Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
1.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553221

RESUMO

Hollows of veteran trees (i.e., rot holes) provide habitat for many rare and threatened saproxylic invertebrates. Rot holes are highly heterogeneous, particularly in terms of substrate and microclimate conditions. There is, however, a dearth of information regarding the differences in biological communities inhabiting rot holes with different environmental conditions. Invertebrates were sampled from European beech (Fagus sylvatica) rot holes in Windsor, Savernake, and Epping Forests (United Kingdom). For each rot hole, physical and environmental conditions were measured, including tree diameter, rot hole dimensions, rot hole height, substrate density, water content, and water potential. These parameters were used to assess the influence of environmental conditions and habitat characteristics on invertebrate communities. Rot hole invertebrate communities were extremely diverse, containing both woodland generalist and saproxylic specialist taxa. Large variation in community structure was observed between rot holes and across woodlands; all sites supported threatened and endangered taxa. Environmental conditions in rot holes were highly variable within and between woodland sites, and communities were predominantly structured by these environmental conditions. In particular, turnover between invertebrate communities was linked to high ß-diversity. The linked heterogeneity of environmental conditions and invertebrate communities in rot holes suggests that management of deadwood habitats in woodlands should strive to generate environmental heterogeneity to promote invertebrate diversity. Additional research is required to define how management and conservation activities can further promote enhanced biodiversity across rot holes.


Assuntos
Biodiversidade , Florestas , Invertebrados , Animais , Biota , Conservação dos Recursos Naturais , Ecossistema , Fagus , Árvores
2.
Sci Total Environ ; 801: 149684, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467901

RESUMO

Old-growth mountain forests represent an ideal setting for studying long-term impacts of climate change. We studied the few remnants of old-growth forests located within the Pollino massif (southern Italy) to evaluate how the growth of conspecific young and old trees responded to climate change. We investigated two conifer species (Abies alba and Pinus leucodermis) and two hardwood species (Fagus sylvatica and Quercus cerris). We sampled one stand per species along an altitudinal gradient, ranging from a drought-limited low-elevation hardwood forest to a cold-limited subalpine pine forest. We used a dendrochronological approach to characterize the long-term growth dynamics of old (age > 120 years) versus young (age < 120 years) trees. Younger trees grew faster than their older conspecifics during their juvenile stage, regardless of species. Linear mixed effect models were used to quantify recent growth trends (1950-2015) and responses to climate for old and young trees. Climate sensitivity, expressed as radial growth responses to climate during the last three decades, partially differed between species because high spring temperatures enhanced conifer growth, whereas F. sylvatica growth was negatively affected by warmer spring conditions. Furthermore, tree growth was negatively impacted by summer drought in all species. Climate sensitivity differed between young and old trees, with younger trees tending to be more sensitive in P. leucodermis and A. alba, whereas older F. sylvatica trees were more sensitive. In low-elevation Q. cerris stands, limitation of growth due to drought was not related to tree age, suggesting symmetric water competition. We found evidence for a fast-growth trend in young individuals compared with that in their older conspecifics. Notably, old trees tended to have relatively stable growth rates, showing remarkable resistance to climate warming. These responses to climate change should be recognized when forecasting the future dynamics of old-growth forests for their sustainable management.


Assuntos
Fagus , Florestas , Idoso de 80 Anos ou mais , Mudança Climática , Secas , Humanos , Árvores
3.
Ann Bot ; 128(6): 805-819, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34472592

RESUMO

BACKGROUND AND AIMS: Quantifying the Earth's forest above-ground biomass (AGB) is indispensable for effective climate action and developing forest policy. Yet, current allometric scaling models (ASMs) to estimate AGB suffer several drawbacks related to model selection and uncertainties about calibration data traceability. Terrestrial laser scanning (TLS) offers a promising non-destructive alternative. Tree volume is reconstructed from TLS point clouds with quantitative structure models (QSMs) and converted to AGB with wood basic density. Earlier studies have found overall TLS-derived forest volume estimates to be accurate, but highlighted problems for reconstructing finer branches. Our objective was to evaluate TLS for estimating tree volumes by comparison with reference volumes and volumes from ASMs. METHODS: We quantified the woody volume of 65 trees in Belgium (from 77 to 2800 L; Pinus sylvestris, Fagus sylvatica, Larix decidua, and Fraxinus excelsior) with QSMs and destructive reference measurements. We tested a volume expansion factor (VEF) approach by multiplying the solid and merchantable volume from QSMs by literature VEF values. KEY RESULTS: Stem volume was reliably estimated with TLS. Total volume was overestimated by +21 % using original QSMs, by +9 % and -12 % using two sets of VEF-augmented QSMs, and by -7.3 % using best-available ASMs. The most accurate method differed per site, and the prediction errors for each method varied considerably between sites. CONCLUSIONS: VEF-augmented QSMs were only slightly better than original QSMs for estimating tree volume for common species in temperate forests. Despite satisfying estimates with ASMs, the model choice was a large source of uncertainty, and species-specific models did not always exist. Therefore, we advocate for further improving tree volume reconstructions with QSMs, especially for fine branches, instead of collecting more ground-truth data to calibrate VEF and allometric models. Promising developments such as improved co-registration and smarter filtering approaches are ongoing to further constrain volumetric errors in TLS-derived estimates.


Assuntos
Fagus , Florestas , Biomassa , Lasers , Árvores
4.
BMC Genomics ; 22(1): 583, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332553

RESUMO

BACKGROUND: Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees. European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about the molecular basis of climate change-relevant traits like bud burst. RESULTS: We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods to find loci significantly associated with geographic variables, climatic variables (expressed as principal components), or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201 candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring phenology. However, different genotype-environment associations were identified within Southeastern Europe as compared to the entire geographic range of European beech. CONCLUSIONS: Environmental conditions play important roles as drivers of genetic diversity of phenology-related genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial scales.


Assuntos
Fagus , Europa (Continente) , Fagus/genética , Genômica , Humanos , Seleção Genética , Árvores/genética
5.
Mol Ecol ; 30(20): 5029-5047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34383353

RESUMO

High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.


Assuntos
Fagus , Adaptação Fisiológica , Mudança Climática , Fagus/genética , Variação Genética , Temperatura , Árvores
6.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299580

RESUMO

Wood is a widely used material because it is environmentally sustainable, renewable and relatively inexpensive. Due to the hygroscopic nature of wood, its physical and mechanical properties as well as the susceptibility to fungal decay are strongly influenced by its moisture content, constantly changing in the course of everyday use. Therefore, the understanding of the water state (free or bound) and its distribution at different moisture contents is of great importance. In this study, changes of the water state and its distribution in a beech sample while drying from the green (fresh cut) to the absolutely dry state were monitored by 1D and 2D 1H NMR relaxometry as well as by spatial mapping of the relaxation times T1 and T2. The relaxometry results are consistent with the model of homogeneously emptying pores in the bioporous system with connected pores. This was also confirmed by the relaxation time mapping results which revealed the moisture transport in the course of drying from an axially oriented early- and latewood system to radial rays through which it evaporates from the branch. The results of this study confirmed that MRI is an efficient tool to study the pathways of water transport in wood in the course of drying and is capable of determining the state of water and its distribution in wood.


Assuntos
Fagus/metabolismo , Espectroscopia de Ressonância Magnética , Brotos de Planta/metabolismo , Água/metabolismo
7.
New Phytol ; 232(2): 537-550, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34235742

RESUMO

Microclimatic effects (light, temperature) are often neglected in phenological studies and little information is known about the impact of resource availability (nutrient and water) on tree's phenological cycles. Here we experimentally studied spring and autumn phenology in four temperate trees in response to changes in bud albedo (white-painted vs black-painted buds), light conditions (nonshaded vs c. 70% shaded), water availability (irrigated, control and reduced precipitation) and nutrients (low vs high availability). We found that higher bud albedo or shade delayed budburst (up to +12 d), indicating that temperature is sensed locally within each bud. Leaf senescence was delayed by high nutrient availability (up to +7 d) and shade conditions (up to +39 d) in all species, except oak. Autumn phenological responses to summer droughts depended on species, with a delay for cherry (+7 d) and an advance for beech (-7 d). The strong phenological effects of bud albedo and light exposure reveal an important role of microclimatic variation on phenology. In addition to the temperature and photoperiod effects, our results suggest a tight interplay between source and sink processes in regulating the end of the seasonal vegetation cycle, which can be largely influenced by resource availability (light, water and nutrients).


Assuntos
Fagus , Árvores , Mudança Climática , Folhas de Planta , Estações do Ano , Plântula , Temperatura
8.
Meat Sci ; 182: 108626, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34284220

RESUMO

This study investigated the effects of different woodchip types (beech, oak, pear, and apple) on the volatile compounds and sensory characteristics of smoked bacon. The volatile compounds were influenced by woodchip types and the total content of ketones and phenols in pear-smoked bacon were higher than in bacon smoked with other woodchips (P < 0.05). The E-tongue combined with E-nose can effectively distinguish the difference in the flavor of bacon smoked with different woodchip types by the signal intensities. Sensory analysis showed that smoking increased bacon's redness, saltiness, and smoky flavor compared with the control (unsmoked bacon) (P < 0.05) and it had little impact on off-odor (P > 0.05). Correlation analysis showed that the E-nose and E-tongue data were highly correlated with contents of alcohols, aldehydes, and ketones. This study revealed that the different smoked materials greatly influenced the flavor and sensory properties of bacon.


Assuntos
Produtos da Carne/análise , Fumaça , Animais , Nariz Eletrônico , Fagus , Manipulação de Alimentos/métodos , Malus , Odorantes , Pyrus , Quercus , Suínos , Paladar , Compostos Orgânicos Voláteis/análise , Madeira
9.
Elife ; 102021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132196

RESUMO

In the course of global climate change, Central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought-damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated single-nucleotide polymorphisms (SNPs) throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. An SNP assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.


Assuntos
Aclimatação/genética , Secas , Fagus/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
10.
Ann Bot ; 128(6): 767-786, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34156430

RESUMO

BACKGROUND AND AIMS: Many recent studies emphasize that mixed species is a promising silvicultural option for sustainable ecosystem management under uncertain and risky future environmental conditions. However, compared with monocultures, knowledge of mixed stands is still rather fragmentary. This comprehensive study analysed the most common Central European tree species combinations to determine the extent to which mono-layered species mixing (1) can increase stand productivity and stem diameter growth, (2) increase stand density or growth efficiency, and (3) reduce competition and attenuate the relationship between stand density and stem diameter growth compared with mono-specific stands. METHODS: The study was based on 63 long-term experimental plots in Germany with repeated spatially explicit stand inventories. They covered mono-specific and mixed species stands of Norway spruce (Picea abies), silver fir (Abies alba), Scots pine (Pinus sylvestris), European beech (Fagus sylvatica), sessile oak (Quercus petraea), European ash (Fraxinus excelsior) and sycamore maple (Acer pseudoplatanus). Based on spatially explicit measurement, we quantified for each tree the intra- or inter-specific neighbourhood, local stand density and growth. We applied mixed models to analyse how inter-specific neighbourhoods modify stand productivity, stand density, growth efficiency, individual tree growth and the trade-off between individual tree growth and stand productivity. KEY RESULTS: We found stand productivity gains of 7-53 % of mixed versus mono-specific stands continuing over the entire rotation. All mixtures achieved a 3-36 % higher leaf area index until advanced stand age. Stem diameter growth increased by up to 31 % in mixed stands. The growth efficiency of the leaf area was up to 31 % higher, except in mixtures of sessile oak and European beech. The trade-off between stem diameter growth and stand productivity was attenuated by the mixture. CONCLUSIONS: The increased productivity was mainly based on a density increase in the case of Norway spruce/silver fir/European beech and sessile oak/European beech and it was based on a more efficient resource use given the same stand density in the case of Scots pine/European beech and European ash/sycamore maple. In the other species assemblages the increased productivity was based on a combination of density and efficiency increase. We hypothesize that the density effect may be site-invariant and mainly depends on the structural species complementarity. The efficiency increase of growth may depend on the growth-limiting factor that is remedied by mixture and thus be co-determined by the site conditions. For forest management, the results indicate increased stand and tree size growth by species mixing. For the common mixtures examined in this study the results show that thinning for the acceleration of stem growth requires less density reduction and causes less stand growth losses than in monocultures. We discuss the consequences of our findings for silvicultural prescriptions for mixed-species stands.


Assuntos
Ecossistema , Fagus , Picea , Árvores
11.
Ecology ; 102(7): e03384, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33950521

RESUMO

Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation.


Assuntos
Fagus , Ecossistema , Europa (Continente) , Reprodução , Sementes , Tempo (Meteorologia)
12.
Carbohydr Polym ; 265: 118037, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966824

RESUMO

Electron beam irradiation (EBI) is an alternative treatment for intrinsic viscosity (IV) control in cellulose pulps, but has never been integrated in full bleaching sequences for comparison to conventional methods. Both eucalyptus kraft (EK) paper pulp and beech sulfite (BS) dissolving pulp were subjected to totally chlorine free (TCF) bleaching sequences comprising either EBI, ozone, or both for IV control. Additionally, effects of EBI on hexenuronic acid (HexA) and xylan were investigated. IV was adjusted to 450-500 mL g-1 and properties including carbonyl content, kappa, brightness, alkali-resistance and sugar composition were compared. Pulps produced with EBI had a higher alkali-resistance, uniformity and less cellulose oxidation. However, the degree of bleaching (DoB) was low without the use of ozone. HexA content in a birch pulp was halved by EBI. Isolated xylans were more resistant to irradiation than cellulose with little decrease of molar masses and moderate oxidation.


Assuntos
Celulose/química , Eucalyptus/química , Fagus/química , Ozônio/química , Álcalis/química , Clareadores/química , Elétrons , Ácidos Hexurônicos/química , Lignina/química , Oxirredução , Papel , Radiação , Viscosidade , Xilanos/química
13.
Sci Rep ; 11(1): 9447, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941814

RESUMO

The soil microbial community (SMC) provides critical ecosystem services including organic matter decomposition, soil structural formation, and nutrient cycling. Studies suggest plants, specifically trees, act as soil keystone species controlling SMC structure via multiple mechanisms (e.g., litter chemistry, root exudates, and canopy alteration of precipitation). Tree influence on SMC is shaped by local/regional climate effects on forested environments and the connection of forests to surrounding landscapes (e.g., urbanization). Urban soils offer an ideal analog to assess the influence of environmental conditions versus plant species-specific controls on SMC. We used next generation high throughput sequencing to characterize the SMC of specific tree species (Fagus grandifolia [beech] vs Liriodendron tulipifera [yellow poplar]) across an urban-rural gradient. Results indicate SMC dissimilarity within rural forests suggests the SMC is unique to individual tree species. However, greater urbanization pressure increased SMC similarity between tree species. Relative abundance, species richness, and evenness suggest that increases in similarity within urban forests is not the result of biodiversity loss, but rather due to greater overlap of shared taxa. Evaluation of soil chemistry across the rural-urban gradient indicate pH, Ca+, and organic matter are largely responsible for driving relative abundance of specific SMC members.


Assuntos
Fagus/microbiologia , Liriodendron/microbiologia , Microbiota/fisiologia , Rizosfera , Urbanização , Ecossistema , Florestas , População Rural/estatística & dados numéricos , Solo/química , Microbiologia do Solo , Árvores/microbiologia , População Urbana/estatística & dados numéricos
14.
Ann Bot ; 128(2): 193-204, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33928352

RESUMO

BACKGROUND AND AIMS: Abiotic and biotic stresses related to climate change have been associated with increased crown defoliation, decreased growth and a higher risk of mortality in many forest tree species, but the impact of stresses on tree reproduction and forest regeneration remains understudied. At the dry, warm margin of species distributions, flowering, pollination and seed maturation are expected to be affected by drought, late frost and other stresses, eventually resulting in reproduction failure. Moreover, inter-individual variation in reproductive performance versus other performance traits (growth, survival) could have important consequences for population dynamics. This study investigated the relationships among individual crown defoliation, growth and reproduction in a drought-prone population of European beech, Fagus sylvatica. METHODS: We used a spatially explicit mating model and marker-based parentage analyses to estimate effective female and male fecundities of 432 reproductive trees, which were also monitored for basal area increment and crown defoliation over 9 years. KEY RESULTS: Female and male fecundities varied markedly between individuals, more than did growth. Both female fecundity and growth decreased with increasing crown defoliation and competition, and increased with size. Moreover, the negative effect of defoliation on female fecundity was size-dependent, with a slower decline in female fecundity with increasing defoliation for the large individuals. Finally, a trade-off between growth and female fecundity was observed in response to defoliation: some large trees maintained significant female fecundity at the expense of reduced growth in response to defoliation, while some other defoliated trees maintained high growth at the expense of reduced female fecundity. CONCLUSIONS: Our results suggest that, while decreasing their growth, some large defoliated trees still contribute to reproduction through seed production and pollination. This non-coordinated decline of growth and fecundity at individual level in response to stress may compromise the evolution of stress-resistance traits at population level, and increase forest tree vulnerability.


Assuntos
Fagus , Florestas , Reprodução , Árvores , Madeira
15.
Tree Physiol ; 41(10): 1808-1818, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-33823054

RESUMO

Extreme weather events are increasing in frequency and intensity due to global climate change. We hypothesized that tree carbon reserves are crucial for resilience of beech, buffering the source-sink imbalance due to late frosts and summer droughts, and that different components of non-structural carbohydrates (NSCs) play specific roles in coping with stressful situations. To assess the compound effects on mature trees of two extreme weather events, first a late frost in spring 2016 and then a drought in summer 2017, we monitored the phenology, radial growth and the dynamics of starch and soluble sugars in a Mediterranean beech forest. A growth reduction of 85% was observed after the spring late frost, yet not after the drought event. We observed a strong impact of late frost on starch, which also affected its dynamic at the beginning of the subsequent vegetative season. In 2017, the increase of soluble sugars, associated with starch hydrolysis, played a crucial role in coping with the severe summer drought. Non-structural carbohydrates helped to counteract the negative effects of both events, supporting plant survival and buffering source-sink imbalances under stressful conditions. Our findings indicate a strong trade-off between growth and NSC storage in trees. Overall, our results highlight the key role of NSCs on beech trees, response to extreme weather events, confirming the resilience of this species to highly stressful events. These insights are useful for assessing how forests may respond to the potential impacts of climate change on ecosystem processes in the Mediterranean area.


Assuntos
Clima Extremo , Fagus , Carboidratos , Mudança Climática , Secas , Ecossistema , Florestas , Estações do Ano , Árvores
16.
New Phytol ; 231(3): 974-986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33908081

RESUMO

Temperate forest ecosystems are exposed to a higher frequency, duration and severity of drought. To promote forest longevity in a changing climate, we require a better understanding of the long-term impacts of repetitive drought events on fine-root dynamics in mature forests. Using minirhizotron methods, we investigated the effect of seasonal drought on fine-root dynamics in single-species and mixed-species arrangements of Fagus sylvatica (European beech) and Picea abies (Norway spruce) by means of a 4-yr-long throughfall-exclusion experiment. Fine-root production of both species decreased under drought. However, this reduction was not evident for P. abies when grown intermixed with F. sylvatica. Throughfall-exclusion prolonged the lifespan of P. abies roots but did not change the lifespan of F. sylvatica roots, except in 2016. Fagus sylvatica responded to drought by reducing fine-root production at specific depths and during roof closure. This is the first study to examine long-term trends in mature forest fine-root dynamics under repetitive drought events. Species-specific fine-root responses to drought have implications for the rate and depth of root-derived organic matter supply to soil. From a root dynamics perspective, intermixing tree species is not beneficial to all species but dampens drought impacts on the belowground productivity of P. abies.


Assuntos
Fagus , Picea , Secas , Ecossistema , Florestas , Longevidade , Noruega , Raízes de Plantas , Estações do Ano , Árvores
17.
ACS Appl Mater Interfaces ; 13(13): 15709-15719, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755430

RESUMO

Natural intervertebral disks (IVDs) exhibit distinctive anisotropic mechanical support and dissipation performances due to their well-developed special microstructures. As the intact IVD structure degrades, the absence of function will lead to severe backache. However, the complete simulation for the characteristic structure and function of native IVD is unattainable using current methods. In this work, by overall construction of the two-phase structure of native IVD (extraction of the naturally aligned cellulose framework and in situ polymerization of the nanocomposite hydrogel), a complete wood framework IVD (WF-IVD) is manufactured containing elastic nanocomposite hydrogel-based nucleus pulposus (NP) and anisotropic wood cellulose hydrogel-based annulus fibrosus (AF). In addition to the imitation and construction of the natural structure, WF-IVD also achieves favorable mechanical matching and good biocompatibility and possesses unique mechanical buckling buffer characteristics owing to the aligned fiber bundles. This study offers a promising strategy for the mimicking and construction of complex native tissues.


Assuntos
Materiais Biomiméticos/química , Celulose/química , Hidrogéis/química , Disco Intervertebral/química , Tecidos Suporte/química , Animais , Anisotropia , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Biomimética , Tampões (Química) , Linhagem Celular , Fagus/química , Disco Intervertebral/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Engenharia Tecidual/métodos , Madeira/química
18.
PLoS One ; 16(3): e0247478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33690726

RESUMO

The Museo Nazionale della Scienza e della Tecnologia "Leonardo da Vinci" in Milan is exposing two pairs of canal lock gates, used to control the water flow in Milan canal system, whose design appears in the Leonardo's Codex Atlanticus. The wood present in the gates has been deeply characterised by mean of a multidisciplinary investigation involving i) DNA barcoding of wood fragments; ii) microbial community characterisation, and iii) chemical analyses. DNA barcoding revealed that two fragments of the gates belonged to wood species widely used in the middle age: Fagus sylvatica and Picea abies. The chemical characterisations were based on the use of ionic liquid as dissolving medium in order to analyse the entire cell wall material by means of Gel Permeation Chromatography (GPC) and 2D-NMR-HSQC techniques. This multidisciplinary analytical approach was able to highlight the complex nature of the degradation occurred during the gate operation (XVI-XVIII centuries): an intricate interplay between microbial populations (i.e. Shewanella), inorganic factors (i.e. iron from nails), physical factors and the lignocellulosic material.


Assuntos
Materiais de Construção/história , Código de Barras de DNA Taxonômico/métodos , Madeira/química , Madeira/classificação , Cromatografia em Gel , DNA de Plantas/genética , Fagus/classificação , Fagus/genética , História Antiga , Itália , Lignina/análise , Filogenia , Picea/classificação , Picea/genética , Madeira/genética
19.
PLoS One ; 16(3): e0248459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720961

RESUMO

Forest stand reflectance at the canopy level results from various factors, such as vegetation chemical properties, leaf morphology, canopy structure, and tree sizes. These factors are dependent on the species, age, and health statuses of trees, as well as the site conditions. Sentinel-2 imagery with the high spatial, spectral, and temporal resolution, has enabled analysis of the relationships between vegetation properties and their spectral responses at large spatial scales. A comprehensive study of these relationships is needed to understand the drivers of vegetation spectral patterns and is essential from the point of view of remote sensing data interpretation. Our study aimed to quantify the site and forest parameters affecting forest stands reflectance. The analysis was conducted for common beech-, silver fir- and Scots pine-dominated stands in a mountainous area of the Polish Carpathians. The effect of stands and site properties on reflectance in different parts of the growing season was captured using the dense time series provided by Sentinel-2 from 2018-2019. The results indicate that the reflectance of common beech stands is mainly influenced by elevation, particularly during spring and autumn. Other factors influencing beech stand reflectance include the share of the broadleaved understory, aspect, and, during summer, the age of stands. The reflectance of coniferous species, i.e., Scots pine and silver fir, is mainly influenced by the age and stand properties, namely the crown closure and stand density. The age is a primary driver for silver fir stands reflectance changes, while the stand properties have a large impact on Scots pine stands reflectance. Also, the understory influences Scots pine stands reflectance, while there appears to be no impact on silver fir stands. The influence of the abovementioned factors is highly diverse, depending on the used band and time of the season.


Assuntos
Fagus/fisiologia , Florestas , Pinus sylvestris/fisiologia , Estações do Ano
20.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693679

RESUMO

Neonectria faginata and Neonectria coccinea are the causal agents of the insect-fungus disease complex known as beech bark disease (BBD), known to cause mortality in beech forest stands in North America and Europe. These fungal species have been the focus of extensive ecological and disease management studies, yet less progress has been made toward generating genomic resources for both micro- and macro-evolutionary studies. Here, we report a 42.1 and 42.7 mb highly contiguous genome assemblies of N. faginata and N. coccinea, respectively, obtained using Illumina technology. These species share similar gene number counts (12,941 and 12,991) and percentages of predicted genes with assigned functional categories (64 and 65%). Approximately 32% of the predicted proteomes of both species are homologous to proteins involved in pathogenicity, yet N. coccinea shows a higher number of predicted mitogen-activated protein kinase genes, virulence determinants possibly contributing to differences in disease severity between N. faginata and N. coccinea. A wide range of genes encoding for carbohydrate-active enzymes capable of degradation of complex plant polysaccharides and a small number of predicted secretory effector proteins, secondary metabolite biosynthesis clusters and cytochrome oxidase P450 genes were also found. This arsenal of enzymes and effectors correlates with, and reflects, the hemibiotrophic lifestyle of these two fungal pathogens. Phylogenomic analysis and timetree estimations indicated that the N. faginata and N. coccinea species divergence may have occurred at ∼4.1 million years ago. Differences were also observed in the annotated mitochondrial genomes as they were found to be 81.7 kb (N. faginata) and 43.2 kb (N. coccinea) in size. The mitochondrial DNA expansion observed in N. faginata is attributed to the invasion of introns into diverse intra- and intergenic locations. These first draft genomes of N. faginata and N. coccinea serve as valuable tools to increase our understanding of basic genetics, evolutionary mechanisms and molecular physiology of these two nectriaceous plant pathogenic species.


Assuntos
Fagus , Europa (Continente) , Fagus/genética , Genoma Fúngico , Genômica , Hypocreales , Estilo de Vida , América do Norte , Casca de Planta , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...