Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.002
Filtrar
1.
Science ; 385(6713): 1105-1111, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236161

RESUMO

Photoperiodic time measurement is the ability of plants and animals to measure differences in day versus night length (photoperiod) and use that information to anticipate critical seasonal transformations, such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms, such as gonadal stimulation, flowering, and hibernation. Unexpectedly, we observed this capability in cyanobacteria-unicellular prokaryotes with generation times as short as 5 to 6 hours. Cyanobacteria exposed to short, winter-like days developed enhanced resistance to cold mediated by desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping required an intact circadian clockwork and developed over multiple cycles of photoperiod. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated and enabled genetic responses to stresses that recur seasonally.


Assuntos
Fotoperíodo , Estações do Ano , Relógios Circadianos , Synechococcus/fisiologia , Synechococcus/genética , Temperatura Baixa , Cianobactérias/fisiologia , Cianobactérias/genética , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica
2.
Invest Ophthalmol Vis Sci ; 65(10): 16, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39115866

RESUMO

Purpose: The purpose of this study was to determine the effects of ambient lighting on intraocular pressure (IOP) rhythmicity and variability. Methods: IOP was continuously recorded by wireless telemetry from rats under light/dark (LD), dark/light (DL), asymmetric (6L18D and 18D6L), constant dark (DD), and constant light (LL) cycles. In some DD experiments, 1-hour light pulses were presented at varying times. IOP rhythmicity and variability were respectively quantified via cosinor analysis and peak detection algorithms that identified transient and sustained fluctuations. Results: Rat IOP peaked at night and troughed during the day with LD amplitude of 8.7 ± 3.4 mm Hg. Rhythmicity persisted in DD and LL with a free-running period of 24.1 ± 0.3 and 25.2 ± 0.4 hours, respectively. Peak-to-trough amplitude was approximately 60% smaller in LL, often disappeared after 1 to 2 weeks as daytime IOP drifted 2.6 ± 1.5 mm Hg higher, and returned to approximately 60% larger in LD. Rhythmicity was similarly impacted but resynchronized to DL over 4 to 6 days. Rhythmicity was unaltered by short photoperiods (6L18D), but the nocturnal IOP elevation was markedly shortened by long photoperiods (18L6D) and temporarily lowered to daytime levels by light pulses during the subjective night. Transient and sustained event rate, amplitude, interval, and energy content were nearly identical in LD, DD, and LL. Conclusions: Aqueous humor dynamics of rat eyes are intrinsically configured to set IOP at daytime levels. Circadian clock input modulates these dynamics to elevate IOP at night. Light at night blocks this input, sending IOP back to daytime levels. Effects of abnormal lighting on IOP rhythmicity may contribute to pressure-related ocular neuropathies.


Assuntos
Ritmo Circadiano , Pressão Intraocular , Telemetria , Animais , Pressão Intraocular/fisiologia , Ratos , Ritmo Circadiano/fisiologia , Masculino , Iluminação , Ratos Sprague-Dawley , Tonometria Ocular , Fotoperíodo , Luz
3.
J Pineal Res ; 76(5): e12996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129720

RESUMO

In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.


Assuntos
Mamíferos , Melatonina , Estações do Ano , Melatonina/metabolismo , Animais , Mamíferos/metabolismo , Fotoperíodo , Humanos , Glândula Pineal/metabolismo
4.
Arch Microbiol ; 206(9): 367, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105810

RESUMO

2-methylisoborneol (2-MIB) is an odiferous metabolite mainly produced by cyanobacteria, contributing to taste and odor problems in drinking water. The mechanisms involved in 2-MIB biosynthesis in cyanobacteria are not yet completely understood. This study investigated the effect of light availability and wavelength on growth, 2-MIB synthesis, and related gene expression in Pseudanabaena foetida var. intermedia. A significantly lower 2-MIB production was observed in P. foetida var. intermedia during the dark period of a 12-h photoperiod. Exposure to green light resulted in a significant decrease in 2-MIB production compared to white light and red light. The relative expression levels of 2-MIB-related genes in P. foetida var. intermedia were significantly lower during the dark period of a 12-h photoperiod and when cultured under green light. The expression of 2-MIB-related genes in cyanobacteria appears to be light-dependent. This study suggests that the demand for photopigment synthesis under unfavorable light conditions affects the 2-MIB synthesis in cyanobacteria.


Assuntos
Canfanos , Cianobactérias , Luz , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Cianobactérias/crescimento & desenvolvimento , Canfanos/metabolismo , Fotoperíodo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Int J Biol Macromol ; 277(Pt 3): 134449, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098680

RESUMO

Pacific abalone (Haliotis discus hannai) is a marine gastropod mollusc with significant economic importance in both global fisheries and aquaculture. However, studies exploring the gonadal development and regulatory mechanisms of Haliotis discus hannai are limited. This study aimed to explore whether the vasa gene acted as a molecular marker for germ cells. Initially, the vasa gene was successfully cloned using the cDNA-end rapid amplification technique. The cloned gene had a 2478-bp-long open reading frame and encoded 825 amino acids. Then, a recombinant expression vector was constructed based on the Vasa protein, and an 87-kDa recombinant protein was prepared. Subsequently, a polyclonal antibody was prepared using the purified recombinant protein. The enzyme-linked immunosorbent assay (ELISA) confirmed the titer of the antibody to be ≥512 K. The immunohistochemical analysis revealed that Vasa was widely expressed in oogonia, Stage I oocytes, spermatogonia, and primary spermatocytes. The specific expression of Vasa in the hermaphroditic gonads of abalone was assessed using western blotting to investigate the effects of different photoperiods (12 L:12D, 24 L:0D, 18 L:6D, and 6 L:18D) on the gonadal development of abalone (P < 0.05), with higher expression levels observed in the ovarian proliferative and spermary maturing stages compared with other developmental stages (P < 0.05). Additionally, Vasa exhibited the highest expression in the spermary and ovary under a photoperiod of 18 L:6D (P < 0.05). These data demonstrated the key role of Vasa in developing germ cells in abalone. They shed light upon the molecular mechanism through which the photoperiod influenced Vasa expression and regulated gonadal development in abalone. The findings might provide theoretical references for analyzing the differentiation pattern of abalone germ cells and the genetic improvement and conservation of germplasm resources.


Assuntos
Gastrópodes , Gônadas , Animais , Gastrópodes/genética , Gônadas/metabolismo , Masculino , Feminino , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Clonagem Molecular/métodos , Gametogênese/genética , Fotoperíodo , Sequência de Aminoácidos
6.
Bioresour Technol ; 410: 131293, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153688

RESUMO

Microalgae photobioreactor (PBR) is a kind of efficient wastewater treatment system for nitrogen removal. However, there is still an urgent need for process optimization of PBR. Especially, the synergistic effect and optimization of light and flow state poses a challenge. In this study, the computational fluid dynamics is employed for simulating the optimization of the number and length of the internal baffles, as well as the aeration rate of PBR, which in turn leads to the optimal growth of microalgae and efficient nitrogen removal. After optimization, the Light/Dark cycle of the reactor B is shortened by 51.6 %, and the biomass increases from 0.06 g/L to 3.94 g/L. In addition, the removal rate of NH4+-N increased by 106.0 % to 1.56 mg L-1 h-1. This work provides a feasible method for optimizing the design and operational parameters of PBR aiming the engineering application.


Assuntos
Hidrodinâmica , Microalgas , Nitrogênio , Fotobiorreatores , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Simulação por Computador , Biomassa , Luz , Fotoperíodo
7.
Chronobiol Int ; 41(8): 1199-1216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39158061

RESUMO

In cave environments, stable conditions devoid of light-dark cycles and temperature fluctuations sustain circadian clock mechanisms across various species. However, species adapted to these conditions may exhibit disruption of circadian rhythm in locomotor activity. This study examines potential rhythm loss due to convergent evolution in five semi-aquatic troglobitic isopod species (Crustacea: Styloniscidae), focusing on its impact on locomotor activity. The hypothesis posits that these species display aperiodic locomotor activity patterns. Isopods were subjected to three treatments: constant red light (DD), constant light (LL), and light-dark cycles (LD 12:12), totaling 1656 h. Circadian rhythm analysis employed the Sokolove and Bushell periodogram chi-square test, Hurst coefficient calculation, intermediate stability (IS), and activity differences for each species. Predominantly, all species exhibited an infradian rhythm under DD and LL. There was synchronization of the locomotor rhythm in LD, likely as a result of masking. Three species displayed diurnal activity, while two exhibited nocturnal activity. The Hurst coefficient indicated rhythmic persistence, with LD showing higher variability. LD conditions demonstrated higher IS values, suggesting synchronized rhythms across species. Significant individual variations were observed within species across the three conditions. Contrary to the hypothesis, all species exhibited synchronization under light-dark conditions. Analyzing circadian activity provides insights into organism adaptation to non-cyclical environments, emphasizing the importance of exploring underlying mechanisms.


Assuntos
Cavernas , Ritmo Circadiano , Isópodes , Locomoção , Fotoperíodo , Animais , Ritmo Circadiano/fisiologia , Isópodes/fisiologia , Locomoção/fisiologia , Especificidade da Espécie , Luz , Atividade Motora/fisiologia , Comportamento Animal/fisiologia
8.
Theriogenology ; 228: 81-92, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116655

RESUMO

OPN5 is one of the main deep brain photoreceptors (DBPs), converting photoperiodic information into neuroendocrine signals to regulate reproduction in birds. This study investigated the mechanism of OPN5-mediated photoperiodic regulation of reproduction by active immunization against OPN5. 96 female quail were divided into OPN5-immunized and control group under the same photoperiod: 16 L:8 D (d 1 to d 35), 8 L:16 D (d 36 to d 70) and 12 L:12 D (d 71 to d 126). OPN5-immunized group was conducted with OPN5 protein vaccination and control group was given a blank vaccine. Samples were collected on d 1, d 30, d 60, and d 126. Results showed switching photoperiod to 8 L:16 D decreased the laying rate, GSI%, numbers of YFs and WFs, serum levels of PRL, P4 and E2, and pituitary PRL and TSHß protein expressions in both groups (P < 0.05). Whereas the OPN5-immunized group exhibited higher laying rates than the control group (P < 0.05). The control group showed reduced GnRHR and TSHß gene expressions in the pituitary and increased GnIH and DIO3 transcript and/or protein abundance in the hypothalamus. (P < 0.05). The OPN5-immunized group had lower DIO3 expression at both mRNA and protein levels. (P < 0.05). Switching photoperiod from 8 L:16 D to 12 L:12 D increased the laying rates, GSI%, numbers of YFs and WFs, serum levels of PRL, and PRL protein expression in both groups (P < 0.05), and the responses were more pronounced in OPN5-immunized group (P < 0.05). In contrast to the control group, quail with OPN5-immunization had higher OPN5 and DIO2 transcript and/or protein levels but lower DIO3 expressions in the hypothalamus along the transition photoperiods (P < 0.05). The results revealed that OPN5 responds to photoperiod transition, and its activation mediates related signaling to up-regulate TSH-DIO2/DIO3 pathway and VIP-PRL secretion to prime quail reproductive functions.


Assuntos
Fotoperíodo , Animais , Feminino , Folículo Ovariano/fisiologia , Codorniz/fisiologia , Opsinas/metabolismo , Opsinas/genética , Oviposição , Coturnix/fisiologia , Coturnix/imunologia
9.
Mol Nutr Food Res ; 68(16): e2400234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39126133

RESUMO

Alcohol use disorder accounts for a growing worldwide health system concern. Alcohol causes damages to various organs, including intestine and liver, primarily involved in its absorption and metabolism. However, alcohol-related organ damage risk varies significantly among individuals, even when they report consuming comparable dosages of alcohol. Factor(s) that may modulate the risk of organ injuries from alcohol consumption could be responsible for inter-individual variations in susceptibility to alcohol-related organ damages. Accumulating evidence suggests disruptions in circadian rhythm can exacerbate alcohol-related organ damages. Here we investigated the interplay between alcohol, circadian rhythm, and key tissue cellular processes at baseline, after a regular and a shift in the light/dark cycle (LCD) in mice. Central/peripheral clock expression of core clock genes (CoClGs) was analyzed. We also studied circadian homeostasis of tissue cellular processes that are involved in damages from alcohol. These experiments reveal that alcohol affects the expression of CoClGs causing a central-peripheral dyssynchrony, amplified by shift in LCD. The observed circadian clock dyssynchrony was linked to circadian disorganization of key processes involved in the alcohol-related damages, particularly when alcohol was combined with LCD. These results offer insights into the mechanisms by which alcohol interacts with circadian rhythm disruption to promote organ injury.


Assuntos
Ritmo Circadiano , Etanol , Homeostase , Camundongos Endogâmicos C57BL , Animais , Homeostase/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Masculino , Etanol/farmacologia , Relógios Circadianos/efeitos dos fármacos , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fotoperíodo , Consumo de Bebidas Alcoólicas/efeitos adversos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
11.
J Neurosci Res ; 102(7): e25367, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001670

RESUMO

The ventral subiculum regulates emotion, stress responses, and spatial and social cognition. In our previous studies, we have demonstrated anxiety- and depression-like symptoms, deficits in spatial and social cognition in ventral subicular lesioned (VSL) rats, and restoration of affective and cognitive behaviors following photoperiod manipulation (short photoperiod regime, SPR; 6:18 LD cycle). In the present study, we have studied the impact of VSL on sleep-wake behavioral patterns and the effect of SPR on sleep-wakefulness behavior. Adult male Wistar rats subjected to VSL demonstrated decreased wake duration and enhanced total sleep time due to increased non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS). Power spectral analysis indicated increased delta activity during NREMS and decreased sigma band power during all vigilance states. Light is one of the strongest entrainers of the circadian rhythm, and its manipulation may have various physiological and functional consequences. We investigated the effect of 21-day exposure to SPR on sleep-wakefulness (S-W) behavior in VSL rats. We observed that SPR exposure restored S-W behavior in VSL rats, resulting in an increase in wake duration and a significant increase in theta power during wake and REMS. This study highlights the crucial role of the ventral subiculum in maintaining normal sleep-wakefulness patterns and highlights the effectiveness of photoperiod manipulation as a non-pharmacological treatment for reversing sleep disturbances reported in mood and neuropsychiatric disorders like Alzheimer's disease, bipolar disorder, and major depressive disorder, which also involve alterations in circadian rhythm.


Assuntos
Eletroencefalografia , Hipocampo , Fotoperíodo , Ratos Wistar , Sono , Vigília , Animais , Masculino , Vigília/fisiologia , Ratos , Hipocampo/fisiopatologia , Sono/fisiologia , Ritmo Circadiano/fisiologia
12.
PLoS One ; 19(7): e0307549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038009

RESUMO

Prochlorococcus marinus, the smallest picocyanobacterium, comprises multiple clades occupying distinct niches, currently across tropical and sub-tropical oligotrophic ocean regions, including Oxygen Minimum Zones. Ocean warming may open growth-permissive temperatures in new, poleward photic regimes, along with expanded Oxygen Minimum Zones. We used ocean metaproteomic data on current Prochlorococcus marinus niches, to guide testing of Prochlorococcus marinus growth across a matrix of peak irradiances, photoperiods, spectral bands and dissolved oxygen. MED4 from Clade HLI requires greater than 4 h photoperiod, grows at 25 µmol O2 L-1 and above, and exploits high cumulative diel photon doses. MED4, however, relies upon an alternative oxidase to balance electron transport, which may exclude it from growth under our lowest, 2.5 µmol O2 L-1, condition. SS120 from clade LLII/III is restricted to low light under full 250 µmol O2 L-1, shows expanded light exploitation under 25 µmol O2 L-1, but is excluded from growth under 2.5 µmol O2 L-1. Intermediate oxygen suppresses the cost of PSII photoinactivation, and possibly the enzymatic production of H2O2 in SS120, which has limitations on genomic capacity for PSII and DNA repair. MIT9313 from Clade LLIV is restricted to low blue irradiance under 250 µmol O2 L-1, but exploits much higher irradiance under red light, or under lower O2 concentrations, conditions which slow photoinactivation of PSII and production of reactive oxygen species. In warming oceans, range expansions and competition among clades will be governed not only by light levels. Short photoperiods governed by latitude, temperate winters, and depth attenuation of light, will exclude clade HLI (including MED4) from some habitats. In contrast, clade LLII/III (including SS120), and particularly clade LLIV (including MIT9313), may exploit higher light niches nearer the surface, under expanding OMZ conditions, where low O2 relieves the stresses of oxidation stress and PSII photoinhibition.


Assuntos
Luz , Oxigênio , Prochlorococcus , Oxigênio/metabolismo , Prochlorococcus/metabolismo , Prochlorococcus/genética , Prochlorococcus/crescimento & desenvolvimento , Prochlorococcus/efeitos da radiação , Água do Mar/microbiologia , Água do Mar/química , Fotoperíodo
13.
PeerJ ; 12: e17716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035158

RESUMO

Background: The adzuki bean is a typical short-day plant and an important grain crop that is widely used due to its high nutritional and medicinal value. The adzuki bean flowering time is affected by multiple environmental factors, particularly the photoperiod. Adjusting the day length can induce flower synchronization in adzuki bean and accelerate the breeding process. In this study, we used RNA sequencing analysis to determine the effects of different day lengths on gene expression and metabolic characteristics related to adzuki bean flowering time. Methods: 'Tangshan hong xiao dou' was used as the experimental material in this study and field experiments were conducted in 2022 using a randomized block design with three treatments: short-day induction periods of 5 d (SD-5d), 10 d (SD-10d), and 15 d (SD-15d). Results: A total of 5,939 differentially expressed genes (DEGs) were identified, of which 38.09% were up-regulated and 23.81% were down-regulated. Gene ontology enrichment analysis was performed on the target genes to identify common functions related to photosystems I and II. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified two pathways involved in the antenna protein and circadian rhythm. Furthermore, florescence was promoted by down-regulating genes in the circadian rhythm pathway through the blue light metabolic pathway; whereas, antenna proteins promoted flowering by enhancing the reception of light signals and accelerating electron transport. In these two metabolic pathways, the number of DEGs was the greatest between the SD-5d VS SD-15d groups. Real-time reverse transcription‒quantitative polymerase chain reaction analysis results of eight DEGs were consistent with the sequencing results. Thus, the sequencing results were accurate and reliable and eight genes were identified as candidates for the regulation of short-day induction at the adzuki bean seedling stage. Conclusions: Short-day induction was able to down-regulate the expression of genes related to flowering according to the circadian rhythm and up-regulate the expression of certain genes in the antenna protein pathway. The results provide a theoretical reference for the molecular mechanism of short-day induction and multi-level information for future functional studies to verify the key genes regulating adzuki bean flowering.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Vigna , Flores/genética , Flores/metabolismo , Vigna/genética , Vigna/metabolismo , Perfilação da Expressão Gênica
14.
Funct Plant Biol ; 512024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038159

RESUMO

CONSTANS-LIKE (COL ) genes are a key signalling molecule that regulates plant growth and development during the photoperiod. Our preliminary experiments showed that the photoperiod greatly influence the formation of Tetrastigma hemsleyanum root tubers. In this study, we examined the oscillation patterns and expression characteristics of COL genes in leaves of T. hemsleyanum under different photoperiod conditions. Six genes were selected as candidate reference genes for further analyses: (1) 18S ribosomal RNA (18S rRNA ); (2) α-tubulin (TUBA ); (3) 30S ribosomal RNA (30S rRNA ); (4) TATA binding protein (TBP ); (5) elongation factor 1α (EF-1α ); and (6) RNA polymerase II (RPII ). The geNorm, NormFinder, and BestKeeper software programs were used to evaluate expression stability. Two ThCOL genes were screened in the T. hemsleyanum transcriptome library, and their expression patterns under different photoperiod conditions were analysed using quantitative reverse transcription PCR. The genes EF-1α , TUBA , and 18S rRNA were used to analyse the expression profiles of CONSTANS genes (ThCOL4 and ThCOL5 ) under different photoperiods. The expression peaks of ThCOL4 and ThCOL5 appeared at different times, demonstrating that their oscillation patterns were influenced by the photoperiod. We speculate that these two ThCOL genes may be involved in different biological processes.


Assuntos
Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas , Vitaceae , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitaceae/genética , Genes de Plantas , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Padrões de Referência
15.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000414

RESUMO

Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Metabolismo Secundário , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Plantas/metabolismo , Plantas/genética , Terpenos/metabolismo , Fotoperíodo , Estresse Fisiológico
16.
Sci Rep ; 14(1): 15001, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951618

RESUMO

Daylight saving time (DST) is currently utilized in many countries with the rationale that it enhances the alignment between daylight hours and activity peaks in the population. The act of transitioning into and out of DST introduces disruptions to the circadian rhythm, thereby impacting sleep and overall health. Despite the substantial number of individuals affected, the consequences of this circadian disruption have often been overlooked. Here, we employ a mathematical model of the human circadian pacemaker to elucidate how the biological clock interacts with daytime and evening exposures to both natural and electrical light. This interaction plays a crucial role in determining the adaptation to the 1 hour time zone shift imposed by the transition to or from DST. In global discussions about DST, there is a prevailing assumption that individuals easily adjust to DST transitions despite a few studies indicating that the human circadian system requires several days to fully adjust to a DST transition. Our study highlights that evening light exposure changes can be the main driving force for re-entrainment, with chronobiological models predicting that people with longer intrinsic period (i.e. later chronotype) entrain more slowly to transitions to or from DST as compared to people with a shorter intrinsic period (earlier chronotype). Moreover, the model forecasts large inter-individual differences in the adaptation speed, in particular during the spring transition. The predictions derived from our model offer circadian biology-based recommendations for light exposure strategies that facilitate a more rapid adaptation to DST-related transitions or travel across a single time zone. As such, our study contributes valuable insights to the ongoing discourse on DST and its implications for human circadian rhythms.


Assuntos
Ritmo Circadiano , Fotoperíodo , Humanos , Ritmo Circadiano/fisiologia , Luz , Sono/fisiologia , Modelos Teóricos , Adaptação Fisiológica , Relógios Biológicos/fisiologia , Relógios Circadianos/fisiologia , Modelos Biológicos
17.
Nature ; 632(8023): 147-156, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020173

RESUMO

Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.


Assuntos
Adaptação Fisiológica , Axônios , Ritmo Circadiano , Neurotransmissores , Fotoperíodo , Animais , Feminino , Camundongos , Adaptação Fisiológica/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Ritmo Circadiano/fisiologia , Proteínas CLOCK/genética , Escuridão , Núcleo Dorsal da Rafe/citologia , Núcleo Dorsal da Rafe/metabolismo , Vias Neurais/fisiologia , Neurotransmissores/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Vírus da Raiva , Serotonina/metabolismo , Sono/fisiologia , Vigília/fisiologia
18.
J Comp Physiol B ; 194(4): 443-455, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958740

RESUMO

The present study investigated the best photoperiod for culturing pacu (Piaractus mesopotamicus) in recirculation aquaculture systems (RAS) based on its growth performance and hematological and oxidative stress responses. Juveniles (∼ 5 g) were subjected to five treatments (in triplicate): 24 L (light):0D (dark), 15 L: 09D, 12 L:12D, 9 L:15D, and 0 L:24D for 45 days. A total of 225 pacu individuals were randomly distributed among 15 tanks of 210 L (n = 15 per tank). Zootechnical, hematological (glucose, lactate, hematocrit, and hemoglobin), and antioxidant and oxidative stress parameters (glutathione S-transferase (GST), total antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were analyzed. The zootechnical parameters (e.g., weight gain, Fulton's condition factor, and specific growth rate) were better and worse with 9 L:15D and 24 L:0D photoperiods, respectively. The hepatosomatic index was higher and lower in the 0 L:24D and 9 L:15D photoperiods. Blood lactate levels and antioxidant and oxidative stress responses were increased in the longest photoperiods (15 L:9D and 24 L:0D). In contrast, the treatments that showed lower oxidative damage (liver, gills, brain, and muscle) were 9 L:15D and 12 L:12D. In conclusion, manipulating artificial light is one way to improve fish growth and health, where the best photoperiod for pacu farming in RAS is 9 L:15D.


Assuntos
Antioxidantes , Aquicultura , Estresse Oxidativo , Fotoperíodo , Animais , Aquicultura/métodos , Antioxidantes/metabolismo , Caraciformes/fisiologia , Caraciformes/crescimento & desenvolvimento , Caraciformes/metabolismo , Peroxidação de Lipídeos , Ácido Láctico/sangue , Ácido Láctico/metabolismo
19.
BMC Genomics ; 25(1): 740, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080530

RESUMO

BACKGROUND: Photo-thermo-sensitive male sterility (PTMS), which refers to the male sterility triggered by variations in photoperiod and temperature, is a crucial element in the wheat two-line hybrid system. The development of safe production and efficient propagation for male sterile lines holds utmost importance in two-line hybrid wheat. Under the stable photoperiod condition, PTMS is mainly induced by high or low temperatures in wheat, but the effect of daily temperature difference (DTD) on the fertility conversion of PTMS lines has not been reported. Here, three BS type PTMS lines including BS108, BS138, and BS366, as well as a control wheat variety J411 were used to analyze the correlation between fertility and DTD using differentially sowing tests, photo-thermo-control experiments, and transcriptome sequencing. RESULTS: The differentially sowing tests suggested that the optimal sowing time for safe seed production of the three PTMS lines was from October 5th to 25th in Dengzhou, China. Under the condition of 12 h 12 °C, the PTMS lines were greatly affected by DTD and exhibited complete male sterility at a temperature difference of 15 °C. Furthermore, under different temperature difference conditions, a total of 20,677 differentially expressed genes (DEGs) were obtained using RNA sequencing. Moreover, through weighted gene co-expression network analysis (WGCNA) and KEGG enrichment analysis, the identified DEGs had a close association with "starch and sucrose metabolism", "phenylpropanoid biosynthesis", "MAPK signaling pathway-plant", "flavonoid biosynthesis", and "cutin, and suberine and wax biosynthesis". qRT-PCR analysis showed the expression levels of core genes related to KEGG pathways significantly decreased at a temperature difference of 15 ° C. Finally, we constructed a transcriptome mediated network of temperature difference affecting male sterility. CONCLUSIONS: The findings provide important theoretical insights into the correlation between temperature difference and male sterility, providing guidance for the identification and selection of more secure and effective PTMS lines.


Assuntos
Perfilação da Expressão Gênica , Infertilidade das Plantas , Temperatura , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Infertilidade das Plantas/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Fotoperíodo
20.
PLoS One ; 19(7): e0306537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39083476

RESUMO

In wild brown bears, likely factors triggering hibernation response to harsh environmental conditions are temperature, photoperiod, and food resources availability. In fact, constantly fed captive brown bears are described as skipping hibernation being active all year-round. Is the hibernation response so flexible and subordinate to contingencies, or else is an adaptation that, if dismissed, may negatively impact on bear well-being? This study investigates the potential hibernation response in captive brown bears under unvaried management conditions using an integrative approach simultaneously analyzing multiple animal-based variables together with environmental covariates. Data from a mid-latitude zoo revealed distinct behavioral, fecal glucocorticoids, and body condition score seasonal fluctuations, resembling natural hibernation cycles, despite constant food access. Environmental variables like photoperiod and visitor numbers significantly influenced activity levels. Bears exhibited behaviors indicative of hyperphagia and fall transition, such as appetitive feeding and denning behaviors. Hormonal analyses revealed high fecal cortisol metabolites levels during hyperphagia, suggesting physiological responses to seasonal changes. Findings underscore the importance of environmental cues and food availability in shaping zoo bear behavior and physiology. Considering that the hibernating vs. non-hibernating description might represent an oversimplification, management strategies should deal with captive bear potential need to freely express their adaptive predispositions by accommodating their natural behaviors, such as providing denning spots and adjusting diet composition as soon as typical hyperphagic and predenning behaviors emerge, ultimately enhancing their well-being.


Assuntos
Animais de Zoológico , Hibernação , Estações do Ano , Ursidae , Animais , Ursidae/fisiologia , Hibernação/fisiologia , Animais de Zoológico/fisiologia , Masculino , Feminino , Hidrocortisona/metabolismo , Hidrocortisona/análise , Comportamento Animal/fisiologia , Sinais (Psicologia) , Bem-Estar do Animal , Fotoperíodo , Fezes/química , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA