RESUMO
Liquid fuel is widely used in industry and transportation. Liquid fuel leakage usually results in some spill fire accidents. In this paper, the effect of slope on the spread and burning behaviors of continuous spill fire from a point discharge source was studied by experiments. The flame spread rate, burning rate, heat convection at the bottom surface, flame feedback radiation, and flame height were analyzed. The results show that the spread area has an increasing trend with the slope, and the length of the spread area increases obviously, while the width of spread area shows an opposite trend. Moreover, the burning rate and the flame height of the steady stage decreases significantly with the slope increase, which can be attributed to the increase of heat convection between the fuel layer and bottom for the larger slopes. Subsequently, a burning rate model for the steady stage is built considering fuel layer heat loss and validated by the current experimental data. This work can provide guidance for the thermal hazard analysis of liquid fuel spill fires from a point source.
Assuntos
Incêndios , Acidentes , Meios de TransporteRESUMO
The study of iron reinforcements used in the construction of Notre-Dame de Paris offers a glimpse into the innovation that took place on this building site in the mid-12th century, adapting metal to create a novel architecture. The restoration of the monument after the 2019 fire offered unique possibilities to investigate its iron armatures and to sample 12 iron staples from different locations (tribunes, nave aisles and upper walls). Six of them were dated thanks to the development of an innovative methodology based on radiocarbon dating. They reveal that Notre-Dame is the first known Gothic cathedral where iron was massively used as a proper construction material to bind stones throughout its entire construction, leading to a better understanding of the master masons' thinking. Moreover, a metallographic study and slag inclusion chemical analyses of the staples provide the first study of iron supply for a great medieval Parisian building yard, renewing our understanding of iron circulation, trade and forging in the 12th and 13th century capital of the French kingdom. The highlighting of numerous welds in all iron staples and the multiple provenances sheds light on the activity of the iron market in this major medieval European city and the nature of the goods that circulated, and questions the possible importance of recycling.
Assuntos
Incêndios , Reforço Psicológico , Humanos , Materiais de ConstruçãoRESUMO
In conifer forests of western North America, wildlife populations can change rapidly in the decade following wildfire as trees die and animals respond to concomitant resource pulses that occur across multiple trophic levels. In particular, black-backed woodpeckers (Picoides arcticus) show predictable temporal increases then declines following fire; this trajectory is widely believed to be a response to the woodpeckers' main prey, woodboring beetle larvae of the families Buprestidae and Cerambycidae, but we lack understanding of how abundances of these predators and prey may be associated in time or space. Here, we pair woodpecker surveys over 10 years with surveys of woodboring beetle sign and activity, collected at 128 survey plots across 22 recent fires, to ask whether accumulated beetle sign indicates current or past black-backed woodpecker occurrence, and whether that relationship is mediated by the number of years since fire. We test this relationship using an integrative multi-trophic occupancy model. Our results demonstrate that woodboring beetle sign is a positive indicator of woodpecker presence 1-3 years following fire, an uninformative indicator from 4-6 years after fire, and a negative indicator beginning 7 years following fire. Woodboring beetle activity, itself, is temporally variable and dependent on tree species composition, with beetle sign generally accumulating over time, particularly in stands with diverse tree communities, but decreasing over time in Pinus-dominated stands where faster bark decay rates lead to brief pulses of beetle activity followed by rapid degradation of tree substrate and accumulated beetle sign. Altogether, the strong connections of woodpecker occurrence to beetle activity support prior hypotheses of how multi-trophic interactions govern rapid temporal dynamics of primary and secondary consumers in burned forests. While our results indicate that beetle sign is, at best, a rapidly shifting and potentially misleading measure of woodpecker occurrence, the better we understand the interacting mechanisms underlying temporally dynamic systems, the more successfully we will be able to predict the outcomes of management actions.
Assuntos
Besouros , Incêndios , Incêndios Florestais , Animais , Animais Selvagens , Aves , ÁrvoresRESUMO
Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.
Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Mudança ClimáticaRESUMO
Fire accidents in storage tanks are of great importance due to the difficulty in extinguishing and ease of spread to nearby products. This study aimed to introduce a framework based on FTA-based Set Pair Analysis (SPA) established via experts' elicitation to identify and assess the risk of storage tank fire. In the quantitative FTA of a system, sufficient data are only sometimes available to calculate the failure probability of the system appertains to study. Thus, the obtained result of the SPA added new value to the Basic Events (BEs) and estimated top event. To illustrate the applicability of the proposed approach, a fault tree of the methanol storage tank fire is performed and analyzed BEs. According to the obtained results, the fire accident was computed by 48 BEs, and the occurrence probability value of the top event was estimated 2.58E-1/year. In addition, the most crucial paths that led to the fire accident are listed in this study. The proposed approach established in the present study can assist decision-makers in determining where to take preventative or appropriate action on the storage tank system. Moreover, it can be adjusted for various systems with limited manipulation.
Assuntos
Incêndios , Metanol , Acidentes , Medição de RiscoRESUMO
BACKGROUND: Environmental disasters such as wildfires, floods and droughts can introduce significant interruptions and trauma to impacted communities. Children and young people can be disproportionately affected with additional educational disruptions. However, evaluating the impact of disasters is challenging due to difficulties in establishing studies and recruitment post-disasters. OBJECTIVES: We aimed to (1) develop a Bayesian model using aggregated school-level data to evaluate the impact of environmental disasters on academic achievement and (2) evaluate the impact of the 2014 Hazelwood mine fire (a six-week fire event in Australia). METHODS: Bayesian hierarchical meta-regression was developed to evaluate the impact of the mine fire using easily accessible aggregated school-level data from the standardised National Assessment Program-Literacy and Numeracy (NAPLAN) test. NAPLAN results and school characteristics (2008-2018) from 69 primary/secondary schools with different levels of mine fire-related smoke exposure were used to estimate the impact of the event. Using an interrupted time series design, the model estimated immediate effects and post-interruption trend differences with full Bayesian statistical inference. RESULTS: Major academic interruptions across NAPLAN domains were evident in high exposure schools in the year post-mine fire (greatest interruption in Writing: 11.09 [95%CI: 3.16-18.93], lowest interruption in Reading: 8.34 [95%CI: 1.07-15.51]). The interruption was comparable to a four to a five-month delay in educational attainment and had not fully recovered after several years. CONCLUSION: Considerable academic delays were found as a result of a mine fire, highlighting the need to provide educational and community-based supports in response to future events. Importantly, this work provides a statistical method using readily available aggregated data to assess the educational impacts in response to other environmental disasters.
Assuntos
Incêndios , Criança , Humanos , Adolescente , Teorema de Bayes , Análise de Séries Temporais Interrompida , Escolaridade , EstudantesRESUMO
OBJECTIVE: To describe the epidemiological profile of multiple casualty incidents (MCI) and contribute to the better understanding of their impacts in Northern Spain. METHOD: Retrospective, population-based observational study of MCI between 2014 and 2020 in 5 autonomous communities (Aragón, Castilla y León, Galicia, the Basque Country and Principado de Asturias) that participated in the MCI Database of Northern Spain. Inclusion criteria was any incident with 4 or more patients needing ambulance mobilization. A total of 54 variables were collected. This study presents the most relevant results. RESULTS: There were 253 MCI. Of these, 79.8% were road traffic accidents, 12.3% fires or explosions, 2.0% poisonings and 5.9% defined as others. Monthly average was 2.9 (SD = 0.35; EEM = 15.90), average of victims by MCI was 6.8 (CI95% 6.16 - 7.60). There were significantly (P < 0.05) more victims in 3 types of MCI (fires, poisonings, and others). We saw 37.7% of MCI involved 4 victims, 18.8% 5 victims, and 37.9% more than 5. Mean response time was 30.8 minutes (95% CI 28.6 - 33.1), longer in maritime incidents. A total of 67% (95% CI 64.5 - 69.5) of victims were mild. CONCLUSIONS: Road traffic accidents are the most frequent MCI and minor injuries predominate. More than 50% of the MCI have 5 or fewer patients. Fires had significantly more mild patients and significantly more resources deployed. Maritime incidents had a significantly longer response time.
