Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.111
Filtrar
1.
Pestic Biochem Physiol ; 204: 106026, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277355

RESUMO

As one of the most widely used pesticides in the global fungicide market, tebuconazole has become heavily embedded in soil along with antibiotic resistance genes (ARGs). However, it remains unclear whether the selective pressure produced by tebuconazole affects ARGs and their horizontal transfer. In this experiment, we simulated a tebuconazole-contaminated soil ecosystem and observed changes in the abundance of ARGs and mobile genetic element (MGEs) due to tebuconazole exposure. We also established a plasmid RP4-mediated conjugative transfer system to investigate in depth the impact of tebuconazole on the horizontal transfer of ARGs and its mechanism of action. The results showed that under tebuconazole treatment at concentrations ranging from 0 to 10 mg/L, there was a gradual increase in the frequency of plasmid conjugative transfer, peaking at 10 mg/L which was 7.93 times higher than that of the control group, significantly promoting horizontal transfer of ARGs. Further analysis revealed that the conjugative transfer system under tebuconazole stress exhibited strong ability to form biofilm, and the conjugative transfer frequency ratio of biofilm to planktonic bacteria varied with the growth cycle of biofilm. Additionally, scanning electron microscopy and flow cytometry demonstrated increased cell membrane permeability in both donor and recipient bacteria under tebuconazole stress, accompanied by upregulation of ompA gene expression controlling cell membrane permeability. Furthermore, enzyme activity assays indicated significant increases in CAT, SOD activity, and GSH content in recipient bacteria under tebuconazole stress. Moreover, expression levels of transmembrane transporter gene trfAp as well as genes involved in oxidative stress and SOS response were found to be correlated with the frequency of plasmid conjugative transfer.


Assuntos
Biofilmes , Fungicidas Industriais , Transferência Genética Horizontal , Triazóis , Triazóis/toxicidade , Triazóis/farmacologia , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Biofilmes/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , Genes Bacterianos
2.
Pestic Biochem Physiol ; 204: 106029, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277357

RESUMO

Dollar spot, a highly destructive turfgrasses disease worldwide, is caused by multiple species within the genus Clarireedia. Previous research indicated varying sensitivity to boscalid among Clarireedia populations not historically exposed to succinate dehydrogenase inhibitors (SDHIs). This study confirms that the differential sensitivity pattern is inherent among different Clarireedia spp., utilizing a combination of phylogenetic analyses, in vitro cross-resistance assays, and genetic transformation of target genes with different mutations. Furthermore, greenhouse inoculation experiments revealed that the differential boscalid sensitivity did not lead to pathogenicity issues or fitness penalties, thereby not resulting in control failure by boscalid. This research underscores the importance of continuous monitoring of fungicide sensitivity trends and highlights the complexity of chemical control of dollar spot due to the inherent variability in fungicide sensitivity among different Clarireedia spp.


Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Niacinamida , Doenças das Plantas , Fungicidas Industriais/farmacologia , Compostos de Bifenilo/farmacologia , Doenças das Plantas/microbiologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Poaceae/microbiologia , Filogenia , Farmacorresistência Fúngica/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/antagonistas & inibidores , Basidiomycota/genética , Basidiomycota/efeitos dos fármacos
3.
Pestic Biochem Physiol ; 204: 106028, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277356

RESUMO

The destructive disease gray leaf spot, caused by Stemphylium solani, is prevalent in tomato plants in China. A variety of fungicides have been extensively used for controlling the disease, with a particular focus on succinate dehydrogenase inhibitors (SDHIs) and quinone outside inhibitors (QoIs). However, there was a lack of information regarding the resistance of S. solani to boscalid (SDHI) and pyraclostrobin (QoI) in China. In this study, the sensitivity of S. solani to boscalid and pyraclostrobin was monitored. The EC50 values for boscalid ranged from 0.02 to 3.0 µg∙mL-1, with an average value of 0.62 µg∙mL-1, while the EC50 values for pyraclostrobin ranged from 0.21 to 14.71 µg∙mL-1, with an average value of 6.03 µg∙mL-1. Based on these findings, the frequencies of observed resistance were as follows: 36.7% for boscalid and 50% for pyraclostrobin; while the resistance frequency to both boscalid and pyraclostrobin in S. solani was 19.4%. The mutation associated with boscalid resistance in S. solani within tomato fields was identified as SdhB-H277Y, while the mutation related to pyraclostrobin resistance was found in cytochrome b, specifically Cytb-G143A. The resistant mutants displayed diminished fitness in terms of mycelial growth, yet their pathogenicity exhibited no significant disparities. To delay the development of resistance, it is advisable to employ a rotation strategy using alternative fungicides with different modes of action or mix with fungicides with multi-site-contact activity for disease management.


Assuntos
Ascomicetos , Compostos de Bifenilo , Farmacorresistência Fúngica , Fungicidas Industriais , Niacinamida , Doenças das Plantas , Solanum lycopersicum , Estrobilurinas , Estrobilurinas/farmacologia , Solanum lycopersicum/microbiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Niacinamida/farmacologia , Niacinamida/análogos & derivados , Farmacorresistência Fúngica/genética , China , Compostos de Bifenilo/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade
4.
Pestic Biochem Physiol ; 204: 106040, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277367

RESUMO

The essential oil and ß-cyclodextrin inclusion complex was able to inhibit the growth of Penicillium digitatum, a damaging pathogen that causes green mold in citrus fruit. In this study, cinnamaldehyde-ß-cyclodextrin inclusion complex (ß-CDCA) for controlling citrus green mold was synthesized by the co-precipitation method. Characterization of ß-CDCA revealed that the aromatic ring skeleton of cinnamaldehyde (CA) was successfully embedded into the cavity of ß-CD to form the inclusion complex. ß-CDCA inhibited P. digitatum at a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 4.0 g/L. FT-IR spectroscopy analysis, calcofluor white staining, extracellular alkaline phosphatase (AKP) activity and propidium iodide (PI) staining of hyphae morphology showed that ß-CDCA may damage the cell ultrastructure and membrane permeability of P. digitatum. The study further demonstrated that hydrogen peroxide (H2O2), malondialdehyde (MDA), and reactive oxygen species (ROS) markedly accumulated in 1/2 MIC ß-CDCA treated hyphae. This implied that ß-CDCA inhibited growth of P. digitatum by the triggering oxidative stress, which may have caused cell death by altering cell membrane permeability. In addition, in vivo results showed that ß-CDCA alone or combined with L-phenylalanine (L-PHe) displayed a comparable level to that of prochloraz. Therefore, ß-CDCA combined with L-PHe can thus be used as an eco-friendly preservative for the control green mold in postharvest citrus fruit.


Assuntos
Acroleína , Citrus , Fungicidas Industriais , Penicillium , Fenilalanina , beta-Ciclodextrinas , Acroleína/análogos & derivados , Acroleína/farmacologia , Penicillium/efeitos dos fármacos , Citrus/microbiologia , beta-Ciclodextrinas/farmacologia , Fenilalanina/farmacologia , Fenilalanina/análogos & derivados , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Peróxido de Hidrogênio/farmacologia , Malondialdeído/metabolismo
5.
Pestic Biochem Physiol ; 204: 106066, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277382

RESUMO

Difenoconazole (DIF) is frequently used for the management of fungal infections in fruit and vegetables and excessive residues in the aquatic environment can have adverse effects on fish such as growth inhibition. A treatment based on the dietary additive quercetin (QUE) is a promising approach to positively regulate the state of fish growth. This study focused on whether and how QUE alleviated DIF-induced growth inhibition in fish. In this study, carp were exposed to DIF (0.3906 mg/L) for consecutive 30 d, which showed growth inhibition. Disruption of the intestinal barrier led to elevated levels of intestinal lipopolysaccharide (LPS) and an inflammatory response. Through the intestinal-brain axis, LPS entered the brain where it disrupted the blood-brain barrier, triggered neuroinflammation, caused brain cell apoptosis, and damaged nerves in addition to other things. The dietary supplementation of QUE (400 mg/kg) reduced the levels of LPS in the intestinal and brain, while reducing inflammation and increasing the expression of appetite factors, thereby reducing growth inhibition in carp. This work provided evidence for QUE from the intestinal-brain axis perspective as a potential candidate for alleviating growth inhibition in fish.


Assuntos
Encéfalo , Carpas , Dioxolanos , Intestinos , Quercetina , Animais , Carpas/metabolismo , Quercetina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Intestinos/efeitos dos fármacos , Dioxolanos/farmacologia , Triazóis/farmacologia , Lipopolissacarídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fungicidas Industriais/farmacologia
6.
Pestic Biochem Physiol ; 204: 106086, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277399

RESUMO

Actinomycetes have emerged as significant biocontrol resources due to their rich array of bioactive natural products. While much research has historically focused on secondary metabolites isolated from their fermentation broth, there remains a dearth of reports on their volatile organic compounds (VOCs). Here, strain ML27, isolated from soil, was identified as Streptomyces albidoflavus based on morphological features, physiological, biochemical, and molecular characteristics (16S rRNA, atpD, recA, and rpoB gene sequences). VOCs from S. albidoflavus strain ML27 were effectively captured using solid-phase microextraction (SPME) and tentatively identified through gas chromatography-mass spectrometry (GC/MS). Among these compounds, 4-ethyl-1,2-dimethoxybenzene exhibited broad-spectrum antifungal activity and demonstrated efficacy in controlling citrus anthracnose, with a control efficacy of 86.67%. Furthermore, the inhibitory mechanism of 4-ethyl-1,2-dimethoxybenzene against Colletotrichum gloeosporioides was revealed. Results indicated that 4-ethyl-1,2-dimethoxybenzene induced swelling, deformity, and breakage in C. gloeosporioides mycelia, and significantly inhibited spore germination. Transcriptome analysis revealed that 4-ethyl-1,2-dimethoxybenzene inhibited the growth and development of C. gloeosporioides primarily by disrupting energy metabolism and the integrity of the cell wall and membrane. Based on these results, it is promising to develop 4-ethyl-1,2-dimethoxybenzene as a novel biopesticide for controlling citrus anthracnose.


Assuntos
Colletotrichum , Doenças das Plantas , Streptomyces , Colletotrichum/efeitos dos fármacos , Streptomyces/metabolismo , Streptomyces/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Citrus/microbiologia , Anisóis/farmacologia , Anisóis/química , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia
7.
Pestic Biochem Physiol ; 204: 106087, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277400

RESUMO

Anthracnose, a fungal disease, commonly infects tea plants and severely impacts the yield and quality of tea. One method for controlling anthracnose is the application of citronellol, a plant extract that exhibits broad-spectrum antimicrobial activity. Herein, the physiological and biochemical mechanism by which citronellol controls anthracnose caused by Colletotrichum camelliae was investigated. Citronellol exhibited excellent antifungal activity based on direct and indirect mycelial growth inhibition assays, with EC50 values of 76.88 mg/L and 29.79 µL/L air, respectively. Citronellol also exhibited good control effects on C. camelliae in semi-isolated leaf experiments. Optical and scanning electron microscopy revealed that citronellol caused C. camelliae mycelia to thin, fracture, fold and deform. Transmission electron microscopy revealed that the mycelial cell walls collapsed inward and separated, and the organelles became blurred after treatment with citronellol. The sensitivity of C. camelliae to calcofluor white staining was significantly enhanced by citronellol, while PI staining showed minimal fluorescence, and the relative conductivity of mycelia were not significantly different. Under citronellol treatment, the expression levels of ß-1,3-glucanase, chitin synthase, and chitin deacetylase-related genes were significantly decreased, while the expression levels of chitinase genes were increased, leading to lower chitinase activity and increased ß-1,3-glucanase activity. Therefore, citronellol disrupted the cell wall integrity of C. camelliae and inhibited normal mycelial growth.


Assuntos
Monoterpenos Acíclicos , Parede Celular , Colletotrichum , Colletotrichum/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Monoterpenos Acíclicos/farmacologia , Antifúngicos/farmacologia , Monoterpenos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/ultraestrutura , Fungicidas Industriais/farmacologia
8.
Pestic Biochem Physiol ; 204: 106092, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277404

RESUMO

Rice panicle blight (RPB) caused by various Fusarium spp. is an emerging disease in the major rice-growing regions of China. Epidemics of this disease cause significant yield loss and reduce grain quality by contaminating panicles with different Fusarium toxins. However, there is currently no registered fungicide for the control of RPB in China. The 14α-demethylation inhibitor (DMI) fungicide metconazole has been shown to be effective against several Fusarium spp. that cause wheat head blight, wheat crown rot and maize ear rot. In this study, we investigated the specific activity of metconazole against six Fusarium spp. that cause RPB. Metconazole significantly inhibited mycelial growth, conidium formation, germination, germ tube elongation and major toxin production in Fusarium strains collected from major rice-growing regions in China, as well as disrupting cell membrane function by inhibiting ergosterol biosynthesis. Greenhouse experiments indicated a significant reduction in blight occurrence and toxin accumulation in rice panicles treated with metconazole. Overall, our study demonstrated the potential of metconazole for managing RPB and toxin contamination, as well as providing insight into its bioactivities and modes of action of metconazole against distinct Fusarium spp.


Assuntos
Fungicidas Industriais , Fusarium , Oryza , Doenças das Plantas , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Oryza/microbiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Micotoxinas/biossíntese , Triazóis/farmacologia , Tricotecenos/metabolismo
9.
Pestic Biochem Physiol ; 204: 106107, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277411

RESUMO

The interaction between environmental factors affecting honey bees is of growing concern due to their potential synergistic effects on bee health. Our study investigated the interactive impact of Varroa destructor and chlorothalonil on workers' survival, fat body morphology, and the expression of gene associated with detoxification, immunity, and nutrition metabolism during their adult stage. We found that both chlorothalonil and V. destructor significantly decreased workers' survival rates, with a synergistic effect observed when bees were exposed to both stressors simultaneously. Morphological analysis of fat body revealed significant alterations in trophocytes, particularly a reduction in vacuoles and granules after Day 12, coinciding with the transition of the bees from nursing to other in-hive work tasks. Gene expression analysis showed significant changes in detoxification, immunity, and nutrition metabolism over time. Detoxification genes, such as CYP9Q2, CYP9Q3, and GST-D1, were downregulated in response to stressor exposure, indicating a potential impairment in detoxification processes. Immune-related genes, including defensin-1, Dorsal-1, and Kayak, exhibited an initially upregulation followed by varied expression patterns, suggesting a complex immune response to stressors. Nutrition metabolism genes, such as hex 70a, AmIlp2, VGMC, AmFABP, and AmPTL, displayed dynamic expression changes, reflecting alterations in nutrient utilization and energy metabolism in response to stressors. Overall, these findings highlight the interactive and dynamic effects of environmental stressor on honey bees, providing insights into the mechanisms underlying honey bee decline. These results emphasize the need to consider the interactions between multiple stressors in honey bee research and to develop management strategies to mitigate their adverse effects on bee populations.


Assuntos
Nitrilas , Varroidae , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Varroidae/fisiologia , Varroidae/efeitos dos fármacos , Nitrilas/toxicidade , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos , Fungicidas Industriais/toxicidade
10.
J Agric Food Chem ; 72(37): 20658-20669, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39226125

RESUMO

Sulfur-containing compounds have diverse biological functions and are crucial in crop protection chemistry. In this study, a series of novel 1-methyl-1H-pyrazol-5-amine derivatives incorporating disulfide moieties were synthesized and evaluated for their antimicrobial properties. In vitro bioassays demonstrated that compound 7f displayed potent antifungal activity against Valsa mali, with an EC50 value of 0.64 mg/L, outperforming allicin (EC50 = 26.0 mg/L) but lower than tebuconazole (EC50 = 0.33 mg/L). In vivo experiments confirmed that compound 7f could effectively inhibit V. mali infection on apples at a concentration of 100 mg/L, similar to the positive control tebuconazole. Mechanistic studies revealed that compound 7f could induce hyphal shrinkage and collapse, trigger intracellular reactive oxygen species accumulation, modulate antioxidant enzyme activities, initiate lipid peroxidation, and ultimately cause irreversible oxidative damage to the cells of V. mali. Additionally, compound 7b exhibited notable antibacterial activity, particularly against Pseudomonas syringae pv. actinidiae, with a MIC90 value of 1.56 mg/L, surpassing the positive controls allicin, bismerthiazol, and streptomycin sulfate. These findings suggest that 1-methyl-1H-pyrazol-5-amine derivatives containing disulfide moieties hold promise as potent candidates for the development of novel antimicrobial agents.


Assuntos
Dissulfetos , Testes de Sensibilidade Microbiana , Pirazóis , Dissulfetos/química , Dissulfetos/farmacologia , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Pseudomonas syringae/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Estrutura Molecular , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química
11.
J Agric Food Chem ; 72(38): 20882-20891, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39262056

RESUMO

Naturally derived compounds show promise as treatments for microbial infections. Polyphenols, abundantly found in various plants, fruits, and vegetables, are noted for their physiological benefits including antimicrobial effects. This study introduced a new set of acylated phloroglucinol derivatives, synthesized and tested for their antifungal activity in vitro against seven different pathogenic fungi. The standout compound, 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one (2b), exhibited remarkable fungicidal strength, with EC50 values of 1.39 µg/mL against Botrytis cinerea and 1.18 µg/mL against Monilinia fructicola, outperforming previously screened phenolic compounds. When tested in vivo, 2b demonstrated effective antifungal properties, with cure rates of 76.26% for brown rot and 83.35% for gray mold at a concentration of 200 µg/mL, rivaling the commercial fungicide Pyrimethanil in its efficacy against B. cinerea. Preliminary research suggests that 2b's antifungal mechanism may involve the disruption of spore germination, damage to the fungal cell membrane, and leakage of cellular contents. These results indicate that compound 2b has excellent fungicidal properties against B. cinerea and holds potential as a treatment for gray mold.


Assuntos
Ascomicetos , Botrytis , Fungicidas Industriais , Floroglucinol , Doenças das Plantas , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Floroglucinol/farmacologia , Floroglucinol/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Ascomicetos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Testes de Sensibilidade Microbiana
12.
J Agric Food Chem ; 72(38): 20794-20804, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39276343

RESUMO

Azobenzene moieties can serve as active fragments in antimicrobials and exert trans/cis conversions of molecules. Herein, a series of novel nicotinamide derivatives (NTMs) were developed by employing a two-step strategy, including azo-incorporating and bioisosteric replacement. Azo-incorporation can conveniently provide compounds that can be easily optically interconverted between trans/cis isomers, enhancing the structural diversity of azo compounds. It is noteworthy that the replacement of the azo bond with a 1,2,4-oxadiazole motif through further bioisosteric replacement led to the discovery of a novel compound, NTM18, which made a breakthrough in preventing rice sheath blight disease. A control effect value of 94.44% against Rhizoctonia solani could be observed on NTM18, while only 11.11% was determined for boscalid at 200 mg·L-1. Further mechanism validations were conducted, and the molecular docking analysis demonstrated that compound NTM18 might have a tight binding with SDH via an extra π-π interaction between the oxadiazole ring and residue of D_Y586. This work sets up a typical case for the united applications of azo-incorporating and bioisosteric replacement in fungicide design, posing an innovative approach in structural diversity-based development of pesticides.


Assuntos
Compostos Azo , Fungicidas Industriais , Simulação de Acoplamento Molecular , Niacinamida , Oryza , Doenças das Plantas , Rhizoctonia , Niacinamida/química , Compostos Azo/química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/química , Oryza/química , Oryza/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
13.
Pestic Biochem Physiol ; 204: 106085, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277398

RESUMO

Fluoxapiprolin, a novel piperidinyl thiazole isoxazoline fungicide, was developed by Bayer Crop Science in 2012. Despite its well-documented inhibitory activity against plant pathogenic oomycetes such as Phytophthora capsici and Phytophthora infestans, limited information regarding its antifungal spectrum and protective and curative activity is available. Fluoxapiprolin exhibited strong inhibitory activity against Phytophthora spp. and several Pythium spp., with EC50 values ranging from 2.12 × 10-4 to 2.92 µg/mL. It was much more effective against P. capsici in inhibiting mycelial growth, sporangium production, and cystospore germination than at reducing zoospore release. Moreover, fluoxapiprolin displayed both protective and curative activity against P. capsici infection in pepper plants under greenhouse conditions, with systemic translocation capability confirmed by High Performance Liquid Chromatography (HPLC) analysis. The results demonstrated the strong inhibitory activity of fluoxapiprolin against economically important plant oomycete pathogens, including Phytophthora spp. and several Pythium spp., and its certain translocation activity in pepper plants.


Assuntos
Capsicum , Fungicidas Industriais , Phytophthora , Doenças das Plantas , Fungicidas Industriais/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Capsicum/microbiologia , Capsicum/efeitos dos fármacos , Oomicetos/efeitos dos fármacos , Pythium/efeitos dos fármacos
14.
J Agric Food Chem ; 72(38): 20831-20841, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39284582

RESUMO

This research adopted the Fischer indole synthesis method to continue constructing a novel drug-like chemical entity based on the guidance of isocryptolepine and obtained four series of derivatives: Y, Da, Db, and Dc. The antimicrobial activity of these derivatives against plant pathogens was further evaluated. The results showed that Dc-2 had the best antifungal effect against Botrytis cinerea, and its EC50 value was up to 1.29 µg/mL. In addition, an in vivo activity test showed that the protective effect of Dc-2 on apples was 82.2% at 200 µg/mL, which was better than that of Pyrimethanil (45.4%). Meanwhile, it was found by scanning electron microscopy and transmission electron microscopy that the compound Dc-2 affected the morphology of mycelia. The compound Dc-2 was found to damage the cell membrane by PI and ROS staining. Through experiments such as leakage of cell contents, it was found that the compound Dc-2 changed the permeability of the cell membrane and caused the leakage of substances in the cell. According to the above studies, compound Dc-2 can be used as a candidate lead compound for further structural optimization and development.


Assuntos
Botrytis , Desenho de Fármacos , Fungicidas Industriais , Doenças das Plantas , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Malus/química , Malus/microbiologia , Bactérias/efeitos dos fármacos , Estrutura Molecular
15.
J Agric Food Chem ; 72(38): 20850-20861, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39287063

RESUMO

Replacing old pesticides with new pesticide varieties has been the main means to solve pesticide resistance. Therefore, it is necessary to research and develop new antifungal agents for plant protection. In this study, a series of pyridinecarbaldehyde phenylhydrazone derivatives were designed and evaluated for their inhibition activity on plant pathogenic fungi to search for novel fungicide candidates. Picolinaldehyde phenylhydrazone (1) and nicotinaldehyde phenylhydrazone (2) were identified as promising antifungal lead scaffolds. The 4-fluorophenylhydrazone derivatives (1a and 2a) of 1 and 2 showed highly effective and broad-spectrum inhibition activity in vitro on 11 phytopathogenic fungi with EC50 values of 0.870-3.26 µg/mL, superior to the positive control carbendazim in most cases. The presence of the 4-fluorine atom on the phenyl showed a remarkable activity enhancement effect. Compound 1a at 300 µg/mL provided almost complete protection against infection of Alternaria solani on tomatoes over the post-treatment 9 days and high safety to germination of plant seeds. Furthermore, 1a showed strong inhibition activity with an IC50 value of 0.506 µg/mL on succinate dehydrogenase in A. solani. Molecular docking showed that both 1a and 2a can well bind to the ubiquinone-binding region of SDH by the conventional hydrogen bond, carbon-hydrogen bond, π-π or π-amide interaction, π-alkyl interaction, X---F (X = N, C, or H) interaction, and van der Waal forces. Meanwhile, scanning and transmission electron analysis displayed that 1a destroyed the morphology of mycelium and the structure of the cell membrane of A. solani. Fluorescent staining analysis revealed that 1a changed the mitochondrial membrane potential and cell membrane permeability. Thus, pyridinecarbaldehyde phenylhydrazone compounds emerged as novel antifungal lead scaffolds, and 1a and 2a can be considered promising candidates for the development of new agricultural fungicides.


Assuntos
Alternaria , Fungicidas Industriais , Hidrazonas , Simulação de Acoplamento Molecular , Doenças das Plantas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Doenças das Plantas/microbiologia , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Relação Estrutura-Atividade , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Desenho de Fármacos , Solanum lycopersicum/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana
16.
Chemosphere ; 364: 143254, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233294

RESUMO

Pesticide use is a major factor contributing to the global decline in bee populations. Sublethal effects, such as behavior alterations, are neglected in pesticide regulation for pollinators. However, these effects can bring important information to understanding the impacts of pesticides on bees' daily activities. In this study, we aimed to investigate the effects of the insecticide acetamiprid (7 ng/µL) and the fungicide azoxystrobin (10 ng/µL) on the behavior of the Neotropical solitary bee Centris analis. Female and male bees were exposed to these chemicals continuously for 48 h, followed by an additional 48 h without contaminated food, totaling 96 h of observation. We used five experimental groups: control, solvent control, insecticide, fungicide, and pesticide mixture (insecticide + fungicide). Behavioral alterations based on locomotion and light response were assessed by video tracking at 48 (end of pesticide exposure) and 96 h (end of bioassay). In addition, after recording bees at 96 h, the individuals were anesthetized for brain collection and histological evaluation of mushroom bodies to evaluate if pesticides can damage their neurons and impair the cognitive processes and responses of bees to sensory stimuli. Bees exposed to acetamiprid and pesticide mixture showed lethargic movements and impaired locomotion at 48 h. Notably, these behavioral effects were no longer evident after the bees consumed uncontaminated food for an additional 48 h, totaling 96 h from the start of pesticide exposure. Only fungicide exposure did not result in any behavioral or brain histological changes. Therefore, our study showed that acetamiprid at an estimated residual concentration, despite being classified as having low toxicity for bees, can cause significant initial locomotion disruption in solitary bees. These findings highlight the importance of considering sublethal effects in environmental risk assessment.


Assuntos
Fungicidas Industriais , Inseticidas , Locomoção , Neonicotinoides , Pirimidinas , Estrobilurinas , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Neonicotinoides/toxicidade , Estrobilurinas/toxicidade , Fungicidas Industriais/toxicidade , Locomoção/efeitos dos fármacos , Inseticidas/toxicidade , Pirimidinas/toxicidade , Metacrilatos/toxicidade , Masculino , Feminino , Comportamento Animal/efeitos dos fármacos
17.
Sci Total Environ ; 953: 176003, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39236816

RESUMO

Brazil stands as the world's leading coffee producer, where the extensive use of pesticides is economically critical yet poses health and environmental risks due to their non-selective mechanisms of action. Specifically, triazole fungicides are widely used in agriculture to manage fungal diseases and are known to disrupt mammalian CYP450 and liver microsomal enzymes. This research establishes a framework for risk characterization of human exposure to triazole fungicides by internal-dose biomonitoring, biochemical marker measurements, and integration of high-throughput screening (HTS) data via computational toxicology workflows from the Integrated Chemical Environment (ICE). Volunteers from the southern region of Minas Gerais, Brazil, were divided into two groups: farmworkers and spouses occupationally and environmentally exposed to pesticides from rural areas (n = 140) and individuals from the urban area to serve as a comparison group (n = 50). Three triazole fungicides, cyproconazole, epoxiconazole, and triadimenol, were detected in the urine samples of both men and women in the rural group. Androstenedione and testosterone hormones were significantly reduced in the farmworker group (Mann-Whitney test, p < 0.0001). The data show a significant inverse association of testosterone with cholesterol, LDL, VLDL, triglycerides, and glucose and a direct association with HDL (Spearman's correlation, p < 0.05). In the ICE workflow, active in vitro HTS assays were identified for the three measured triazoles and three other active ingredients from the pesticide formulations. The curated HTS data confirm bioactivities predominantly related to steroid hormone metabolism, cellular stress processes, and CYP450 enzymes impacted by fungicide exposure at occupationally and environmentally relevant concentrations based on the in vitro to in vivo extrapolation models. These results characterize the potentially significant human health risk, particularly from the high frequency and intensity of exposure to epoxiconazole. This study showcases the critical role of biomonitoring and utility of computational tools in evaluating pesticide exposure and minimizing the risk.


Assuntos
Monitoramento Biológico , Fungicidas Industriais , Triazóis , Humanos , Triazóis/toxicidade , Fungicidas Industriais/toxicidade , Brasil , Feminino , Masculino , Medição de Risco , Exposição Ambiental , Adulto , Monitoramento Ambiental/métodos , Exposição Ocupacional , Compostos de Epóxi
18.
Pestic Biochem Physiol ; 204: 106093, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277419

RESUMO

Colletotrichum gloeosporioides is the causal pathogen for the devastating walnuts anthracnose. A novel quinone inside inhibitor (QiI) fungicide florylpicoxamid has strong inhibitory efficacy against C. gloeosporioides. This study looked into the resistance risk and mechanism of C. gloeosporioides to florylpicoxamid. The basal level sensitivity of C. gloeosporioides isolates (n = 102) to florylpicoxamid was established with an average 50% mycelial growth inhibition concentration (EC50) value of 0.069 ± 0.035 µg/mL. Six stable florylpicoxamid-resistant mutants with resistance factors of >1000 were produced. The fitness of every mutant was much lower than that of their parental isolates. In general, the resistance risk of C. gloeosporioides to florylpicoxamid would be moderate. Molecular docking results revealed that the amino acid substitutions A37V, and S207L in CgCytb lead to a reduction in the binding affinity between florylpicoxamid and CgCytb, indicating that these two mutations (S207L and A37V in CgCytb) indeed confer florylpicoxamid resistance in C. gloeosporioides. These findings offer a fresh viewpoint on the mechanism underlying QiI fungicide resistance and could support the prudent application of florylpicoxamid in the future to combat walnut anthracnose.


Assuntos
Colletotrichum , Farmacorresistência Fúngica , Fungicidas Industriais , Juglans , Simulação de Acoplamento Molecular , Colletotrichum/efeitos dos fármacos , Colletotrichum/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Juglans/microbiologia , Mutação , Doenças das Plantas/microbiologia
19.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273159

RESUMO

Southern root-knot nematodes are among the most pernicious phytoparasites; they are responsible for substantial yield losses in agricultural crops worldwide. The limited availability of nematicides for the prevention and control of plant-parasitic nematodes necessitates the urgent development of novel nematicides. Natural products have always been a key source for the discovery of pesticides. Waltherione A, an alkaloid, exhibits potent nematocidal activity. In this study, we designed and synthesized a series of quinoline and quinolone derivatives from Waltherione A, leveraging a strategy of structural simplification. Bioassays have revealed that the quinoline derivatives exhibit better activity than quinolone derivatives in terms of both nematocidal and fungicidal activities. Notably, compound D1 demonstrated strong nematocidal activity, with a 72 h LC50 of 23.06 µg/mL, and it effectively controlled the infection of root-knot nematodes on cucumbers. The structure-activity relationship suggests that the quinoline moiety is essential for the nematocidal efficacy of Waltherione A. Additionally, compound D1 exhibited broad-spectrum fungicidal activity, with an EC50 of 2.98 µg/mL against Botrytis cinerea. At a concentration of 200 µg/mL, it significantly inhibited the occurrence of B. cinerea on tomato fruits, with an inhibitory effect of 96.65%, which is slightly better than the positive control (90.30%).


Assuntos
Antinematódeos , Antinematódeos/farmacologia , Antinematódeos/síntese química , Antinematódeos/química , Relação Estrutura-Atividade , Animais , Desenho de Fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Cucumis sativus/parasitologia , Cucumis sativus/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Nematoides/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/síntese química , Estrutura Molecular
20.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273450

RESUMO

Colletotrichum boninense is the main pathogenic fungus causing leaf spot disease in Sorghum sudangrass hybrids, which seriously impairs its quality and yield. In order to find an efficient and green means of control, this study used the agar disk diffusion method to screen for a fungicide with the strongest inhibitory effect on C. boninense from among several bacteria, fungi, and chemicals. Then, the changes in the plant's antioxidant system and metabolic levels after treatment were used to compare the three means of control. The lowest inhibitory concentration of Zalfexam was 10 mg/mL, at which point C. boninense did not grow, and the inhibition rates of Bacillus velezensis (X7) and Trichoderma harzianum were 33.87-51.85% and 77.86-80.56%, respectively. Superoxide dismutase (SOD) and chitinase were up-regulated 2.43 and 1.24 folds in the Trichoderma harzianum group (M group) and SOD activity was up-regulated 2.2 folds in the Bacillus velezensis group (X7 group) compared to the control group (CK group). SOD, peroxidase (POD), and chitinase activities were elevated in the Zalfexam group (HX group). The differential metabolites in different treatment groups were mainly enriched in amino acid metabolism and production, flavonoid production, and lipid metabolism pathways. Compared with the diseased plants (ZB group), the M, X7, HX, and CK groups were co-enriched in the tryptophan metabolic pathway and glutamate-arginine metabolic pathway, and only the CK group showed a down-regulation of the metabolites in the two common pathways, while the metabolites of the common pathways were up-regulated in the M, X7, and HX groups. In addition, the salicylic acid-jasmonic acid pathway and ascorbic acid-glutathione, which were unique to the M group, played an important role in helping Sorghum sudangrass hybrids to acquire systemic resistance against stress. This study fills the gap in the control of Colletotrichum boninene, which causes leaf spot disease in Sorghum sudangrass hybrids. This paper represents the first reported case of biological control for leaf spot disease in Sorghum sudangrass hybrids and provides a reference for the control of leaf spot disease in Sorghum sudangrass hybrids as well as other crops infected with Colletotrichum boninense.


Assuntos
Antioxidantes , Bacillus , Colletotrichum , Doenças das Plantas , Sorghum , Sorghum/microbiologia , Sorghum/metabolismo , Antioxidantes/metabolismo , Doenças das Plantas/microbiologia , Bacillus/metabolismo , Hypocreales/metabolismo , Superóxido Dismutase/metabolismo , Quitinases/metabolismo , Fungicidas Industriais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA