RESUMO
We report the spillover of highly pathogenic avian influenza A(H5N1) into marine mammals in the northeastern United States, coincident with H5N1 in sympatric wild birds. Our data indicate monitoring both wild coastal birds and marine mammals will be critical to determine pandemic potential of influenza A viruses.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Focas Verdadeiras , Animais , Influenza Aviária/epidemiologia , Aves , Surtos de Doenças , Animais Selvagens , New England/epidemiologiaRESUMO
Mammals possess complex structures in their nasal cavities known as respiratory turbinate bones, which help the animal to conserve body heat and water during respiratory gas exchange. We considered the function of the maxilloturbinates of two species of seals, one arctic (Erignathus barbatus), one subtropical (Monachus monachus). By means of a thermo-hydrodynamic model that describes the heat and water exchange in the turbinate region we are able to reproduce the measured values of expired air temperatures in grey seals (Halichoerus grypus), a species for which experimental data are available. At the lowest environmental temperatures, however, this is only possible in the arctic seal, and only if we allow for the possibility of ice forming on the outermost turbinate region. At the same time the model predicts that for the arctic seals, the inhaled air is brought to deep body temperature and humidity conditions in passing the maxilloturbinates. The modeling shows that heat and water conservation go together in the sense that one effect implies the other, and that the conservation is most efficient and most flexible in the typical environment of both species. By controlling the blood flow through the turbinates the arctic seal is able to vary the heat and water conservation substantially at its average habitat temperatures, but not at temperatures around -40 °C. The subtropical species has simpler maxilloturbinates, and our model predicts that it is unable to bring inhaled air to deep body conditions, even in its natural environment, without some congestion of the vascular mucosa covering the maxilloturbinates. Physiological control of both blood flow rate and mucosal congestion is expected to have profound effects on the heat exchange function of the maxilloturbinates in seals.
Assuntos
Focas Verdadeiras , Conchas Nasais , Animais , Focas Verdadeiras/fisiologia , Cavidade Nasal , Temperatura , Água , Regiões ÁrticasRESUMO
Ringed seals (Pusa hispida) play a crucial role in Arctic food webs as important pelagic predators and represent an essential component of Inuvialuit culture and food security. Plastic pollution is recognized as a global threat of concern, and Arctic regions may act as sinks for anthropogenic debris. To date, mixed evidence exists concerning the propensity for Canadian Arctic marine mammals to ingest and retain plastic. Our study builds on existing literature by offering the first assessment of plastic ingestion in ringed seals harvested in the western Canadian Arctic. We detected no evidence of microplastic (particles ≥80 µm) retention in the stomachs of ten ringed seals from the Inuvialuit Settlement Region (ISR) in the Northwest Territories, Canada. These results are consistent with previous studies that have found that some marine mammals do not accumulate microplastics in evaluated regions.
Assuntos
Caniformia , Focas Verdadeiras , Animais , Canadá , Microplásticos , Plásticos , Cetáceos , Regiões ÁrticasRESUMO
Animal conservation relies on assessing the distribution and habitat use of species, but for endangered/elusive animals this can prove difficult. The Monk Seal, Monachus monachus, is one of the world's most endangered species of pinniped, and the only one endemic to the Mediterranean Sea. During recent decades, direct observations have been few and scattered, making it difficult to determine its distribution away from the Aegean Sea (core distribution area of the post-decline relict population). This study relies on environmental DNA (eDNA) analysis to detect the presence of the Monk Seal in 135 samples collected in 120 locations of the central/western Mediterranean Sea, spanning about 1500 km longitudinally and 1000 km latitudinally. A recently described species-specific qPCR assay was used on marine-water samples, mostly collected during 2021 by a Citizen Science (CS) project. Positive detections occurred throughout the longitudinal range, including the westernmost surveyed area (Balearic archipelago). The distribution of the positive detections indicated six "hotspots", mostly overlapping with historical Monk Seal sites, suggesting that habitat-specific characteristics play a fundamental role. We applied single-season occupancy models to correct for detection probability and to assess the importance of site-specific characteristics. The distance from small islets and protected (or access-restricted) areas was correlated negatively with the detection probability. This novel molecular approach, applied here for the first time in an extensive CS study, proved its potential as a tool for monitoring the distribution of this endangered/elusive species.
Assuntos
Ciência do Cidadão , DNA Ambiental , Monges , Focas Verdadeiras , Animais , Humanos , Espécies em Perigo de ExtinçãoRESUMO
For many decades, mercury (Hg) has been recognized as one of the most dangerous environmental pollutants that negatively affects the ecosystem, including human health. Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic, toxic and potentially carcinogenic compounds. The process of respiration in addition to dietary intake is a significant source of these compounds to the human or marine mammalian body. Therefore, the aim of this study was to determine the sources of PAHs and labile forms of mercury in the lungs of dead seals found in the southern Baltic Sea. Of the PAHs: pyrene, fluoranthene and chrysene showed the highest concentrations. Considering the content of individual Hg fractions, the highest percentage was characterized by Hg labile 1b (related to organic matter). In a few specimens, deviations from the trend described above were observed: a higher proportion of Hg labile 1a (mainly halide-bound forms of mercury than the mean value which may indicate their origin from aerosols). Hg concentrations increased with seal age due to bioaccumulation and biomagnification of Hg from food; therefore, adsorption of atmospheric mercury on alveoli is probably of decreasing importance with seal age. Ratios obtained: FLA/PYR <1; B(a)A/CHR <1; FLA/(PYR + FLA) < 0.4 indicate a petrogenic source. In contrast, high correlations of B(a)A, FLA and PYR and CHR with Hg suggest a common source of PAHs and mercury - from food. Conversely, the presence of pyrogenic (combustion-derived) benzo(a)pyrene in the lungs of these mammals could indicate a respiratory route of entry. Mercury and PAHs in the lungs of the seals studied were mainly of trophic origin, but the results presented here make the hypothesis of an airborne influx of Hg and PAHs into the lungs from marine mammals plausible. This is of particular importance in juveniles (pups), who, at the initial stage of life, spend time on land and do not obtain food on their own.
Assuntos
Mercúrio , Hidrocarbonetos Policíclicos Aromáticos , Focas Verdadeiras , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Mercúrio/análise , Ecossistema , Pulmão/química , Monitoramento AmbientalRESUMO
Variations in the reproductive and survival abilities of individuals within a population are ubiquitous in nature, key to individual fitness, and affect population dynamics, which leads to strong interest in understanding causes and consequences of vital-rate variation. For long-lived species, long-term studies of large samples of known-age individuals are ideal for evaluating vital-rate variation. A population of Weddell seals in Erebus Bay, Antarctica, has been studied each Austral spring since the 1960s. Since 1982, all newborns have been tagged each year and multiple capture-mark-recapture (CMR) surveys have been conducted annually. Over the past 20 years, a series of analyses have built on results of earlier research by taking advantage of steady improvements in the project's long-term CMR data and available analytical methods. Here, I summarize progress made on four major topics related to variation in age-specific vital rates for females: early-life survival and age at first reproduction, costs of reproduction, demographic buffering, and demographic senescence. Multistate modelling found that age at first reproduction varies widely (4-14 years of age) and identified contrasting influences of maternal age on survival and recruitment rates of offspring. Subsequent analyses of data for females after recruitment revealed costs of reproduction to both survival and future reproduction and provided strong evidence of demographic buffering. Recent results indicated that important levels of among-individual variation exist in vital rates and revealed contrasting patterns for senescence in reproduction and survival. Sources of variation in vital rates include age, reproductive state, year, and individual. The combination of luck and individual quality results in strong variation in individual fitness outcomes: ~80% of females born in the population produce no offspring, and the remaining 20% vary strongly in lifetime reproductive output (range: 1-23 pups). Further research is needed to identify the specific environmental conditions that lead to annual variation in vital rates and to better understand the origins of individual heterogeneity. Work is also needed to better quantify the relative roles of luck, maternal effects, and environmental conditions on variation in vital rates and to learn the importance of such variation to demographic performance of offspring and on overall population dynamics.
Assuntos
Focas Verdadeiras , Feminino , Animais , Dinâmica Populacional , Reprodução , Regiões Antárticas , Fatores EtáriosRESUMO
Seals haul out of water for extended periods during the annual molt, when they shed and regrow their pelage. This behavior is believed to limit heat loss to the environment given increased peripheral blood flow to support tissue regeneration. The degree to which time in water, particularly during the molt, may affect thermoregulatory costs is poorly understood. We measured the resting metabolism of three spotted seals (Phoca largha), one ringed seal (Pusa hispida) and one bearded seal (Erignathus barbatus) during and outside the molting period, while resting in water and when hauled out. Metabolic rates were elevated in spotted and ringed seals during molt, but comparable in water and air for individuals of all species, regardless of molt status. Our data indicate that elevated metabolism during molt primarily reflects the cost of tissue regeneration, while increased haul out behavior is driven by the need to maintain elevated skin temperatures to support tissue regeneration.
Assuntos
Caniformia , Phoca , Focas Verdadeiras , Animais , Água , Muda , Focas Verdadeiras/fisiologia , Regiões ÁrticasRESUMO
A hybrid solid phase extraction (HybridSPE) protocol tailored to ultra-performance convergence chromatography tandem mass spectrometry (UPC2-MS/MS) was developed for the determination of 19 steroid hormones in grey seal (Halichoerus grypus) blood plasma. In this study, the protocol demonstrated acceptable absolute recoveries ranging from 33 to 90%. The chromatographic separation was carried out using a gradient elution program with a total run time of 5 min. For most target analytes, the method repeatability ranged from 1.9 to 24% and the method limits of quantification (mLOQs) ranged from 0.03 to 1.67 ng/mL. A total of 9 plasma samples were analysed to demonstrate the applicability of the developed method, and 13 steroid hormones were quantified in grey seal pup plasma. The most prevalent steroids: cortisol, cortisone, corticosterone, 11-deoxycortisol, progesterone and 17α-hydroxyprogesterone were detected at concentrations in the range of 12.6-40.1, 7.10-24.2, 0.74-10.7, 1.06-5.72, 0.38-4.38 and Assuntos
Focas Verdadeiras
, Espectrometria de Massas em Tandem
, Animais
, Espectrometria de Massas em Tandem/métodos
, Limite de Detecção
, Esteroides/análise
, Cromatografia Líquida/métodos
, Cromatografia Líquida de Alta Pressão/métodos
, Hidrocortisona
, Plasma/química
RESUMO
Environmental data is crucial for planning, permitting, execution and post construction monitoring of marine renewable energy projects. In harsh conditions in which marine renewable energy is harvested, integrated monitoring platforms comprising multibeam imaging sonar systems coupled with other sensors can provide multiparametric data of the marine environment surrounding marine renewable energy installations. The aim of this study was to test the possibilities of observing the occurrence of fish and marine mammals using a multibeam imaging sonar system deployed at a wave power test site. The results obtained from a ten-day data set proved the platform as suitable for long time underwater monitoring and also revealed that the occurrence of fish and marine mammals was distributed across characteristic time and space domains. Large fish [>0.4 m] frequently occurred at night-time and near the benthic zone. Small fish [<0.2 m] frequently occurred during daylight and within the pelagic zone. The occurrence of seals was periodically distributed along a daily cycle, with intervals of 1-2 hours between maxima and minima. In conclusion, the use of multibeam imaging sonar can be a reliable technique for the qualitative and quantitative observations of fish and marine mammals in general and at marine renewable energy sites specifically, including protected and economically important species.
Assuntos
Ecossistema , Focas Verdadeiras , Animais , Peixes , Energia Renovável , Som , CetáceosRESUMO
Dredging is an excavation activity used worldwide in marine and freshwater environments to create, deepen, and maintain waterways, harbours, channels, locks, docks, berths, river entrances, and approaches to ports and boat ramps. However, dredging impacts on marine life, including marine mammals (cetaceans, pinnipeds, and sirenians), remain largely unknown. Here we quantified the effect of dredging operations in 2005 and 2019 on the occurrence of Indo-Pacific bottlenose dolphins (Tursiops aduncus) and long-nosed fur seals (Arctocephalus forsteri) in the Port River estuary, a highly urbanized estuary in Adelaide, South Australia. We applied generalised linear models to two long-term sighting datasets (dolphins: 1992-2020, fur seals: 2010-2020), to analyse changes in sighting rates as a function of dredging operations, season, rainfall, and sea surface temperature. We showed that the fluctuations in both dolphin and fur seal occurrences were not correlated with dredging operations, whereas sea surface temperature and season were stronger predictors of both species sighting rates (with seals more prevalent during the colder months, and dolphins in summer). Given the highly industrial environment of the Port River estuary, it is possible that animals in this area are habituated to high noise levels and therefore were not disturbed by dredging operations. Future research would benefit from analysing short-term effects of dredging operations on behaviour, movement patterns and habitat use to determine effects of possible habitat alteration caused by dredging.
Assuntos
Golfinho Nariz-de-Garrafa , Otárias , Focas Verdadeiras , Animais , Estuários , Ecossistema , CetáceosRESUMO
Wildlife camera traps and crowd-sourced image material provide novel possibilities to monitor endangered animal species. The massive data volumes call for automatic methods to solve various tasks related to population monitoring, such as the re-identification of individual animals. The Saimaa ringed seal (Pusa hispida saimensis) is an endangered subspecies only found in Lake Saimaa, Finland, and is one of the few existing freshwater seal species. Ringed seals have permanent pelage patterns that are unique to each individual and that can be used for the identification of individuals. A large variation in poses, further exacerbated by the deformable nature of seals, together with varying appearance and low contrast between the ring pattern and the rest of the pelage makes the Saimaa ringed seal re-identification task very challenging, providing a good benchmark by which to evaluate state-of-the-art re-identification methods. Therefore, we make our Saimaa ringed seal image (SealID) dataset (N = 57) publicly available for research purposes. In this paper, the dataset is described, the evaluation protocol for re-identification methods is proposed, and the results for two baseline methods-HotSpotter and NORPPA-are provided. The SealID dataset has been made publicly available.
Assuntos
Focas Verdadeiras , Animais , Espécies em Perigo de Extinção , Finlândia , Água DoceRESUMO
Rhythm and vocal production learning are building blocks of human music and speech. Vocal learning has been hypothesized as a prerequisite for rhythmic capacities. Yet, no mammalian vocal learner but humans have shown the capacity to flexibly and spontaneously discriminate rhythmic patterns. Here we tested untrained rhythm discrimination in a mammalian vocal learning species, the harbour seal (Phoca vitulina). Twenty wild-born seals were exposed to music-like playbacks of conspecific call sequences varying in basic rhythmic properties. These properties were called length, sequence regularity, and overall tempo. All three features significantly influenced seals' reaction (number of looks and their duration), demonstrating spontaneous rhythm discrimination in a vocal learning mammal. This finding supports the rhythm-vocal learning hypothesis and showcases pinnipeds as promising models for comparative research on rhythmic phylogenies.
Assuntos
Música , Focas Verdadeiras , Animais , HumanosRESUMO
BACKGROUND: Weddell seals (Leptonychotes weddellii) are a well-studied species of phocid with an apparent sensitivity to immobilising agents. Mortality as high as 31% has been reported during field immobilisation. This study investigated the use of a benzodiazepine in combination with an opioid agonist/antagonist for sedation in Weddell seal pups as part of a physiological study. METHODS: During the 2017 and 2019 Antarctic pupping seasons, 18 Weddell seal pups were sedated by intramuscular administration of a combination of midazolam and butorphanol or intravenous midazolam alone. Individuals were sedated at 1, 3, 5 and 7 weeks of age. Naltrexone and flumazenil were used to reverse sedation. The combination was 100% effective in providing appropriate sedation for the intended procedures. RESULTS: Analyses were performed to investigate relationships between dose administered, age, individual reactions, adverse effects and changes in dive physiology. Transient apnoea (10-60 seconds) was the most frequently observed adverse effect. No sedation-associated morbidity or mortality occurred. LIMITATIONS: The sample size is small and there is no pharmacokinetic information for either sedative or reversal in phocid species. CONCLUSIONS: The combination of midazolam (0.2-0.3 mg/kg) and butorphanol (0.1-0.2 mg/kg) provided safe and effective sedation, with reversible effects, in Weddell seal pups.
Assuntos
Anestesia , Focas Verdadeiras , Animais , Butorfanol/farmacologia , Midazolam/farmacologia , Anestesia/veterinária , Estações do AnoRESUMO
Developments in animal electronic tagging and tracking have transformed the field of movement ecology, but interest is also growing in the contributions of tagged animals to oceanography. Animal-borne sensors can address data gaps, improve ocean model skill and support model validation, but previous studies in this area have focused almost exclusively on satellite-telemetered seabirds and seals. Here, for the first time, we develop the use of benthic species as animal oceanographers by combining archival (depth and temperature) data from animal-borne tags, passive acoustic telemetry and citizen-science mark-recapture records from 2016-17 for the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. By comparing temperature observations to predictions from the West Scotland Coastal Ocean Modelling System, we quantify model skill and empirically validate an independent model update. The results from bottom-temperature and temperature-depth profile validation (5,324 observations) fill a key data gap in Scotland. For predictions in 2016, we identified a consistent warm bias (mean = 0.53 °C) but a subsequent model update reduced bias by an estimated 109% and improved model skill. This study uniquely demonstrates the use of benthic animal-borne sensors and citizen-science data for ocean model validation, broadening the range of animal oceanographers in aquatic environments.
Assuntos
Ciência do Cidadão , Focas Verdadeiras , Animais , Oceanografia , Oceanos e Mares , TemperaturaRESUMO
To understand the exposure and potential sources of emerging brominated flame retardants (EBFR) and organophosphate esters (OPEs) in marine wildlife from the Norwegian Arctic, we investigated concentrations of EBFRs in 157 tissue samples from nine species of marine vertebrates and OPEs in 34 samples from three whale species. The samples, collected from a wide range of species with contrasting areal use and diets, included blubber of blue whales, fin whales, humpback whales, white whales, killer whales, walruses and ringed seals and adipose tissue and plasma from polar bears, as well as adipose tissue from glaucous gulls. Tris(2-ethylhexyl) phosphate (TEHP) and tris(2-chloroisopropyl) phosphate (TCIPP) ranged from <0.61 to 164 and < 0.8-41 ng/g lipid weight, respectively, in blue whales and fin whales. All other EBRFs and OPEs were below the detection limit or detected only at low concentration. In addition to the baseline information on the occurrence of EBFRs and OPEs in marine wildlife from the Arctic, we provide an in-depth discussion regarding potential sources of the detected compounds. This information is important for future monitoring and management of EBFRs and OPEs.
Assuntos
Balaenoptera , Retardadores de Chama , Focas Verdadeiras , Ursidae , Animais , Retardadores de Chama/análise , Animais Selvagens , Monitoramento Ambiental , Organofosfatos , Ésteres , FosfatosRESUMO
Empirical evidence has shown that historical exposure of polychlorinated biphenyls (PCBs) to Baltic grey seals not only severely affected individual fitness, but also population growth rates and most likely caused the retarded recovery rate of the depleted population for decades. We constructed a new model which we term a toxicokinetic-toxicodynamic (TKTD) population model to quantify these effects. The toxicokinetic sub-model describes in detail the bioaccumulation, elimination and vertical transfer from mother to offspring of PCBs and is linked to a toxicodynamic model for estimation of PCB-related damage, hazard and stress impacts on fertility and survival rates. Both sub-models were linked to a Leslie matrix population model to calculate changes in population growth rate and age structure, given different rates of PCB exposure. Toxicodynamic model parameters related to reproductive organ lesions were calibrated using published historical data on observed pregnancy rates in Baltic grey seal females. Compared to empirical data, the TKTD population model described well the age-specific bioaccumulation pattern of PCBs in Baltic grey seals, and thus, the toxicokinetic parameters, deduced from the literature, are believed to be reliable. The model also captured well the general effects of PCBs on historical population growth rates. The model showed that reduced fertility due to increased PCB exposure causes decreased vertical transfer from mother to offspring and in turn increased biomagnification in non-breeding females. The developed TKTD model can be used to perform population viability analyses of Baltic grey seals with multiple stressors, also including by-catches and different hunting regimes. The model can also be extended to other marine mammals and other contaminants by adjustments of model parameters and thus provides a test bed in silico for new substances.
Assuntos
Bifenilos Policlorados , Focas Verdadeiras , Feminino , Animais , Bifenilos Policlorados/toxicidade , ToxicocinéticaRESUMO
BACKGROUND: The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS: In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS: HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS: sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.
Assuntos
Fármacos Neuroprotetores , Focas Verdadeiras , Animais , Encéfalo/metabolismo , Clusterina/genética , Furões/genética , Furões/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipóxia , Camundongos , Neurônios/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , TranscriptomaRESUMO
Grey seal (Halichoerus grypus) entrapment in fishing gear is well documented, consisting of two forms: peracute underwater entrapment and chronic entanglement. We now highlight a previously undescribed sequela to chronic entanglement in a female grey seal estimated to be at least 2 years of age. The animal was first observed in September 2018 on the coast of north Cornwall, southwest England, with a large encircling neck wound consistent with monofilament net entanglement. In April 2021, it was admitted for attempted rehabilitation but had to be euthanized after 9 days due to clinical deterioration despite treatment. At post-mortem examination, the seal was in poor nutritional state, the nose to flipper length was low for its estimated age and the liver was markedly enlarged, pale and friable in texture with evidence of recent and previous hepatic haemorrhage. Histopathology revealed hepatic amyloidosis and evidence of amyloid in one kidney and one adrenal gland. Proteomic analysis of microdissected amyloid from the liver indicated type AA amyloid. Chronic entanglement is the most plausible cause of AA amyloidosis in this animal, indicating that amyloidosis should be considered as a pathological sequela and welfare concern associated with chronic entanglement of grey seals.
Assuntos
Amiloidose , Focas Verdadeiras , Feminino , Animais , Proteômica , Autopsia/veterinária , Amiloidose/veterináriaRESUMO
This longitudinal study examines the growth of psychological characteristics and adaptation of physiological markers of stress during a six-month assessment and selection course for U.S. Navy SEALs. Resilience, hardiness, and grit instruments were used to evaluate the psychological characteristics. Blood samples were taken to determine physiological markers related to stress adaptation; specifically, evaluating DHEA, DHEA-to-cortisol ratio, BDNF, NPY, and cortisol. Data was collected at four timepoints throughout the assessment and selection course from 353 students over three classes. Results indicated that resilience and hardiness grow after an initial decline, DHEA and DHEA-to-cortisol increased suggesting physiological adaptation. However, psychological and physiological markers do not exhibit the same growth patterns for participants in the course. This study enhances the understanding of psychological growth and physiological adaptation in a high-stress environment over an extended duration.
Assuntos
Resiliência Psicológica , Focas Verdadeiras , Animais , Humanos , Hidrocortisona , Desidroepiandrosterona , Estudos Longitudinais , Biomarcadores , Estresse Psicológico/psicologiaRESUMO
In this theme issue, our multidisciplinary contributors highlight the cognitive adaptations of marine mammals. The cognitive processes of this group are highly informative regarding how animals cope with specifics of and changes in the environment, because, not only did modern marine mammals evolve from numerous, non-related terrestrial animals to adapt to an aquatic lifestyle, but some of these species regularly move between two worlds, land and sea. Here, we bring together scientists from different fields and take the reader on a journey that begins with the ways in which modern marine mammals (whales, dolphins, seals, sea lions and manatees) utilize their perceptual systems, next moves into studies of the constraints and power of individuals' cognitive flexibility, and finally showcases how those systems are deployed in social and communicative contexts. Considering the cognitive processes of the different marine mammals in one issue from varying perspectives will help us understand the strength of cognitive flexibility in changing environments-in marine mammals and beyond.