Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.487
Filtrar
1.
Food Chem ; 415: 135756, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36863237

RESUMO

Antique Lotus (Nelumbo) is a perennial aquatic plant with unique historical significance and cultural value, whereas its potential economic value hasn't been fully explored. The present study showed that lotus seedpods had significantly higher antioxidant capacity than other parts by FRAP, ABTS, and ORAC assays and analyzed the proanthocyanidins and flavonols in the seedpods of Antique Lotus. Polyphenols contributed to great antioxidant activity and 51 polyphenols were identified by UPLC-TQ-MS analysis. In which, 27 compounds were identified from lotus seedpods for the first time, including 20 trimers, 5 dimers and 2 tetramers of proanthocyanidin. Total proanthocyanidins explained 70%-90% of the different antioxidant activities and the content of proanthocyanidin trimers showed the strongest correlations with the antioxidant activities. This study provided a fundamental reference for the research of polyphenols in lotus and found that Antique Lotus seedpod extracts have the promising prospects of additives used in feed and food processing.


Assuntos
Lotus , Proantocianidinas , Antioxidantes/análise , Flavonóis/análise , Lotus/química , Extratos Vegetais , Polifenóis/análise , Proantocianidinas/análise , Sementes/química
2.
J Mol Model ; 29(4): 93, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36905478

RESUMO

Anthocyanidins, leucoanthocyanidins, and flavonols are natural compounds mainly known due to their reported biological activities, such as antiviral, antifungal, anti-inflammatory activities, and antioxidant activity. In the present study, we performed a comparative structural, conformational, electronic, and nuclear magnetic resonance analysis of the reactivity of the chemical structure of primary anthocyanidins, leucoanthocyanidins, and flavonoids. We focused our analysis on the following molecular questions: (i) differences in cyanidin catechols ( +)-catechin, leucocyanidin, and quercetin; (ii) the loss of hydroxyl presents in the R1 radical of leucoanthocyanidin in the functional groups linked to C4 (ring C); and (iii) the electron affinity of the 3-hydroxyl group (R7) in the flavonoids delphinidin, pelargonidin, cyanidin, quercetin, and kaempferol. We show unprecedented results for bond critical point (BCP) of leucopelargonidin and leucodelphirinidin. The BCP formed between hydroxyl hydrogen (R2) and ketone oxygen (R1) of kaempferol has the same degrees of covalence of quercetin. Kaempferol and quercetin exhibited localized electron densities between hydroxyl hydrogen (R2) and ketone oxygen (R1). Global molecular descriptors showed quercetin and leucocyanidin are the most reactive flavonoids in electrophilic reactions. Complementary, anthocyanidins are the most reactive in nucleophilic reactions, while the smallest gap occurs in delphinidin. Local descriptors indicate that anthocyanidins and flavonols are more prone to electrophilic attacks, while in leucoanthocyanidins, the most susceptible to attack are localized in the ring A. The ring C of anthocyanidins is more aromatic than the same found in flavonols and leucoanthocyanidins. METHODS: For the analysis of the molecular properties, we used the DFT to evaluate the formation of the covalent bonds and intermolecular forces. CAM-B3LYP functional with the def2TZV basis set was used for the geometry optimization. A broad analysis of quantum properties was performed using the assessment of the molecular electrostatic potential surface, electron localization function, Fukui functions, descriptors constructed from frontier orbitals, and nucleus independent chemical shift.


Assuntos
Antocianinas , Flavonóis , Flavonóis/química , Antocianinas/química , Quercetina/química , Quempferóis/química , Flavonoides/química , Hidrogênio/química , Oxigênio
3.
Food Res Int ; 164: 112384, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737968

RESUMO

Vegetables are rich in flavonoids and are widely consumed in our daily life. However, comprehensive information on flavonoids components in vegetable varieties and the distribution of flavonoids with health-promoting effects in different vegetables are rarely investigated. Here, we analyzed the constitution of flavonoids among 20 vegetables by widely-targeted metabolome analysis. A total of 403 flavonoids were detected and classified as flavonoid, flavonols, anthocyanins, isoflavones, flavonoid carbonoside, dihydroflavone, chalcones, flavanols, dihydroflavonol, tannin, proanthocyanidins, and other flavonoids. Interestingly, we found that the content and types of flavonoids in bean sprouts and hot pepper were relatively abundant, whereas those were lower in carrot, lettuce, and Zizania latifolia. Then, we characterized the representative flavonoids including flavonoid, flavonols, chalcones, and isoflavones, and related them to the health-promoting effects of vegetables. Finally, we examined the relevance of the flavonoids to antioxidant capacity. Both bean sprouts and hot pepper possessed higher antioxidant enzyme activity, which were responsible for their great antioxidant capacity. Our study established a database of major flavonoids components in vegetables and further provides a new hint for the selection and breeding of vegetables based on their health-promoting effects.


Assuntos
Chalconas , Isoflavonas , Flavonoides , Verduras , Antioxidantes/análise , Antocianinas , Melhoramento Vegetal , Flavonóis , Metabolômica
4.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838973

RESUMO

Woodwardia japonica is a kind of great potential edible and medicinal fern. In a previous study, it was found that flavonoid and antioxidant activity of W. japonica from different sites were different. However, the cause of the differences has still been unclear, which has restricted the utilization of W. japonica. In this paper, flavonoid and antioxidant activity of W. japonica from nine different regions were determined with the method of a colorimetric assay with UV-VIS spectrophotometry and HPLC-ESI-TOF-MS, and the effects of climate factors on flavonoids and antioxidant activities were evaluated by mathematical modeling and statistical methods. The results showed: (1) total flavonoid content (TFC) of W. japonica from Wuyi Mountain (Jiangxi) was the highest, which might be related to the low temperature; (2) the differences of antioxidant activities of W. japonica might be related to precipitation; (3) five flavonols, two flavones and one isoflavone were tentatively identified in W. japonica; (4) flavonol and isoflavone might be affected by sunshine duration, and flavones were probably related to temperature. In conclusion, the effects of climate factors on flavonoids and antioxidants are significant, which would provide an important basis for further exploring the mechanism of climate affecting secondary metabolites.


Assuntos
Flavonas , Isoflavonas , Plantas Medicinais , Flavonoides/farmacologia , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Flavonóis
5.
Nutrients ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839212

RESUMO

Metabolic syndrome (MetS) is a cluster of metabolic disorders primarily caused by central obesity, which results in chronic inflammation leading to hypertension, diabetes and atherogenic dyslipidemia. Inflammation underlying MetS could be the target for dietary flavonols as they present antioxidative properties. The aim of this paper was to analyze the differences in habitual intake of selected flavonols (quercetin, kaempferol, isorhamnetin and myricetin) between MetS patients and healthy participants, and its relationship with MetS advancement. Ninety participants were enrolled in this study. The one-year flavonol intake was assessed with a dedicated food frequency questionnaire. The patients with MetS consumed significantly less quercetin (p = 0.01), kaempferol (p = 0.04), isorhamnetin (p < 0.001), total flavonols (p = 0.01), tomatoes (p = 0.001) and wine (p = 0.01) daily. Further analysis revealed a moderate inverse correlation between quercetin (p = 0.001), kaempferol (p = 0.01), isorhamnetin (p < 0.001), total flavonols (p = 0.001) and tomato consumption (p = 0.004) and MetS stage. The analysis of laboratory parameters showed that dietary intake of flavonols was not correlated with lipid profile, glucose level or renal function. On the basis of this observation, a potential protective effect of dietary flavonols, mainly from tomatoes, against MetS could be suggested. However, when referring to MetS components, flavonols probably mainly impact central obesity and blood pressure, without a significant impact on conventional lipid-profile parameters and glucose level.


Assuntos
Flavonóis , Síndrome Metabólica , Humanos , Adulto , Flavonóis/análise , Quercetina/metabolismo , Quempferóis , Obesidade Abdominal , Polônia , Flavonoides , Ingestão de Alimentos , Inflamação , Glucose , Lipídeos
6.
Nutrients ; 15(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839330

RESUMO

Cancer is a leading cause of death worldwide, posing a huge burden upon society and individuals. The adequate intake of fruit and vegetables is reported to be an effective strategy for primary cancer prevention. Fruits and vegetables are rich in nutrients, such as vitamins and flavonoids, which may reduce the occurrence and progression of cancers. However, the importance of each flavonoid and the sub-classes remains controversial regarding cancer mortality. The population benefiting from increased flavonoid intake has not been determined. An estimation of cancer mortality by flavonoid intake is not established. We explored the association between the intake of flavonoids and cancer mortality amongst 14,029 participants in the National Health and Nutrition Examination Survey. During a median follow-up of 117 months, 405 cancer deaths were confirmed. Being in the second, third, and fourth quartiles of flavonol intake, the cancer mortality was inversely associated with the intake of flavonols (multivariate analysis HR (95% CI] 0.58 [0.36, 0.91], p = 0.02, Q1 vs. Q2; 0.55 [0.31, 0.96], p = 0.04, Q1 vs. Q3; 0.54 [0.30, 0.99], p = 0.05, Q1 vs. Q4, respectively). Potential effects of dietary flavonol intake against cancer death was observed especially in participants aged 50 or above, males, whites, former smokers, people who used to drink or drink alcohol mildly, people without hyperlipidemia, and people with hypertension. Moreover, the dietary intakes of peonidin, naringenin, and catechin were inversely associated with cancer mortality (multivariate HR [95% CI] 0.93 [0.88,0.98], p = 0.01; 0.97 (0.95,1.00), p = 0.03; 0.98 (0.96,1.00), p = 0.05, respectively). Furthermore, a nomogram based on flavonol intake is feasible for assessing cancer mortality for each participant. Taken together, our results could improve personalized nutrition amongst cancer patients.


Assuntos
Flavonoides , Neoplasias , Masculino , Humanos , Dieta , Inquéritos Nutricionais , Estudos de Coortes , Polifenóis , Verduras , Flavonóis , Ingestão de Alimentos
7.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838766

RESUMO

Hibiscus rosa-sinensis plants are mainly cultivated as ornamental plants, but they also have food and medicinal uses. In this work, 16 H. rosa-sinensis cultivars were studied to measure their colorimetric parameters and the chemical composition of hydroethanolic extracts obtained from their petals. These extracts were characterized using UHPLC-ESI+-Obitrap-MS, and their antioxidant activity was evaluated using the ORAC assay. The identified flavonoids included anthocyanins derived from cyanidin, glycosylated flavonols derived from quercetin and kaempferol, and flavan-3-ols such as catechin and epicatechin. Cyanidin-sophoroside was the anthocyanin present in extracts of lilac, pink, orange, and red flowers, but was not detected in extracts of white or yellow flowers. The total flavonol concentration in the flower extracts was inversely proportional to the total anthocyanin content. The flavonol concentration varied according to the cultivar in the following order: red < pink < orange < yellow ≈ white, with the extract from the red flower presenting the lowest flavonol concentration and the highest anthocyanin concentration. The antioxidant activity increased in proportion to the anthocyanin concentration, from 1580 µmol Trolox®/g sample (white cultivar) to 3840 µmol Trolox®/g sample (red cultivar).


Assuntos
Catequina , Hibiscus , Rosa , Flavonoides/análise , Antocianinas/química , Antioxidantes/análise , Hibiscus/química , Flavonóis/química , Catequina/análise , Flores/química , Cor
8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769274

RESUMO

Phytochemicals have long been effective partners in the fight against several diseases, including cancer. Among these, flavonoids are valuable allies for both cancer prevention and therapy since they are known to influence a large panel of tumor-related processes. Particularly, it was revealed that quercetin, one of the most common flavonoids, controls apoptosis and inhibits migration and proliferation, events essential for the development of cancer. In this review, we collected the evidence on the anti-cancer activity of quercetin exploring the network of interactions between this flavonol and the proteins responsible for cancer onset and progression focusing on breast, colorectal and liver cancers, owing to their high worldwide incidence. Moreover, quercetin proved to be also a potentiating agent able to push further the anti-cancer activity of common employed anti-neoplastic agents, thus allowing to lower their dosages and, above all, to sensitize again resistant cancer cells. Finally, novel approaches to delivery systems can enhance quercetin's pharmacokinetics, thus boosting its great potentiality even further. Overall, quercetin has a lot of promise, given its multi-target potentiality; thus, more research is strongly encouraged to properly define its pharmaco-toxicological profile and evaluate its potential for usage in adjuvant and chemoprevention therapy.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Flavonoides/farmacologia , Flavonóis , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico
9.
Nutrients ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771271

RESUMO

There is interest in the impact that dietary interventions can have on preventing the transition from insulin resistance to type 2 diabetes, including a suggestion that the bioactive components of cocoa may enhance fasting insulin sensitivity. However, a role for cocoa flavanols (CF) in reducing insulin resistance in the insulin-stimulated state, an important risk factor for cardiovascular disease, is unresolved. This study investigated whether CF consumption improved whole-body insulin-mediated glucose uptake ('M') in females with overweight/obesity, using a randomized, double-blinded, placebo-controlled, parallel-group design. Thirty-two premenopausal females (19-49 years; 27-35 kg·m-2) with elevated HOMA-IR (HOMA-IR >1.5) supplemented their habitual diet with two servings/day of a high-flavanol cocoa drink (HFC; 609 mg CF/serving; n = 16) or low-flavanol cocoa drink (LFC; 13 mg CF/serving; n = 16) for 4 weeks. Assessment of HOMA-IR and 'M' during a 3-h, 60 mIU insulin·m-2·min-1 euglycemic clamp was performed before and after the intervention. Data are the mean (SD). Changes to HOMA-IR (HFC -0.003 (0.57); LFC -0.0402 (0.86)) and 'M' (HFC 0.99 (7.62); LFC -1.32 (4.88) µmol·kg-1·min-1) after the intervention were not different between groups. Four weeks' consumption of ~1.2 g CF/day did not improve indices of fasting insulin sensitivity or insulin-mediated glucose uptake. A recommendation for dietary supplementation with cocoa flavanols to improve glycemic control is therefore not established.


Assuntos
Cacau , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Feminino , Sobrepeso , Flavonóis/farmacologia , Obesidade , Insulina , Polifenóis , Suplementos Nutricionais , Glucose , Método Duplo-Cego
10.
Food Chem ; 413: 135598, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753785

RESUMO

Flavonoids are major nutrients in sea buckthorn berries. However, the effects of drying methods on flavonoids in sea buckthorn berries are unclear. In this study, ultra-performance liquid chromatography and metabolomics were adopted to analyse the effects of hot air drying (HAD) and infrared drying (IRD) on flavonoid compounds and antioxidant capacity in sea buckthorn berries. In total, 97 metabolites belonging to 12 classes were identified, including 26 flavones, 23 flavonols, and 11 flavanones. Additionally, 32 differential metabolites were identified among groups. Isorhamnetin and quercetin contents increased in response to HAD and IRD, while (-)-epigallocatechin and (-)-gallocatechin contents decreased. Differential metabolism of flavonoid compounds occurred mainly via the flavonoid biosynthesis and secondary metabolite biosynthesis pathways. Flavonoid compound degradation might be associated with antioxidant activity during drying. This study elucidated the effect of drying on nutritional components of sea buckthorn berries and may guide the improvement of quality during food processing.


Assuntos
Flavonoides , Hippophae , Flavonoides/análise , Hippophae/química , Antioxidantes/química , Flavonóis/análise , Frutas/química , Metabolômica
11.
Viruses ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2166969

RESUMO

COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC50 values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure-activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 via inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Antivirais/farmacologia , Flavonóis , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica
12.
New Phytol ; 238(2): 798-816, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683398

RESUMO

Flavonoids are important plant pigments and defense compounds; understanding the transcriptional regulation of flavonoid biosynthesis may enable engineering crops with improved nutrition and stress tolerance. Here, we characterize R2R3-MYB domain subgroup 7 transcription factor CaMYB39, which regulates flavonol biosynthesis primarily in chickpea trichomes. CaMYB39 overexpression in chickpea was accompanied by a change in flux availability for the phenylpropanoid pathway, particularly flavonol biosynthesis. Lines overexpressing CaMYB39 showed higher isoflavonoid levels, suggesting its role in regulating isoflavonoid pathway. CaMYB39 transactivates the transcription of early flavonoid biosynthetic genes (EBG). FLAVONOL SYNTHASE2, an EBG, encodes an enzyme with higher substrate specificity for dihydrokaempferol than other dihydroflavonols explaining the preferential accumulation of kaempferol derivatives as prominent flavonols in chickpea. Interestingly, CaMYB39 overexpression increased trichome density and enhanced the accumulation of diverse flavonol derivatives in trichome-rich tissues. Moreover, CaMYB39 overexpression reduced reactive oxygen species levels and induced defense gene expression which aids in partially blocking the penetration efficiency of the fungal pathogen, Ascochyta rabiei, resulting in lesser symptoms, thus establishing its role against deadly Ascochyta blight (AB) disease. Overall, our study reports an instance where R2R3-MYB-SG7 member, CaMYB39, besides regulating flavonol biosynthesis, modulates diverse pathways like general phenylpropanoid, isoflavonoid, trichome density, and defense against necrotrophic fungal infection in chickpea.


Assuntos
Cicer , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Cicer/genética , Cicer/metabolismo , Flavonoides , Flavonóis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
13.
J Food Sci ; 88(2): 696-716, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36617678

RESUMO

The impact of phenolic compounds on the human body depended on the type, content, bioavailability, and antioxidant activity. After digestion, different phenolic compounds had different changes of bioavailability and antioxidant activity, which needed to be considered in the application. In this experiment, the structural stability and antioxidant activity of 27 phenolic compounds (phenolic acids, flavonols, flavonoids, and flavanones) were investigated during the in vitro simulated digestion. This experiment eliminated the influence of food matrix, provide a basis for regularity for the changes of phenolic substances in different materials. Results showed that the bioaccessibility of phenolic compounds with different structures varied, and there was a conformational relationship between the structure and stability. After oral digestion, most of the phenolic compounds underwent degradation and the cellular antioxidant activity (CAA) values decreased to a large extent (p < 0.05). After gastric digestion, the content (p > 0.05) and CAA values (p < 0.05) of most phenolic compounds increased. However, after intestinal digestion, the phenolic compounds were degraded to a greater extent, and different structures of phenolic compounds had different changes in CAA values (p < 0.05). In general, the CAA values of most phenolic compounds after in vitro digestion were lower than the initial value. The 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ehylbenzthiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) values of phenolic acids and flavonols decreased after in vitro simulated digestion (p < 0.05), while the values of DPPH, ABTS, and FRAP of most flavonoids (p < 0.05) increased. The increased oxygen radical absorption capacity (ORAC) values were found in most phenolic acids, flavonols, and flavonoids (p < 0.05), and most flavanones showed unremarkable changes in ORAC values (p > 0.05). In general, the changing trend of chemical-based antioxidant activity was consistent with the content of phenolic compounds.


Assuntos
Antioxidantes , Flavanonas , Humanos , Antioxidantes/química , Fenóis/química , Flavonoides/química , Espécies Reativas de Oxigênio , Flavonóis , Digestão
14.
J Food Sci ; 88(2): 732-743, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36624623

RESUMO

Saffron floral bio-residues (SFB) are a valuable natural source of antioxidants and dyes that can contribute to the development of new food products and cosmetic products. Color change was usually observed during SFB storage, which may result in quality degradation of SFB or even cause potential hazard to human health. In order to clarify the mechanism of color change of SFB sample, the chemical differences among SFB samples stored under different conditions were analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and chemometrics methods, from which differential flavonols and anthocyanins were screened and their kinetic variations during sample storage summarized. In addition, the color change of the SFB sample was digitalized using an electronic eye (E-eye), which was found to be related to the content of delphinidin-3,5-di-O-glucoside (DDG). Moreover, the degradation kinetic parameters of DDG under different storage conditions were studied. In conclusion, the variation of kaempferol-, isorhamnetin-, and quercetin-type flavonol, and delphinidin- and petunidin-type anthocyanin resulted in the color change of SFB sample, and anthocyanin was found more unstable than flavonol. PRACTICAL APPLICATION: Saffron floral bio-residues (SFB) are popular natural sources of antioxidants and colorants that can be used in food and cosmetic products. Color change usually occurs during SFB storage period. Clarifying the mechanism of the color change of SFB will help us to ensure the quality of SFB.


Assuntos
Antocianinas , Crocus , Humanos , Antocianinas/análise , Crocus/química , Antioxidantes , Cromatografia Líquida , Flavonóis/análise , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Cor
15.
Viruses ; 15(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680200

RESUMO

COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC50 values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure-activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 via inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Antivirais/farmacologia , Flavonóis , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica
16.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674815

RESUMO

Kiwifruit (Actinidia chinensis) roots instead of fruits are widely used as Chinese medicine, but the functional metabolites remain unclear. In this study, we conducted comparative metabolome analysis between root and fruit in kiwifruit. A total of 410 metabolites were identified in the fruit and root tissues, and of them, 135 metabolites were annotated according to the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway. Moreover, 54 differentially expressed metabolites (DEMs) were shared in root and fruit, with 17 DEMs involved in the flavonoid pathway. Of the 17 DEMs, three flavonols (kaempferol-3-rhamnoside, L-Epicatechin and trifolin) and one dihydrochalcone (phloretin) showed the highest differences in the content level, suggesting that flavonols and dihydrochalcones may act as functional components in kiwifruit root. Transcriptome analysis revealed that genes related to flavonols and dihydrochalcones were highly expressed in root. Moreover, two AP2 transcription factors (TFs), AcRAP2-4 and AcAP2-4, were highly expressed in root, while one bHLH TF AcbHLH62 showed extremely low expression in root. The expression profiles of these TFs were similar to those of the genes related to flavonols and dihydrochalcones, suggesting they are key candidate genes controlling the flavonoid accumulation in kiwifruit. Our results provided an insight into the functional metabolites and their regulatory mechanism in kiwifruit root.


Assuntos
Actinidia , Transcriptoma , Frutas/genética , Frutas/metabolismo , Actinidia/genética , Actinidia/metabolismo , Flavonoides/metabolismo , Metaboloma , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Sci ; 329: 111599, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36682585

RESUMO

The enzyme flavone synthase Is (FNS Is) converts flavanones to flavones, whereas flavanone 3ß-hydroxylases (F3Hs) catalyze the formation of dihydroflavonols, a precursor of flavonols and anthocyanins. Canonical F3Hs have been characterized in seed plants, which are evolutionarily related to liverwort FNS Is. However, as important evolutionary lineages between liverworts and seed plants, ferns FNS Is and F3Hs have not been identified. In the present study, we characterized a bifunctional enzyme PnFNS I/F3H from the fern Psilotum nudum. We found that PnFNS I/F3H catalyzed the conversion of naringenin to apigenin and dihydrokaempferol. In addition, it catalyzed five different flavanones to generate the corresponding flavones. Site-directed mutagenesis results indicated that the P228-Y228 mutant protein displayed the FNS I/F2H activity (catalyzing naringenin to generate apigenin and 2-hydroxynaringenin), thus having similar functions as liverwort FNS I/F2H. Moreover, the overexpression of PnFNS I/F3H in Arabidopsis tt6 and dmr6 mutants increased the content of flavones and flavonols in plants, further indicating that PnFNS I/F3H showed FNS I and F3H activities in planta. This is the first study to characterize a bifunctional enzyme FNS I/F3H in ferns. The functional transition from FNS I/F3H to FNS I/F2H will be helpful in further elucidating the relationship between angiosperm F3Hs and liverwort FNS Is.


Assuntos
Gleiquênias , Flavanonas , Flavonas , Apigenina , Antocianinas , Gleiquênias/metabolismo , Oxigenases de Função Mista/metabolismo , Flavonas/metabolismo , Flavanonas/metabolismo , Flavonóis
18.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677535

RESUMO

Plants of the genus Pulicaria are known for providing traditional medicines, spices, herbal teas, and insect deterrents. Pulicaria inuloides (Poir.). DC. is one of the less chemically studied species within the genus. Hydroalcoholic extracts from roots and aerial parts of P. inuloides were analyzed using the UHPLC-PAD-MSn technique and revealed the presence of six caffeoylquinic and eleven caffeoylhexaric conjugates together with hydroxykaempferol dimethyl ether and quercetagetin trimethyl ether. Moreover, constituents of chloroform extract from the whole P. inuloides plants were isolated and identified by spectroscopic methods. One new and four known caryophyllene derivatives, three thymol derivatives, and four polymethoxylated flavonols were found in the analyzed extract. The structure of the new compound was established by spectroscopic methods (HRESIMS, 1H NMR, 13C NMR, COSY, HSQC, HMBC, NOESY). The cytotoxicity of 6-Hydroxykaempferol 3,7-dimethyl ether and quercetagetin 3,7,3'-trimethyl ether (chrysosplenol C), which are major flavonols isolated from the plant, were tested on prostate epithelial cells (PNT2), prostate cancer cells (DU145 and PC3), human keratinocytes (HaCaT), and melanoma cells (HTB140 and A375). Both flavonols demonstrated moderate cytotoxic activity against PC3 cells (IC50 = 59.5 µM and 46.6 µM, respectively). The remaining cell lines were less affected (IC50 > 150 µM).


Assuntos
Antineoplásicos , Éteres Metílicos , Pulicaria , Humanos , Flavonóis/farmacologia , Pulicaria/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
19.
Fitoterapia ; 164: 105375, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36511341

RESUMO

We collected stingless bee propolis Tetragonula biroi in order to find materials for medicine and cosmetics applications from tropical rainforest resources. Even though this bee has some biological functions including a cancer cell line, hair growth promotion, asthma remedy, α-glucosidase enzyme inhibition, and antiviral action, the investigation on anti-acne has not been reported yet. This study was to focus on propolis Tetragonula biroi extracts and leads us to isolate active compounds for antioxidant, anti-inflammatory, and anti-acne. We used methanol to obtain the extract from this propolis and assayed it with antioxidants, anti-inflammation, and anti-acne. The extract showed strong activity in antioxidants by DPPH radical scavenging activity (82.31% in 6.25 µg/ml). Via a column chromatography and Reveleris PREP purification system, we isolated 3'-O-methyldiplacone, nymphaeol A, and 5,7,3',4'-tetrahydroxy-6-geranyl flavonol. These compounds showed potential biological activity with IC50 for antioxidant 6.33, 15.49, 17.32 µM; and antiinflammatory 121.54, 121.20, 117.31 µM. The isolated compounds showed anti-acne properties with properties 0.00, 14.11, and 13.78 mm for the inhibition zone (at a concentration of 1 µg/well), respectively. The results indicated that the propolis extract of Tetragonula biroi has the potential to be developed as a cosmetic agent; however, further work needs to be done to clarify its application.


Assuntos
Própole , Animais , Própole/química , Antioxidantes/farmacologia , Antioxidantes/química , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Flavonóis
20.
J Pharm Biomed Anal ; 225: 115203, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36566723

RESUMO

Hyperlipidemia is a disease characterized by abnormal blood lipid levels and is the leading risk factor for cardiovascular disease. 3',4'-Dimethoxy flavonol-3-O-glucoside (abbreviated DF3G) is a new lipid-lowering drug created as a flavonoid structural analog. The principal metabolite of DF3G in human plasma is the aglycone glucuronide conjugate M2. The purpose of this study is to use liquid chromatography-tandem mass spectrometry to develop and validate a quantitative analysis method for DF3G and its metabolite M2 in human plasma, and to use the method to investigate the pharmacokinetics of DF3G and M2 in a clinical trial. This method employed DF3G-d6 as the internal standard, and plasma samples were processed by protein precipitation. Isocratic separation could accurately differentiate DF3G, M2, and DF3G-d6 from endogenous components in the matrix or other components in the samples, and endogenous components in the matrix had little impact on ionization efficiency. Positive electrospray ionization with multiple reaction monitoring (MRM) transitions of m/z 461.2 → 299.0 for DF3G, m/z 475.1 → 299.1 for M2 and m/z 467.1 → 305.1 for DF3G-d6 was used for quantification. The DF3G and M2 linear range for plasma were in the range of 4.00/4.00 ng/mL to 4000/4000 ng/mL. Both the analytes and the internal standard were stable regardless of whether they were in solution or plasma samples. The accuracy of the average concentration of the quality control samples was within 15% of the theoretical value, and the RSD was less than 15%. The method is rapid, accurate, straightforward, and precise. It is appropriate for the determination of DF3G and M2 concentrations in human plasma and has been successfully applied to determine the pharmacokinetic analysis in phase I clinical trials.


Assuntos
Glucosídeos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Flavonoides/química , Flavonóis , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...