Assuntos
Ambulâncias , Incêndios , Humanos , Estudos Retrospectivos , Espanha/epidemiologiaRESUMO
The present study assessed the resilience model of Hyrcanian forests with Navroud-Asalem watershed as a case study. The Navroud-Assalem watershed was selected for study because of its special environmental characteristics and access to relatively acceptable information. In order to model resilience, the appropriate indices influencing resilience in Hyrcanian forests were identified and selected. The criteria of biological diversity and forest health and vitality were selected along with the indices of species diversity, forest-type diversity, mixed stands, and the infected area percentage forests with disturbance factors. Thirteen sub-indices and 33 variables were determined and the relationship between the indices and criteria was identified by developing a questionnaire using the decision-making trial and evaluation laboratory (DEMATEL) method. The weights of each index were estimated in Vensim software using the fuzzy analytic hierarchy process. Collecting and analyzing the regional information, the conceptual model was developed and formulated quantitatively and mathematically and was entered into Vensim for resilience modeling of the selected parcels. The DEMATEL method indicated that the species diversity indices and the percentage of affected forests had the greatest influence and interaction with other factors in the system. The parcels studied had different slopes and were affected by the input variables. They were considered as resilient if they were found to maintain current conditions. Avoidance of exploitation, infestation by pests, severe fires in the region, and increased livestock grazing compared to the existing situation were among the prerequisites for resilience in the region. Vensim modeling represents that in control parcel no. 232 the nondimensional resilience parameter is 3025 (the most resilient parcel), while in the disturbed parcel no. 278 this amount is 1775 (the least resilient parcel).
Assuntos
Monitoramento Ambiental , Incêndios , Animais , Biodiversidade , Florestas , GadoRESUMO
Climate change and forest management practices influence forest productivity and carbon budgets, and understanding their interactions is necessary to develop accurate predictions of carbon dynamics as many countries in the world strive towards carbon neutrality. Here, we developed a model-coupling framework to simulate the carbon dynamics of boreal forests in China. The expected dynamics of forest recovery and change following intense timber harvesting in the recent past and projected carbon dynamics into the future under different climate change scenarios and forest management practices (e.g., restoration, afforestation, tending, and fuel management). We predict that under current management strategies, climate change would lead to increased fire frequency and intensity, eventually shifting these forests from carbon sinks towards being carbon sources. This study suggests that future boreal forest management should be altered to reduce the probability of fire occurrence and carbon losses caused by catastrophic fires through planting deciduous species, mechanical removal, and prescribed fire.
Assuntos
Incêndios , Taiga , Carbono/análise , Florestas , Mudança Climática , ChinaRESUMO
When a fire occurs in a street canyon, smoke recirculation is the most harmful factor to human beings inside the canyon, while the wind condition is an essential factor determining if the smoke is recirculated. This paper focuses on the wind direction's effect on buoyancy-driven fire smoke dispersion in a street canyon, which is innovative research since the effect of wind direction has not been reported before. In this study, an ideal street canyon model with a height-width ratio of 1 was established, and both the wind velocity and wind direction were changed to search for the critical point at which smoke recirculation occurs. The results show that with an increase in the wind direction angle (the angle of wind towards the direction of the street width), the smoke recirculation could be distinguished into three regimes, i.e., the "fully re-circulation stage", the "semi re-circulation stage", and the "non-recirculation stage". The critical recirculation velocity was increased with the increase in the wind direction angle, and new models regarding the critical wind velocity and the Froude number were proposed for different wind direction conditions.
Assuntos
Poluentes Atmosféricos , Incêndios , Humanos , Fumaça , Vento , Poluentes Atmosféricos/análise , Modelos Teóricos , Emissões de Veículos/análise , Cidades , Monitoramento Ambiental/métodosRESUMO
¼: Inadvertent activation of electrosurgical device was more likely to result in patient burns and harm. ¼: There are significant knowledge gaps in the orthopaedic surgery community relating to fire prevention, fire safety, and fire management. ¼: Arthroplasty was the most common procedure with reported fire events. ¼: It is the responsibility of the orthopaedic surgeon to understand the risks of surgical fire in the operating room and implement actions to reduce those risks.
Assuntos
Incêndios , Ortopedia , Humanos , Salas Cirúrgicas , Incêndios/prevenção & controle , Eletrocirurgia , ArtroplastiaRESUMO
Forest fires cause many environmental impacts, including air pollution. Brazil is a very fire-prone region where few studies have investigated the impact of wildfires on air quality and health. We proposed to test two hypotheses in this study: i) the wildfires in Brazil have increased the levels of air pollution and posed a health hazard in 2003-2018, and ii) the magnitude of this phenomenon depends on the type of land use and land cover (e.g., forest area, agricultural area, etc.). Satellite and ensemble models derived data were used as input in our analyses. Wildfire events were retrieved from Fire Information for Resource Management System (FIRMS), provided by NASA; air pollution data from the Copernicus Atmosphere Monitoring Service (CAMS); meteorological variables from the ERA-Interim model; and land use/cover data were derived from pixel-based classification of Landsat satellite images by MapBiomas. We used a framework that infers the "wildfire penalty" by accounting for differences in linear pollutant annual trends (ß) between two models to test these hypotheses. The first model was adjusted for Wildfire-related Land Use activities (WLU), considered as an adjusted model. In the second model, defined as an unadjusted model, we removed the wildfire variable (WLU). Both models were controlled by meteorological variables. We used a generalized additive approach to fit these two models. To estimate mortality associated with wildfire penalties, we applied health impact function. Our findings suggest that wildfire events between 2003 and 2018 have increased the levels of air pollution and posed a significant health hazard in Brazil, supporting our first hypothesis. For example, in the Pampa biome, we estimated an annual wildfire penalty of 0.005 µg/m3 (95%CI: 0.001; 0.009) on PM2.5. Our results also confirm the second hypothesis. We observed that the greatest impact of wildfires on PM2.5 concentrations occurred in soybean areas in the Amazon biome. During the 16 years of the study period, wildfires originating from soybean areas in the Amazon biome were associated with a total penalty of 0.64 µg/m3 (95%CI: 0.32; 0.96) on PM2.5, causing an estimated 3872 (95%CI: 2560; 5168) excess deaths. Sugarcane crops were also a driver of deforestation-related wildfires in Brazil, mainly in Cerrado and Atlantic Forest biomes. Our findings suggest that between 2003 and 2018, fires originating from sugarcane crops were associated with a total penalty of 0.134 µg/m3 (95%CI: 0.037; 0.232) on PM2.5 in Atlantic Forest biome, resulting in an estimated 7600 (95%CI: 4400; 10,800) excess deaths during the study period, and 0.096 µg/m3 (95%CI: 0.048; 0.144) on PM2.5 in Cerrado biome, resulting in an estimated 1632 (95%CI: 1152; 2112) excess deaths during the study period. Considering that the wildfire penalties observed during our study period may continue to be a challenge in the future, this study should be of interest to policymakers to prepare future strategies related to forest protection, land use management, agricultural activities, environmental health, climate change, and sources of air pollution.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Incêndios Florestais , Brasil , Poluição do Ar/análise , Material Particulado/análise , Poluentes Atmosféricos/análise , Fumaça/análiseRESUMO
Information about smoke cues for seed germination is fundamental to understanding fire adaptation. Recently, lignin-derived syringaldehyde (SAL) was identified as a new smoke cue for seed germination, which challenges the assumption that cellulose-derived karrikins are the primary smoke cues. We highlight the overlooked association between lignin and the fire adaptation of plants.
Assuntos
Incêndios , Germinação , Lignina , Sinais (Psicologia) , Sementes , FumaçaRESUMO
Developing fire-retardant building materials is vital in reducing fire loss. The design and preparation of novel fire-retardant coatings merely require the adhesion of flame retardants with high fire-retardant characteristics on the surface, which is significantly more economical than adding excessive amounts of flame retardants into bulk building materials. Meanwhile, fire-retardant coating has excellent performance because it can block the self-sustaining mechanisms of heat and mass transfer over combustion interfaces. In recent years, research of fire-retardant coatings for building materials has been subject to rapid development, and a variety of novel environmentally benign fire-retardant coatings have been reported. Nonetheless, as the surface characteristics of various flammable building materials are contrastively different, selecting chemical ingredients and controlling the physical morphology of fire-retardant coatings for specific building materials is rather complicated. Thus, it is urgent to review the ideas and preparation methods for new fire-retardant coatings. This paper summarizes the latest research progress of fire-retardant building materials, focusing on the compositions and performances of fire-retardant coatings, as well as the principles of their bottom-up design and preparation methods on the surface of building materials.
Assuntos
Incêndios , Retardadores de Chama , Temperatura Alta , Materiais de ConstruçãoRESUMO
In recent years, the use of nuclear energy as propulsion for merchant ships has been proposed as a means of promoting the transition toward maritime decarbonization and environmentally sustainable shipping. However, there are concerns that nuclear-powered merchant ships could pose risks to the marine environment in the event of accidents, such as collisions, machinery failure or damage, fire, or explosions. The current international regulatory framework for nuclear-powered merchant ships is insufficient to address these risks. This research aims to address this gap by conducting a policy analysis of the existing regulations and a critical examination of their effectiveness in addressing the environmental risks of nuclear-powered merchant ships. Through this analysis, the study identifies the shortcomings and insufficiencies in the current framework and explores potential solutions to improve it, with the goal of enhancing the international community's ability to mitigate the potential impacts of radioactive marine pollution from nuclear-propelled ships in an era of maritime decarbonization.
Assuntos
Incêndios , Energia Nuclear , Acidentes de Trabalho , Navios , MotivaçãoRESUMO
Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused by AF fires and post-fire vegetation are rarely investigated at a molecular level. We employed pyrolysis-gas chromatography-mass spectrometry to reveal molecular changes in SOM (0-10, 40-50 cm depth) of a slash-burn-and-20-month-regrowth AF (BAF) and a 23-year Brachiaria pasture post-AF fire (BRA) site compared to native AF (NAF). In BAF (0-10 cm), increased abundance of unspecific aromatic compounds (UACs), polycyclic aromatic hydrocarbons (PAHs) and lipids (Lip) coupled with a depletion of polysaccharides (Pol) revealed strong lingering effects of fire on SOM. This occurs despite fresh litter deposition on soil, suggesting SOM minimal recovery and toxicity to microorganisms. Accumulation of recalcitrant compounds and slow decomposition of fresh forest material may explain the higher carbon content in BAF (0-5 cm). In BRA, SOM was dominated by Brachiaria contributions. At 40-50 cm, alkyl and hydroaromatic compounds accumulated in BRA, whereas UACs accumulated in BAF. UACs and PAH compounds were abundant in NAF, possibly air-transported from BAF.
Assuntos
Queimaduras , Incêndios , Incêndios Florestais , Humanos , Solo/química , FlorestasRESUMO
BACKGROUND: the potential fire risk of fabrics impregnated with emollients has been described within the health service, including ignition of bandages. The role of emollients in fire fatalities have also been included in coroner reports, as accelerating fires when present. AIMS: although changes in burning behaviour is known, no standard tests have been carried out on bandages which are often used in conjunction with emollients. METHOD: using a standard vertical flammability test, the flammability of viscose bandage was compared to when impregnated with nine dried on emollients with low to high and non-paraffin content. FINDINGS: the time to ignition was significantly reduced with an emollient present and the glowing time was longer. CONCLUSIONS: the same safety advice applies to viscose bandages as other fabrics with emollients; do not expose them to naked flames or high heat sources or allow emollients to build up on bandages.
Assuntos
Emolientes , Incêndios , Humanos , BandagensRESUMO
Wildfires usually increase the hydrological and erosive response of forest areas, carrying high environmental, human, cultural, and financial on- and off-site effects. Post-fire soil erosion control measures have been proven effective at mitigating such responses, especially at the slope scale, but there is a knowledge gap as to how cost-effective these treatments are. In this work, we review the effectiveness of post-fire soil erosion mitigation treatments at reducing erosion rates over the first post-fire year and provide their application costs. This allowed assessing the treatments' cost-effectiveness (CE), expressed as the cost of preventing 1 Mg of soil loss. This assessment involved a total of 63 field study cases, extracted from 26 publications from the USA, Spain, Portugal, and Canada, and focused on the role of treatment types and materials, and countries. Treatments providing a protective ground cover showed the best median CE (895 $ Mg-1), especially agricultural straw mulch (309 $ Mg-1), followed by wood-residue mulch (940 $ Mg-1) and hydromulch (2332 $ Mg-1). Barriers showed a relatively low CE (1386 $ Mg-1), due to their reduced effectiveness and elevated implementation costs. Seeding showed a good CE (260 $ Mg-1), but this reflected its low costs rather than its effectiveness to reduce soil erosion. The present results confirmed that post-fire soil erosion mitigation treatments are cost-effective as long as they are applied in areas where the post-fire erosion rates exceed the tolerable erosion rate thresholds (>1 Mg-1 ha-1 y-1) and are less costly than the loss of on- and off-site values that they are targeted to protect. For this reason, the proper assessment of post-fire soil erosion risk is vital to ensure that the available financial, human and material resources are applied appropriately.