specifically matK, ycf1, ndhF, rpl32, petA-psbJ, and trnS-trnG. Selection signal analyses showed strong evidence for positive selection on the rpl23 gene. Phylogenetic analyses indicated that S. versicolor and S. glauca have a closer phylogenetic relationship than S. amara. We provide chloroplast genomes of three Simaruba species and use them to elucidate plastome evolution, highlight the presence of pseudogenization, and identify potential DNA barcode regions.


Assuntos
Evolução Molecular , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética
18.
Bioinformatics ; 40(9)2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39240653

RESUMO

MOTIVATION: Gene retrocopies arise from the reverse transcription and genomic insertion of processed mRNA transcripts. These elements have significantly contributed to genetic diversity and novelties throughout the evolution of many species. However, the study of retrocopies has been challenging, owing to the absence of comprehensive, complete, and user-friendly databases for diverse species. RESULTS: Here, we introduce an improved version of RCPedia, an integrative database meticulously designed for the study of retrocopies. RCPedia offers an extensive catalog of retrocopies identified across 44 species, which includes 13 primates, 4 rodents, 6 chiropterans, 12 other mammals, 4 birds, turtles, lizards, frogs, zebrafish, and Drosophila. The database offers the most complete compilation of retrocopies per species, accompanied by detailed genomic annotations, expression data, and links to other data portals. Furthermore, RCPedia features a streamlined representation of data and an efficient querying system, establishing it as an invaluable tool for researchers in the fields of genomics, evolutionary biology, and transposable elements (TEs). In summary, RCPedia aims to enhance the investigation of retrocopies and their pivotal roles in shaping the genomic landscapes of diverse species. AVAILABILITY AND IMPLEMENTATION: RCPedia is available at https://www.rcpediadb.org.


Assuntos
Bases de Dados Genéticas , Animais , Genômica/métodos , Elementos de DNA Transponíveis , Evolução Molecular , Retroelementos , Humanos
19.
Viruses ; 16(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39339865

RESUMO

Chicken Parvovirus (ChPV) belongs to the genus Aveparvovirus and is implicated in enteric diseases like runting-stunting syndrome (RSS) in poultry. In RSS, chicken health is affected by diarrhea, depression, and increased mortality, causing significant economic losses in the poultry industry. This study aimed to characterize the ChPV genomes detected in chickens with RSS through a metagenomic approach and compare the molecular and evolutionary characteristics within the Aveparvovirus galliform1 species. The intestinal content of broiler flocks affected with RSS was submitted to viral metagenomics. The assembled prevalent genomes were identified as ChPV after sequence and phylogenetic analysis, which consistently clustered separately from Turkey Parvovirus (TuPV). The strain USP-574-A presented signs of genomic recombination. The selective pressure analysis indicated that most of the coding genes in A. galliform1 are evolving under diversifying (negative) selection. Protein modeling of ChPV and TuPV viral capsids identified high conservancy over the VP2 region. The prediction of epitopes identified several co-localized antigenic peptides from ChPV and TuPV, especially for T-cell epitopes, highlighting the immunological significance of these sites. However, most of these peptides presented host-specific variability, obeying an adaptive scenario. The results of this study show the evolutionary path of ChPV and TuPV, which are influenced by diversifying events such as genomic recombination and selective pressure, as well as by adaptation processes, and their subsequent immunological impact.


Assuntos
Galinhas , Evolução Molecular , Genoma Viral , Infecções por Parvoviridae , Filogenia , Doenças das Aves Domésticas , Animais , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Metagenômica , Parvovirinae/genética , Parvovirinae/classificação , Parvovirus/genética , Parvovirus/classificação
20.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39332907

RESUMO

Relaxing the molecular clock using models of how substitution rates change across lineages has become essential for addressing evolutionary problems. The diversity of rate evolution models and their implementations are substantial, and studies have demonstrated their impact on divergence time estimates can be as significant as that of calibration information. In this review, we trace the development of rate evolution models from the proposal of the molecular clock concept to the development of sophisticated Bayesian and non-Bayesian methods that handle rate variation in phylogenies. We discuss the various approaches to modeling rate evolution, provide a comprehensive list of available software, and examine the challenges and advancements of the prevalent Bayesian framework, contrasting them to faster non-Bayesian methods. Lastly, we offer insights into potential advancements in the field in the era of big data.


Assuntos
Teorema de Bayes , Evolução Molecular , Modelos Genéticos , Filogenia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA