Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.686
Filtrar
1.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182703

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicação Viral , Animais , Camundongos , Células RAW 264.7 , Replicação Viral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Camundongos Transgênicos , Pogostemon/química , Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Pulmão/patologia , Glucosídeos/farmacologia , Glucosídeos/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Anti-Inflamatórios/farmacologia , Masculino , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Humanos
2.
Food Chem ; 462: 140806, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241684

RESUMO

Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.


Assuntos
Antioxidantes , Citrus , Frutas , Metabolômica , Extratos Vegetais , Espectrometria de Massas em Tandem , Citrus/química , Citrus/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Fenóis/metabolismo , Fenóis/química , Fenóis/análise , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/análise
3.
Food Chem ; 462: 140913, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197241

RESUMO

Grape processing generates large amounts of by-products, including seeds rich in hydrophilic and lipophilic antioxidants. This study demonstrates, for the first time, that subjecting grape seeds to a single ultrasound-assisted extraction (UAE) with aqueous ethanolic solutions yields both flavan-3-ols and tocochromanols in the final extract. Notably, the water content in ethanol significantly influences the extractability of tocochromanols more than flavan-3-ols. Solid-to-solvent ratios of 1:50 to 1:2 were tested for both analytical and industrial applications. A sustainable analytical approach for recovering flavan-3-ols and tocochromanols using 60% and 96.4% ethanol extractions was validated and employed to profile nineteen genotypes of lesser-studied interspecific grape crosses (Vitis spp.). Different genotypes showed a wide range of concentrations of tocopherols (1.6-6.3 mg/100 g), tocotrienols (1.0-17.4 mg/100 g), and flavan-3-ols (861-9994 mg/100 g). This indicated that the genetic background and maturity of the plant material are crucial factors from an industrial perspective due to the initial concentration of bioactive compounds. Finally, the study also discussed the fundamental aspects of hydrophobic antioxidant extractability from the lipid matrix with aqueous ethanol solutions and the limitations of the workflow, such as the non-extractable tocochromanols and their esters and the losses of these lipophilic antioxidants during extraction.


Assuntos
Flavonoides , Sementes , Vitis , Vitis/química , Sementes/química , Flavonoides/isolamento & purificação , Flavonoides/química , Flavonoides/análise , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Tocoferóis/isolamento & purificação , Tocoferóis/química , Tocoferóis/análise , Tocotrienóis/análise , Tocotrienóis/isolamento & purificação , Tocotrienóis/química
4.
Food Chem ; 462: 140956, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197243

RESUMO

The extraction of bioactive compounds is based on the application of various extraction techniques. Therefore, the stem and root bark of the plant species Morinda lucida L. were used in this research, while the extraction procedure was performed using three extraction techniques: HAE (homogenizer extraction), UAE (ultrasound extraction) as modern, and MAC (maceration) as conventional extraction technique. The presence of different classes of secondary metabolites was determined using the UHPLC method, while the content of total phenols and flavonoids was determined spectrophotometrically. The biological potential was investigated by in vitro antioxidant and enzyme assays. Different extraction technologies showed significant differences in only two classes of phenols, namely lignans and phenolic acids, which were significantly higher in HAE than in UAE and MAC. These findings highlight the significant effect of stem and bark extracts of M. lucida, opening the way for innovative industrial exploitation of these matrices.


Assuntos
Antioxidantes , Morinda , Fenóis , Extratos Vegetais , Morinda/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Casca de Planta/química , Fracionamento Químico/métodos , Caules de Planta/química , Raízes de Plantas/química
5.
Food Chem ; 462: 141033, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217750

RESUMO

A rapid method was developed for determining the total flavonoid and protein content in Tartary buckwheat by employing near-infrared spectroscopy (NIRS) and various machine learning algorithms, including partial least squares regression (PLSR), support vector regression (SVR), and backpropagation neural network (BPNN). The RAW-SPA-CV-SVR model exhibited superior predictive accuracy for both Tartary and common buckwheat, with a high coefficient of determination (R2p = 0.9811) and a root mean squared error of prediction (RMSEP = 0.1071) for flavonoids, outperforming both PLSR and BPNN models. Additionally, the MMN-SPA-PSO-SVR model demonstrated exceptional performance in predicting protein content (R2p = 0.9247, RMSEP = 0.3906), enhancing the effectiveness of the MMN preprocessing technique for preserving the original data distribution. These findings indicate that the proposed methodology could efficiently assess buckwheat adulteration analysis. It can also provide new insights for the development of a promising method for quantifying food adulteration and controlling food quality.


Assuntos
Fagopyrum , Flavonoides , Proteínas de Plantas , Espectroscopia de Luz Próxima ao Infravermelho , Fagopyrum/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Flavonoides/análise , Flavonoides/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Quimiometria/métodos , Análise dos Mínimos Quadrados , Redes Neurais de Computação
6.
Mol Med Rep ; 30(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39219283

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic and fatal disease characterized by pulmonary vascular remodeling, similar to the 'Warburg effect' observed in cancer, which is caused by reprogramming of glucose metabolism. Oroxylin A (OA), an active compound derived from Scutellaria baicalensis, which can inhibit glycolytic enzymes [hexokinase 2 (HK2), Lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase 1 (PDK1) by downregulating aerobic glycolysis to achieve the treatment of liver cancer. To the best of our knowledge, however, the impact of OA on PAH has not been addressed. Consequently, the present study aimed to evaluate the potential protective role and mechanism of OA against PAH induced by monocrotaline (MCT; 55 mg/kg). The mean pulmonary artery pressure (mPAP) was measured using the central venous catheter method; HE and Masson staining were used to observe pulmonary artery remodeling. Non­targeted metabolomics was used to analyze the metabolic pathways and pathway metabolites in MCT­PAH rats. Western Blot analysis was employed to assess the levels of glucose transporter 1 (Glut1), HK2), pyruvate kinase (PK), isocitrate dehydrogenase 2 (IDH2), pyruvate dehydrogenase kinase 1(PDK1), and lactate dehydrogenase (LDH) protein expression in both lung tissue samples from MCT­PAH rats. The results demonstrated that intragastric administration of OA (40 and 80 mg/kg) significantly decreased mPAP from 43.61±1.88 mmHg in PAH model rats to 26.51±1.53 mmHg and relieve pulmonary artery remodeling. Untargeted metabolomic analysis and multivariate analysis indicated abnormal glucose metabolic pattern in PAH model rats, consistent with the Warburg effect. OA administration decreased this effect on the abnormal glucose metabolism. The protein levels of key enzymes involved in glucose metabolism were evaluated by western blotting, which demonstrated that OA could improve aerobic glycolysis and inhibit PAH by decreasing the protein levels of Glut1, HK2, LDH, PDK1 and increasing the protein levels of PK and IDH2. In conclusion, OA decreased MCT­induced PAH in rats by reducing the Warburg effect.


Assuntos
Flavonoides , Glicólise , Monocrotalina , Hipertensão Arterial Pulmonar , Animais , Ratos , Masculino , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glicólise/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos Sprague-Dawley , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Scutellaria baicalensis/química , Modelos Animais de Doenças , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Efeito Warburg em Oncologia/efeitos dos fármacos
7.
Sci Rep ; 14(1): 20306, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218988

RESUMO

Huanglongbing (HLB), associated with the psyllid-vectored phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), is a disease threat to all citrus production worldwide. Currently, there are no sustainable curative or prophylactic treatments available. In this study, we utilized mass spectrometry (MS)-based metabolomics in combination with 3D molecular mapping to visualize complex chemistries within plant tissues to explore how these chemistries change in vivo in HLB-infected trees. We demonstrate how spatial information from molecular maps of branches and single leaves yields insight into the biology not accessible otherwise. In particular, we found evidence that flavonoid biosynthesis is disrupted in HLB-infected trees, and an increase in the polyamine, feruloylputrescine, is highly correlated with an increase in disease severity. Based on mechanistic details revealed by these molecular maps, followed by metabolic modeling, we formulated and tested the hypothesis that CLas infection either directly or indirectly converts the precursor compound, ferulic acid, to feruloylputrescine to suppress the antimicrobial effects of ferulic acid and biosynthetically downstream flavonoids. Using in vitro bioassays, we demonstrated that ferulic acid and bioflavonoids are indeed highly bactericidal to CLas, with the activity on par with a reference antibiotic, oxytetracycline, recently approved for HLB management. We propose these compounds should be evaluated as therapeutics alternatives to the antibiotics for HLB treatment. Overall, the utilized 3D metabolic mapping approach provides a promising methodological framework to identify pathogen-specific inhibitory compounds in planta for potential prophylactic or therapeutic applications.


Assuntos
Antibacterianos , Citrus , Doenças das Plantas , Citrus/microbiologia , Citrus/química , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Metabolômica/métodos , Liberibacter/metabolismo , Rhizobiaceae , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/química , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/metabolismo
8.
Georgian Med News ; (351): 61-64, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39230222

RESUMO

AIM: The aim of the present investigation is to study HPLC process to evaluate Some Active Flavonoids in Ethyl Acetate Extract of Leaves of Butea monosperma Linn. MATERIAL AND METHODS: Using a soxhlation device, the leaves of Butea monosperma Linn. were extracted in stages. Each powdered batch (500g) was extracted in stages with polarity-graded solvents such as petroleum ether (Pet. Et) (60-80º), chloroform (CHCl3), ethyl acetate (EtOAc) using a soxhlet extractor. Alkaloids, flavonoids, glycosides, tannins, phenols, and steroids, among other chemical families of components, were identified through qualitative phytochemical screenings of each extract. To make a 10 g/ml stock, standard phenolic markers like quercetin, rutin, catechin, gallic acid, and chlorogenic acid were dissolved in methanol. Phytoconstituents were separated and identified from extracts using various solvents and combinations of solvents, which were chosen after consulting the literature. RESULTS AND DISCUSSION: Preliminary phytochemical screening showed the revealed that the leaves contain steroid, triterpenoids, fatty acid and alkaloids. While the ethyl acetate extract found to contain therapeutically important phytoconstitutes such as steroids, triterpenoids, saponins, flavonoids, and tannins. Bioactive extracts of Butea monosperma were found to include flavonoids and phenolic substances. In ethyl acetate extract, various flavonoids and phenolic compounds were discovered. CONCLUSION: This is a preliminary report on the identification of phytochemical and HPLC evaluation of ethyl acetate extract of leaves of Butea monosperma Linn. and to unravel the mechanisms driving bioactive qualities and the existence of putative synergy among these substances, more research is needed on the isolation and characterization of individual Flavonoids or phenolic compounds.


Assuntos
Acetatos , Flavonoides , Extratos Vegetais , Folhas de Planta , Flavonoides/análise , Flavonoides/química , Flavonoides/isolamento & purificação , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Acetatos/química , Solventes/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Taninos/análise , Taninos/isolamento & purificação , Taninos/química
9.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 39-49, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39262264

RESUMO

The present study deals with the in-silico analyses of several flavonoid derivatives to explore COVID-19 through pharmacophore modelling, molecular docking, molecular dynamics, drug-likeness, and ADME properties. The initial literature study revealed that many flavonoids, including luteolin, quercetin, kaempferol, and baicalin may be useful against SARS ß-coronaviruses, prompting the selection of their potential derivatives to investigate their abilities as inhibitors of COVID-19. The findings were streamlined using in silico molecular docking, which revealed promising energy-binding interactions between all flavonoid derivatives and the targeted protein. Notably, compounds 8, 9, 13, and 15 demonstrated higher potency against the coronavirus Mpro protein (PDB ID 6M2N). Compound 8 has a -7.2 Kcal/mol affinity for the protein and binds to it by hydrogen bonding with Gln192 and π-sulfur bonding with Met-165. Compound 9 exhibited a significant interaction with the main protease, demonstrating an affinity of -7.9 kcal/mol. Gln-192, Glu-189, Pro-168, and His-41 were the principle amino acid residues involved in this interaction. The docking score for compound 13 is -7.5 Kcal/mol, and it binds to the protease enzyme by making interactions with Leu-41, π-sigma, and Gln-189. These interactions include hydrogen bonding and π-sulfur. The major protease and compound 15 were found to bind with a favourable affinity of -6.8 Kcal/mol. This finding was further validated through molecular dynamic simulation for 1ns, analysing parameters such as RMSD, RMSF, and RoG profiles. The RoG values for all four of the compounds varied significantly (35.2-36.4). The results demonstrated the stability of the selected compounds during the simulation. After passing the stability testing, the compounds underwent screening for ADME and drug-likeness properties, fulfilling all the necessary criteria. The findings of the study may support further efforts for the discovery and development of safe drugs to treat COVID-19.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Desenho de Fármacos , Flavonoides , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Flavonoides/química , Flavonoides/farmacologia , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Humanos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , COVID-19/virologia , Descoberta de Drogas/métodos , Ligação de Hidrogênio , Tratamento Farmacológico da COVID-19 , Betacoronavirus/efeitos dos fármacos , Pandemias , Quercetina/química , Quercetina/farmacologia , Ligação Proteica , Proteínas M de Coronavírus
10.
Physiol Res ; 73(4): 633-642, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39264083

RESUMO

The study aims to elucidate the therapeutic mechanism of Baicalin (BAI) in alleviating cartilage injury in osteoarthritic (OA) rat models, concentrating on its regulation of the miR-766-3p/AIFM1 axis. An OA rat model was developed with unilateral anterior cruciate ligament transection (ACLT). Interventions comprised of BAI treatment and intra-articular administration of miR-766-3p inhibitor. For evaluation, histopathological staining was conducted to investigate the pathological severity of knee cartilage injury. The levels of oxidative stress (OS) indicators including MDA, SOD, and GSH-Px, were quantified using colorimetric assays. Inflammatory factors (IFs; TNF-?, IL-1?, and IL-6) in knee joint lavage fluids were assessed using ELISA, while RT-PCR was employed to quantify miR-766-3p expression. TUNEL apoptosis staining was utilized to detect chondrocyte apoptosis, and western blotting examined autophagy-related markers (LC3, Beclin, p62), extracellular matrix (ECM) synthesis-associated indices (COL2A, ACAN, MMP13), and apoptosis-inducing factor mitochondrion-associated 1 (AIFM1). Histological examination revealed a marked amelioration of cartilage injury in the BAI-treated OA rat models compared to controls. BAI treatment significantly reduced inflammation and OS of knee joint fluid, activated autophagy, and decreased chondrocyte apoptosis and ECM degradation. Interestingly, the inhibitory effects of BAI on these pathological markers were significantly decreased by the miR-766-3p inhibitor. Further assessment revealed that BAI efficiently promoted miR-766-3p expression while inhibiting AIFM1 protein expression. BAI potentially mitigates articular cartilage injury in OA rats, likely through modulation of miR-766-3p/AIFM1 axis. Keywords: Baicalin, microRNA, AIFM1, Osteoarthritisv, Rat.


Assuntos
Flavonoides , MicroRNAs , Ratos Sprague-Dawley , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , MicroRNAs/metabolismo , MicroRNAs/genética , MicroRNAs/biossíntese , Ratos , Masculino , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Fator de Indução de Apoptose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos
11.
Urolithiasis ; 52(1): 127, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39237821

RESUMO

Calcium oxalate (CaOx) urolithiasis is a prevalent urinary disorder with significant clinical impact. This study investigates the therapeutic potential of Morin Hydrate (MH), a natural bioflavonoid, in preventing CaOx stone formation. Molecular docking studies revealed that MH binds strongly to glycolate oxidase (GO), suggesting its inhibitory effect on oxalate synthesis. In vitro assays demonstrated that MH effectively inhibits CaOx crystal nucleation, aggregation, and growth, altering crystal morphology to less stable forms. Diuretic activity studies in Wistar rats showed that MH substantially increased urine volume and ion excretion, indicating its moderate diuretic effect. In vivo experiments further supported these findings, with MH treatment improving urinary and serum markers, reducing oxidative stress, and protecting renal tissue, as evidenced by histopathological analysis. Notably, MH administration significantly decreased GO and lactate dehydrogenase activities in urolithiatic rats, indicating a reduction in oxalate production. These results suggest that MH is a promising candidate for the prevention and treatment of CaOx urolithiasis, with the potential for clinical application in reducing the risk and recurrence of kidney stones.


Assuntos
Oxalato de Cálcio , Flavonoides , Ratos Wistar , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/química , Ratos , Masculino , Simulação de Acoplamento Molecular , Cristalização , Urolitíase/prevenção & controle , Urolitíase/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Flavonas
12.
SAR QSAR Environ Res ; 35(8): 729-756, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39246138

RESUMO

Human neutrophil elastase (HNE) plays a key role in initiating inflammation in the cardiopulmonary and systemic contexts. Pathological auto-proteolysed two-chain (tc) HNE exhibits reduced binding affinity with inhibitors. Using AutoDock Vina v1.2.0, 66 flavonoid inhibitors, sivelestat and alvelestat were docked with single-chain (sc) HNE and tcHNE. Schrodinger PHASE v13.4.132 was used to generate a 3D-QSAR model. Molecular dynamics (MD) simulations were conducted with AMBER v18. The 3D-QSAR model for flavonoids with scHNE showed r2 = 0.95 and q2 = 0.91. High-activity compounds had hydrophobic A/A2 and C/C2 rings in the S1 subsite, with hydrogen bond donors at C5 and C7 positions of the A/A2 ring, and the C4' position of the B/B1 ring. All flavonoids except robustaflavone occupied the S1'-S2' subsites of tcHNE with decreased AutoDock binding affinities. During MD simulations, robustaflavone remained highly stable with both HNE forms. Principal Component Analysis suggested that robustaflavone binding induced structural stability in both HNE forms. Cluster analysis and free energy landscape plots showed that robustaflavone remained within the sc and tcHNE binding site throughout the 100 ns MD simulation. The robustaflavone scaffold likely inhibits both tcHNE and scHNE. It is potentially superior to sivelestat and alvelestat and can aid in developing therapeutics targeting both forms of HNE.


Assuntos
Biflavonoides , Elastase de Leucócito , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Humanos , Biflavonoides/química , Biflavonoides/farmacologia , Simulação de Acoplamento Molecular , Flavonoides/química , Flavonoides/farmacologia , Glicina/análogos & derivados , Sulfonamidas
13.
Mol Biol Rep ; 51(1): 968, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249599

RESUMO

BACKGROUND: Chrysin, a polyphenolic compound, possesses antioxidant and anti-inflammatory properties. In this study, we investigated the effect of chrysin on the expression of A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), a protease enzyme involved in degrading extracellular matrix associated with atherosclerosis. METHODS AND RESULTS: We have studied the cell viability by MTT assay and foam cell formation by oil red O staining. The mRNA and protein expression of ADAMTS-4 was studied using quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. Our study showed that chrysin significantly downregulates the expression of ADAMTS-4 in foam cells. CONCLUSION: Chrysin's ability to downregulate the expression of ADAMTS-4, a protease involved in degrading the extracellular matrix, bestows upon it a new therapeutic potential for managing atherosclerosis.


Assuntos
Proteína ADAMTS4 , Regulação para Baixo , Flavonoides , Células Espumosas , Flavonoides/farmacologia , Proteína ADAMTS4/metabolismo , Proteína ADAMTS4/genética , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Sobrevivência Celular/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética
14.
Physiol Plant ; 176(5): e14488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228009

RESUMO

As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.


Assuntos
Acetatos , Ciclopentanos , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Oxilipinas , Folhas de Planta , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Flavonoides/metabolismo , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Asparagaceae/genética , Asparagaceae/metabolismo , Asparagaceae/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
15.
Sci Rep ; 14(1): 21295, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266600

RESUMO

Recently, the growth of consumer demand for functional foods with potential nutritional and health benefits led to rapid growth of analytical tools for profiling of bioactive metabolites and assure quality. Bee propolis is one of the most important bee products owing to its myriad health value. As a gummy exudate produced in beehives after harvesting from different plant species, bee propolis contains bioactive secondary metabolites. The current study aims to profiling the chemical composition of propolis samples from Nigeria using HPLC-UV-ELSD and with the aid of NMR-based analysis for assignment of metabolites classes abundant in Nigerian propolis. Red Nigerian propolis samples were subjected to phytochemical analysis using HPLC-UV-ELSD and NMR. Further chromatographic separation of promising fractions was performed by column chromatography and size exclusion chromatography. Screening of the antitrypanosomal and cytotoxic activities against Trypanosoma brucei and human leukemia cell lines (U937), respectively, was performed. The performance of LC-MS permitted identification of the different components from which 13 compound were identified and allowed combination of fractions to afford 9 fractions from which two isoflavonoids were isolated and identified using 1D and 2D NMR analysis with MS as isosativan and Medicarpin. Red Nigerian propolis crude extract showed the highest inhibitory activity at 6.5 µg/ml compared to moderate activity for the isolated compounds with MIC of 7.6 µg/ml and 12.1 µg/ml for medicarpin and isosativan, respectively. Moreover, the fraction RN-6 from the total extract showed the potent cytotoxic effect with IC50 = 26.5 µg/ml compared to standard diminazen which showed IC50 = 29.5 µg/ml.


Assuntos
Antiprotozoários , Flavonoides , Compostos Fitoquímicos , Própole , Trypanosoma brucei brucei , Própole/química , Própole/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/química , Humanos , Trypanosoma brucei brucei/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Nigéria , Animais , Cromatografia Líquida de Alta Pressão , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Abelhas
16.
ScientificWorldJournal ; 2024: 6833341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220471

RESUMO

The flavonoid compounds in C. caudatus K., known for their various benefits, are prone to quick degradation, leading to reduced biological activity. This research aimed to evaluate the types of coatings: gum Arabic (GA), maltodextrin (MD), and a combination of both (MDGA) in C. caudatus K. extract microcapsules. The extract of C. caudatus K. was encapsulated by different coating materials, GA, MD, and MDGA, and then dried using a freeze-drying technique. The evaluation was carried out by comparing the encapsulation efficiency values, biological activity, and release tests of each type of microcapsule coating. The research results indicate that coating agents have impacts significantly at p < 0.05 on efficiency encapsulation. Flavonoids were retained up to 79.67% by the MDGA coating, compared with 72.8% and 47.66%a retained by single GA and MD coatings, respectively. The results of the encapsulation efficiency are supported by the results of characterization using a scanning electron microscope (SEM), where MDGA has rounder shapes with smoother surfaces compared with a single coating alone, like GA or MD. In addition, by particle size analysis using a particle size analyzer (PSA), the average sizes of MDGA, GA, and MD microcapsules were shown at 154.13 µm, 152 µm, and 166.81 µm, respectively. The three microcapsules showed an order of activities as MDGA > GA > MD coatings in alpha-amylase inhibition assay. Similar results were also shown in the antioxidant assay, which demonstrated that the three microcapsules had moderate antioxidant activities, again in the order of MDGA > GA > MD. The three different coating types showed greater release at pH 7.4 compared to those at pH 2.2 in the controlled release test, which ran from 30 to 120 min. In summary, freeze-drying microencapsulation using biodegradable polymers was identified as a viable method for harnessing the health benefits of C. caudatus K. extracts. This process produced a convenient powder form that could be used in drug delivery systems. The use of MDGA mixed coating resulted in better impact based on %EE value and biological activity, as well as improved characteristics of microcapsules compared with single coating.


Assuntos
Cápsulas , Composição de Medicamentos , Liofilização , Goma Arábica , Composição de Medicamentos/métodos , Goma Arábica/química , Antioxidantes/química , Antioxidantes/farmacologia , Flavonoides/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/química , Polímeros/química
17.
Chem Biol Drug Des ; 104(3): e14619, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223743

RESUMO

Parkinson's disease (PD) stands as the second most common neurological disorder after Alzheimer's disease, primarily affecting the elderly population and significantly compromising their quality of life. The precise etiology of PD remains elusive, but recent research has shed light on potential factors, including the formation of α-synuclein aggregates, oxidative stress, neurotransmitter imbalances, and dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) region of the brain, culminating in motor symptoms such as bradykinesia, akinesia, tremors, and rigidity. Monoamine oxidase (MAO) is an essential enzyme, comprising two isoforms, MAO-A and MAO-B, responsible for the oxidation of monoamines such as dopamine. Increased MAO-B activity is responsible for decreased dopamine levels in the SNpc region of mid brain which is remarkably associated with the pathogenesis of PD-like manifestations. Inhibitors of MAO-B enhance striatal neuronal responses to dopamine, making them valuable in treating PD, which involves dopamine deficiency. Clinically approved MAO-B inhibitors such as selegiline, L-deprenyl, pargyline, and rasagiline are employed in the management of neurodegenerative conditions associated with PD. Current therapeutic interventions including MAO-B inhibitors for PD predominantly aim to alleviate these motor symptoms but often come with a host of side effects that can be particularly challenging for the patients. While effective, they have limitations, prompting a search for alternative treatments, there is a growing interest in exploring natural products notably flavonoids as potential sources of novel MAO-B inhibitors. In line with that, the present review focuses on natural flavonoids of plant origin that hold promise as potential candidates for the development of novel MAO-B inhibitors. The discussion encompasses both in vitro and in vivo studies, shedding light on their potential therapeutic applications. Furthermore, this review underscores the significance of exploring natural products as valuable reservoirs of MAO-B inhibitors, offering new avenues for drug development and addressing the pressing need for improved treatments in PD-like pathological conditions. The authors of this review majorly explore the neuroprotective potential of natural flavonoids exhibiting notable MAO-B inhibitory activity and additionally multi-targeted approaches in the treatment of PD with clinical evidence and challenges faced in current therapeutic approaches.


Assuntos
Flavonoides , Inibidores da Monoaminoxidase , Monoaminoxidase , Doença de Parkinson , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Monoaminoxidase/metabolismo , Humanos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Inibidores da Monoaminoxidase/química , Animais , Dopamina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico
18.
Food Res Int ; 194: 114864, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232506

RESUMO

Coix seed, a prevalent medicinal and food-homologous plant, is extensively consumed in Asia. It has various pharmacological properties, such as anti-inflammatory and anticancer effects. Coix seed oil, as its main component, is widely produced. However, during the industrial production process of Coix seed oil, substantial byproducts are produced, namely, defatted Coix seeds, which are also worth researching. Currently, it remains unclear whether there will be differences in defatted Coix seeds obtained from different geographical locations, with previous studies reporting that phenolic compounds in defatted Coix seeds have a significant utilization value. In this study, firstly, the TPC and TFC of samples collected in three temperature zones were detected. Subsequently, UPLC-Q-TOF/MS was used to analyze the samples, and a metabolomics data processing strategy and chemometric analysis method were established. We have confirmed the presence of flavonoids and phenolic compounds in 30 batches of Coix seed from different temperature zones in China, and concluded that the overall quality of Coix seed from different batches is relatively stable. With the established strategy, 12 characteristic chemical markers were identified, and 5 valuable phenolic chemical markers were selected for distinguishing the origin of Coix seed and evaluating the quality of defatted Coix seed. Among them, proanthocyanidin A2 has the highest content in defatted Coix seed in subtropical regions, while the content of caffeic acid, naringin, rutin, and chlorogenic acid decreases from north to south. The strategy proposed in this study may provide some basis for the quality control and rational use of defatted Coix seeds.


Assuntos
Coix , Metabolômica , Fenóis , Sementes , Sementes/química , Metabolômica/métodos , Coix/química , Fenóis/análise , Quimiometria , Cromatografia Líquida de Alta Pressão , China , Flavonoides/análise , Biomarcadores/análise
19.
Food Res Int ; 194: 114899, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232526

RESUMO

This study aimed to assess the response of four red grapevine (Vitis vinifera L.) varieties to elevated temperature, drought and their combination, focusing on the concentration and profile of grape flavonoids. Fruit-bearing cuttings of Tempranillo, Cabernet Sauvignon, Merlot and Grenache grew in greenhouses under, either ambient temperature (T) or ambient temperature + 4 °C (T+4). Plants also received either full irrigation (FI, substrate field capacity) or deficit irrigation (DI, 50 % substrate field capacity). In general, T+4 decreased the concentration of anthocyanins, but DI mitigated this effect. T+4 and DI increased the abundance of methylated anthocyanins and flavonols with additive effects. Grapes under T+4 had higher abundance of acylated anthocyanins, while DI increased the proportion of tri-hydroxylated anthocyanins and flavonols. The impact of interacting elevated temperature and drought on grape composition was genotype dependent. In terms of anthocyanin concentration and profile, Tempranillo was the most affected variety, whereas Grenache was less sensitive.


Assuntos
Irrigação Agrícola , Antocianinas , Secas , Flavonoides , Frutas , Vitis , Vitis/química , Antocianinas/análise , Flavonoides/análise , Irrigação Agrícola/métodos , Frutas/química , Temperatura Alta , Genótipo , Flavonóis/análise
20.
Bioorg Med Chem ; 112: 117884, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226716

RESUMO

Small molecule inhibitors targeting the bromodomain and extra-terminal domain (BET) family proteins have emerged as a promising class of anti-cancer drugs. Nevertheless, the clinical advancement of these agents has been significantly hampered by challenges related to their potency, oral bioavailability, or toxicity. In this study, virtual screening approaches were employed to discover novel inhibitors of the bromodomain-containing protein 4 (BRD4) by analyzing their comparable chemical structural features to established BRD4 inhibitors. Several of these compounds exhibited inhibitory effects on BRD4 activity ranging from 60 % to 70 % at 100 µM concentrations, while one compound also exhibited an 84 % inhibition of Sirtuin 2 (SIRT2) activity. Furthermore, a subset of structurally diverse compounds from the BRD4 inhibitors was selected to investigate their anti-cancer properties in both 2D and 3D cell cultures. These compounds exhibited varying effects on cell numbers depending on the specific cell line, and some of them induced cell cycle arrest in the G0/G1 phase in breast cancer (MDA-MB-231) cells. Moreover, all the compounds studied reduced the sizes of spheroids, and the most potent compound exhibited a 90 % decrease in growth at a concentration of 10 µM in T47D cells. These compounds hold potential as epigenetic regulators for future studies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Fatores de Transcrição , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Flavonoides/química , Flavonoides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA