RESUMO
The functional derivative of the superconducting transition temperature Tc with respect to the electron-phonon coupling function [Formula: see text] permits identifying the frequency regions where phonons are most effective in raising Tc. This work presents an analysis of temperature effects on the calculation of the δTc/δα2F(ω) and µ* parameters. The results may permit establishing that the variation of the temperature in the δTc/δα2F(ω) and µ* parameter allows establishing patterns and conditions that are possibly related to the physical conditions in the superconducting state, with implications on the theoretical estimation of the Tc.
Assuntos
Elétrons , Fônons , Temperatura , Temperatura de TransiçãoRESUMO
We investigate the electronic wavepacket dynamics in a finite segment of a DNA single-strand chain considering the electron-phonon coupling. Our theoretical approach makes use of an effective tight-binding Hamiltonian to describe the electron dynamics, together with a classical harmonic Hamiltonian to treat the intrinsic DNA vibrations. An effective time-dependent Schrödinger equation is then settled up and solved numerically for an initially localized wave-packet using the standard Dormand-Prince eighth-order Runge-Kutta method. Our numerical results indicate the presence of a sub-diffusive electronic wavepacket spread mediated by the electron-phonon interaction.
Assuntos
DNA de Cadeia Simples/química , Fônons , Difusão , Transporte de ElétronsRESUMO
We present the structural, electronic and superconducting properties of Li2B2 under pressure within the framework of the density functional theory. The structural parameters, electronic band structure, phonon frequency of the E2g phonon mode and superconducting critical temperature Tc were calculated for pressures up to 20 GPa. We predicted that the superconducting critical temperature of Li2B2 is about 11 K and this decreases as pressure increases. We found that even though the lattice dynamics of the E2g phonon mode is similar to MgB2, the reduction of the σ-band density of states at Fermi level and the raising of the E2g phonon frequency with pressure were determinant to decrease λ and consequently Tc.
Assuntos
Brometos/química , Elétrons , Compostos de Lítio/química , Fônons , Pressão , Teoria Quântica , Temperatura , TermodinâmicaRESUMO
We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.