Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 665
Filtrar
1.
BMC Plant Biol ; 22(1): 549, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36443652

RESUMO

BACKGROUND: Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon Pseudomonas syringae DC3000 pv. tomato (Pst) infection. RESULTS: We have studied the induction of tomato SlS5H gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of SlS5H in Nicotiana benthamiana confirmed that SA is processed by SlS5H in vivo. SlS5H-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus Botrytis cinerea. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and Pst infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In SlS5H-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in Pst-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate. CONCLUSION: Using SlS5H-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and Pst infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways.


Assuntos
/genética , Ácido Salicílico , Gentisatos , Pseudomonas syringae
2.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296448

RESUMO

The use of crystal engineering to convert liquids into crystalline solids remains a powerful method for inhibiting undesired degradation pathways. When nicotine, a liquid sensitive to both light and air, is combined with the GRAS-listed compound, gentisic acid, the resulting crystalline solid, exhibits enhanced photo and thermal stability. Despite a modest ΔTm of 42.7 °C, the melting point of 155.9 °C for the nicotinium gentisate salt is the highest reported for nicotine-containing crystalline solids. An analysis of the crystal packing and thermodynamic properties provides context for the observed properties.


Assuntos
Gentisatos , Nicotina , Termodinâmica
3.
Analyst ; 147(13): 3017-3024, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35639347

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has become an attractive technique for the localization and visualization of small molecules in various biological tissue sections. In this work, submicron 3,4-dihydroxybenzoic acid-TiO2 composite particles (3,4-DHB-TiO2 CPs) were synthesized for enhanced MALDI MSI of secondary metabolites in the root of Scutellaria baicalensis Georgi (baical skullcap). Submicron TiO2 particles were synthesized as starting materials by using a facile sol-gel method and chemically modified with six analogs of dihydroxybenzoic acids (DHB) (2,3-DHB, 2,4-DHB, 2,5-DHB, 2,6-DHB, 3,4-DHB, and 3,5-DHB). Among them, 3,4-DHB-TiO2 CPs provided superior performance in MALDI MSI of small molecules. Compared with conventional matrices, such as 2,5-dihydroxybenzoic acid (2,5-DHB) and α-cyano-4-hydroxycinnamic acid (CHCA), 3,4-DHB-TiO2 CPs exhibited low background noise and high detection sensitivity for the visualization of spatial distribution patterns of secondary metabolites in the roots of differently aged S. baicalensis by using MALDI MSI. The age-related spatial and content changes of flavonoids in S. baicalensis roots were demonstrated and further validated by liquid chromatography-mass spectrometry (LC-MS). This work provides a potential organic-inorganic hybrid matrix for MALDI MSI of secondary metabolites in plant tissues.


Assuntos
Gentisatos , Scutellaria , Gentisatos/química , Hidroxibenzoatos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Titânio
4.
PLoS Genet ; 18(3): e1009815, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255079

RESUMO

Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in ß-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.


Assuntos
Candida parapsilosis , Gentisatos , Candida parapsilosis/metabolismo , Carbono , Gentisatos/metabolismo , Hidroxibenzoatos/metabolismo , Filogenia , Proteoma/genética , Proteômica , Saccharomyces cerevisiae/metabolismo , Transcriptoma/genética
5.
J Orthop Surg Res ; 17(1): 109, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35184721

RESUMO

BACKGROUND: RAF and ERK pathways are known to be activated in human rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), which play an important role in the pathogenesis and destruction of RA. Gentisic acid (GA) was a natural product derived from plants, which has been reported can attenuate pressure overload-induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK1/2 pathway. Whether GA can inhibit the occurrence and development of RA through RAF/ERK signaling pathway has not been reported. The purpose of this study is to determine whether GA may have a certain therapeutic effect on RA-FLS. METHOD: Bovine type II collagen was used to establish a rat model of rheumatism. Enzyme-linked immunosorbent assay was used to detect inflammatory factors, anti-inflammatory mediators, and rheumatoid factor. Hematoxylin and eosin and TUNEL staining were used to detect the effect of GA on histochemical with rheumatoid arthritis. RAF, ERK, and p-ERK expressions in synovial tissue were measured by western blot and immunohistochemical. Besides, human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A was used to investigate the biological behavior influenced by GA. Apoptosis assay was performed to detect apoptosis of GA on MH7A cells. Transwell invasion assay was performed to detect the ability of cell migration. RESULT: The result showed that GA could reduce joint swelling and inflammation. At the same time, it can also promote the apoptosis of synovial cells and down-regulate the RAF/ERK pathway. CONCLUSION: GA may ameliorate inflammatory factors' abnormality, synovial hyperplasia, and apoptosis of synovium via inhibiting the RAF/ERK signaling pathway.


Assuntos
Artrite Reumatoide/prevenção & controle , Gentisatos/farmacologia , Transdução de Sinais , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Animais , Artrite Reumatoide/patologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Camundongos , Ratos , Transdução de Sinais/efeitos dos fármacos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120825, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999357

RESUMO

In the present work, the effect of polymer microenvironment on the photophysics of gentisic acid molecule [2,5-dihydroxybenzoic acid] (GA), steady-state and time-domain fluorescence measurements at different pH conditions were carried out in protic [polyvinyl alcohol PVA] and aprotic [polymethyl methacrylate (PMMA)] polymer matrices. Change in the proticity of the microenvironment of the polymer traps different ionic species along with the neutral form of rotamer P and R conformers of GA molecule, are found to be responsible for the change in the spectral, multi-exponential decay behaviour. In protic polymer, the appearance of a single emission band indicates, dissociation of the GA molecule is very high, and it present as a monoanion along with hydrogen-bonded P and R rotamers. However, in the basic polymer film, most of the conformers of R converted to the anion. In contrast, protonation slows down the dissociation of both P and R forms in the acidic film. Unlike PVA matrix, in PMMA, dual emission band appears due to slow dissociation of GA molecule and hydrogen-bonded rotamer P, and R form exists with monoanion species. The magnitude of large stokes shifted red emission due to excited-state intramolecular proton transfers (ESIPT) found grater in rotamer P compared to its anionic species (green emission) and a blue emission corresponds to rotamer R.


Assuntos
Gentisatos , Polímeros , Prótons , Espectrometria de Fluorescência
7.
Food Chem ; 370: 131032, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500294

RESUMO

Both microbiological and chemical food spoilages remain to be the major challenges in the food industry's efforts to combat food waste and loss because of the lack of high efficacy food preservatives. In this study, dual-functional conjugates that simultaneously suppress both lipid oxidation and microorganism growth are fabricated by covalently conjugating natural antioxidant gentisic acid (GA) on native antibacterial lysozyme (Lys). The mixing ratio of Lys and GA determines the particle size, morphology, antioxidant activity, and antimicrobial performance of the ensuing conjugates. With more of GA being grafted, a drastic decrease in the net surface charge with the concomitant occurrence of aggregations are observed in the conjugates. The maximum antioxidant activity and antibacterial performance of the conjugates is achieved when Lys:GA molar ratio is 1:112. The findings could guide the rational design of future functional food ingredients that combine multiple natural bioactive compounds to effectively intervene food waste and loss.


Assuntos
Anti-Infecciosos , Eliminação de Resíduos , Antibacterianos/farmacologia , Antioxidantes , Alimentos , Gentisatos , Muramidase
8.
Appl Environ Microbiol ; 88(4): e0206021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936841

RESUMO

Previously, a LysR family transcriptional regulator, McbG, that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 was identified by us (Z. Ke, Y. Zhou, W. Jiang, M. Zhang, et al., Appl Environ Microbiol 87:e02970-20, 2021, https://doi.org/10.1128/AEM.02970-20). In this study, we identified McbH and McbN, which activate the mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and the mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to the mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of the LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study revealed the regulatory mechanisms for the midstream and downstream pathways of carbaryl degradation in strain XWY-1 and further our knowledge of (and the size of) the LysR transcription regulator family. IMPORTANCE The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF, mcbIJKLM, and mcbOPQ. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed and that the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster (responsible for the degradation of salicylate to gentisate) and the mcbOPQ cluster (responsible for the degradation of gentisate to pyruvate and fumarate), respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM, and 12-bp motif different from the typical characteristics of the LysR-type transcriptional regulator (LTTR) binding sequence affects the binding of McbN to the promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.


Assuntos
Carbaril , Pseudomonas , Proteínas de Bactérias/metabolismo , Carbaril/metabolismo , Regulação Bacteriana da Expressão Gênica , Gentisatos/metabolismo , Óperon , Pseudomonas/genética , Pseudomonas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34215692

RESUMO

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Assuntos
Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , /imunologia , Proteínas de Arabidopsis/metabolismo , Biocatálise , Regulação da Expressão Gênica de Plantas , Gentisatos/metabolismo , /crescimento & desenvolvimento , Mutação/genética , Filogenia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Transcriptoma/genética , Regulação para Cima , Xanthomonas/fisiologia
10.
J Microbiol Biotechnol ; 31(8): 1079-1087, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34226400

RESUMO

Gentisic acid (GA), a benzoic acid derivative present in various food ingredients, has been shown to have diverse pharmaceutical activities such as anti-carcinogenic, antioxidant, and hepatoprotective effects. In this study, we used a co-culture system to investigate the mechanisms of the anti-inflammatory and anti-adipogenic effects of GA on macrophages and adipocytes, respectively, as well as its effect on obesity-related chronic inflammation. We found that GA effectively suppressed lipopolysaccharide-stimulated inflammatory responses by controlling the production of nitric oxide and pro-inflammatory cytokines and modulating inflammation-related protein pathways. GA treatment also inhibited lipid accumulation in adipocytes by modulating the expression of major adipogenic transcription factors and their upstream protein pathways. Furthermore, in the macrophage-adipocyte co-culture system, GA decreased the production of obesity-related cytokines. These results indicate that GA possesses effective anti-inflammatory and anti-adipogenic activities and may be used in developing treatments for the management of obesity-related chronic inflammatory diseases.


Assuntos
Adipogenia/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Gentisatos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
11.
Mol Microbiol ; 116(3): 783-793, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121246

RESUMO

Salicylate is a typical aromatic compound widely distributed in nature. Microbial degradation of salicylate has been well studied and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. The direct hydroxylation of salicylate catalyzed by salicylate-1-hydroxylase or salicylate-5-hydroxylase has been well studied. However, the CoA mediated salicylate 5-hydroxylation pathway has not been characterized in detail. Here, we elucidate the molecular mechanism of the reaction in the conversion of salicylate to gentisate in the carbaryl-degrading strain Rhizobium sp. X9. Three enzymes (salicylyl-CoA ligase CehG, salicylyl-CoA hydroxylase CehH and gentisyl-CoA thioesterase CehI) catalyzed the conversion of salicylate to gentisate via a route, including CoA thioester formation, hydroxylation and thioester hydrolysis. Further analysis indicated that genes cehGHI are also distributed in other bacteria from terrestrial environment and marine sediments. These genomic evidences highlight the role of this salicylate degradation pathway in the carbon cycle of soil organic compounds and marine sediments. Our findings of this three-step strategy enhanced the current understanding of CoA mediated degradation of salicylate.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coenzima A/metabolismo , Rhizobium/enzimologia , Rhizobium/genética , Rhizobium/metabolismo , Salicilatos/metabolismo , Teste de Complementação Genética , Genoma Bacteriano , Gentisatos/metabolismo , Ligases/genética , Ligases/metabolismo , Redes e Vias Metabólicas , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Microbiologia do Solo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
12.
Sci Rep ; 11(1): 12182, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108579

RESUMO

Stress caused by pathogens strongly damages plants. Developing products to control plant disease is an important challenge in sustainable agriculture. In this study, a heat-killed endophytic bacterium (HKEB), Bacillus aryabhattai, is used to induce plant defense against fungal and bacterial pathogens, and the main defense pathways used by the HKEB to activate plant defense are revealed. The HKEB induced high protection against different pathogens through the salicylic and jasmonic acid pathways. We report the presence of gentisic acid in the HKEB for the first time. These results show that HKEBs may be a useful tool for the management of plant diseases.


Assuntos
Arabidopsis/metabolismo , Bacillus/fisiologia , Gentisatos/metabolismo , Temperatura Alta , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Tabaco/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Bacillus/química , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Tabaco/genética , Tabaco/imunologia , Tabaco/microbiologia
13.
Plant Signal Behav ; 16(10): 1929732, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34024248

RESUMO

Rice, a most salt-sensitive cereal plant, adopts diverse pathways to withstand sodium chloride-induced salinity-related adversities. During the present study, attempt was made to understand the role of calcium on metabolite profile of the leaves of salt tolerant rice seedlings of variety of Nonabokra under sodium chloride induced salinity, by Gas Chromatography-Mass Spectrometry-based metabolomics approach. Calcium availability in the seedlings was reduced or enhanced applying inhibitors (vanadyl sulfate, lanthanum chloride, and verapamil) or promoters of calcium influx (calcimycin also known as calcium ionophore A23187) in the sodium chloride (100 mM) supplemented growth medium. Growth medium of ten-day-old seedlings was replaced by sodium chloride supplemented hydroponic solution with promotor or inhibitors of calcium channel. Fifteen days old seedlings were harvested. It was observed that depletion of calcium availability increased the level of serotonin and gentisic acid whereas increased calcium level decreased these metabolites. It was concluded from the results that production of the signaling molecules serotonin and gentisic acids was elevated in calcium-deficient seedlings under salt stress the condition that was considered as control during the experiment. The two signaling molecules probably help this tolerant rice variety Nonabokra to withstand the salt-induced adversities.


Assuntos
Canais de Cálcio/metabolismo , Gentisatos/metabolismo , Oryza/metabolismo , Fenóis/metabolismo , Folhas de Planta/metabolismo , Serotonina/metabolismo , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Lantânio/farmacologia , Oryza/efeitos dos fármacos , Tolerância ao Sal , Plântula/metabolismo , Compostos de Vanádio/farmacologia , Verapamil/farmacologia
14.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808152

RESUMO

Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.


Assuntos
Frutas/química , Gentisatos/metabolismo , Inibidores de Glicosídeo Hidrolases/metabolismo , Hipoglicemiantes/metabolismo , alfa-Amilases , alfa-Glucosidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
15.
J Am Soc Mass Spectrom ; 32(4): 946-955, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33715356

RESUMO

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can determine the chemical identity and spatial distribution of several molecules in a single analysis, conserving its natural histology. However, there are no specific studies on the spatial distribution of alkaloids in Erythroxylum coca leaves by MALDI IMS, preserving the histology of the monitored compounds. Therefore, in this work, positive-ion mode MALDI Fourier-transform ion cyclotron resonance imaging mass spectrometry (MALDI(+)FT-ICR IMS) was applied to identify and analyze the distribution of alkaloids on the surface of coca leaves, evaluating the ionization efficiency of three matrices (α-cyano-4-hydroxycinnamic acid (CHCA), 2-mercaptobenzothiazole (MBT), and 2,5-dihydroxybenzoic acid (DHB)). The last was chosen as the best matrix in this study, and it was studied in five concentrations (0.5, 1.0, 2.0, 4.0, and 8.0 mg·mL-1), where 2 mg·mL-1 was the most efficient. The washing of coca leaves with the organic solvents (acetonitrile, methanol, toluene, and dichloromethane) tested did not improve the performance of the ionization process. Finally, a tissue section, 50 µm thick, was used to study the inner part of the leaf tissue, where alkaloids and flavonoid molecules were detected.


Assuntos
Alcaloides/análise , Coca/química , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Benzotiazóis/análise , Ácidos Cumáricos/análise , Ciclotrons , Gentisatos/análise , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572316

RESUMO

Pyomelanin mimics from homogentisic acid (HGA) and gentisic acid (GA) were biosynthesized by the oxidative enzyme T. versicolor laccase at physiological pH to obtain water soluble melanins. The pigments show brown-black color, broad band visible light absorption, a persistent paramagnetism and high antioxidant activity. The EPR approach shows that at least two different radical species are present in both cases, contributing to the paramagnetism of the samples. This achievement can also shed light on the composition of the ochronotic pigment in the Alkaptonuria disease. On the other hand, these soluble pyomelanin mimics, sharing physico-chemical properties with eumelanin, can represent a suitable alternative to replace the insoluble melanin pigment in biotechnological applications.


Assuntos
Antioxidantes/farmacologia , Gentisatos/farmacologia , Ácido Homogentísico/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Biotecnologia/métodos , Proteínas Fúngicas/metabolismo , Gentisatos/química , Gentisatos/isolamento & purificação , Gentisatos/metabolismo , Ácido Homogentísico/química , Ácido Homogentísico/isolamento & purificação , Ácido Homogentísico/metabolismo , Lacase/metabolismo , Melaninas/química , Polyporaceae/enzimologia
17.
Food Funct ; 12(3): 1262-1270, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33434262

RESUMO

Since obesity occurs when energy intake is higher than energy expenditure, increasing energy expenditure is an effective strategy to prevent or treat obesity. Brown adipose tissue (BAT) is a classic energy-consuming organ whose thermogenesis function can be activated by dietary components. Gentisic acid (2,5-dihydroxybenzoic acid, (DHB)) is widely found in food and exhibits many physiological functions, which include anti-inflammatory, antimicrobial, antioxidant, and hepatoprotective properties. However, its anti-obesity effect and mechanism have yet to be examined. This study investigated the effect and mechanism of DHB in preventing diet-induced obesity in mice from the perspective of energy metabolism. The C57BL/6 mice were fed a normal diet (ND), a high-fat and high-fructose diet (HFFD) or HFFD plus 2 mg mL-1 DHB (DHB + HFFD) for 12 weeks. Measuring obesity, lipid metabolism, energy metabolism and BAT related indicators. Moreover, the C3H10T1/2 cells were used to assess the effect of DHB on brown adipocytes in vitro. The results proved that, at the end of the experiment, the body weight of the mice in the DHB + HFFD group was 14.97% lower than in the HFFD group. DHB reduced the weight of the major organs, improved insulin sensitivity, and decreased systemic lipid accumulation. Moreover, DHB administration significantly increased energy metabolism, which was (partly) due to the activation of BAT thermogenesis. Furthermore, DHB supplementation enhanced the expression of the fatty acid oxidation related proteins in BAT and the brown adipocytes, indicating that DHB augmented the utilization of fatty acids by BAT, which is the primary substance of thermogenesis. This study reveals that DHB administration prevents HFFD induced obesity in mice by (at least partly) accelerating the oxidation of fatty acids and stimulating the thermogenesis of BAT.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Açúcares da Dieta/efeitos adversos , Frutose/administração & dosagem , Gentisatos/farmacologia , Obesidade/induzido quimicamente , Animais , Linhagem Celular , Dieta , Açúcares da Dieta/administração & dosagem , Fibroblastos/efeitos dos fármacos , Frutose/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Mikrochim Acta ; 188(2): 36, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33420843

RESUMO

An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 µM (R2 = 0.999), and a low detection limit of 0.33 µM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.


Assuntos
Bentonita/química , Gentisatos/análise , Grafite/química , Técnicas Eletroquímicas/métodos , Eletrodos , Gentisatos/química , Limite de Detecção , Oxirredução , Impressão , Vinho/análise
19.
J Photochem Photobiol B ; 214: 112081, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33239223

RESUMO

The objective of this study was to investigate synergistic antibacterial activity based on a combination of UV-A light and three classes of food grade compounds: benzoic acid derivatives, cinnamic acid derivatives, and gallates. By using Escherichia coli O157:H7 as the model strain, it was observed that three cinnamic acid derivatives (ferulic acid, coumaric acid, and caffeic acid) and one benzoic acid derivative (2,5-dihydroxybenzoic acid) presented strong synergistic antibacterial activity with UV-A light radiation, where 1 mM levels of these compounds plus with 15 min of UV-A light (total light dose of 6.1 cm-2) led to more than 7-log CFU mL-1 of bacterial inactivation. In contrast, synergistic antibacterial activity between UV-A light and most benzoic acid derivatives (benzoic acid, gallic acid, vanillic acid, and 2,5-dimethoxybenzoic acid) were only observed after higher concentrations of these compounds were applied (10 mM). Lastly, from the three gallates tested (methyl gallate, ethyl gallate, and propyl gallate), only propyl gallate showed strong antibacterial synergism with UV-A light, where 10 mM of propyl gallate plus 15 min of UV-A light led to approximately 6.5-log of bacterial reduction. Presence of antioxidant compounds mitigated the light-mediated antibacterial activity of gallic acid, 2,5-dihydroxybenzoic acid, and propyl gallate. Similarly, the light-mediated antibacterial activity of these compounds was significantly (P < 0.05) reduced against metabolic-inhibited bacterial cells (sodium azide pretreatment). On the other hand, the antibacterial synergism between ferulic acid and UV-A light was not affected by the presence of antioxidants or the metabolic state of the bacterial cells. Due to the increasing concerns of antimicrobial resistant (AMR) pathogens, the study also investigated the proposed synergistic treatment on AMR Salmonella. Combinations of 1 mM of ferulic acid or 1 mM of 2,5-dihydroxybenzoic acid with UV-A light radiation was able to inactivate more than 6-log of a multi-drug resistant Salmonella Typhimurium strain.


Assuntos
Antibacterianos/química , Hidroxibenzoatos/química , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Terapia Combinada , Ácidos Cumáricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Resistência Microbiana a Medicamentos , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/efeitos da radiação , Ácido Gálico/farmacologia , Gentisatos/farmacologia , Hidroxibenzoatos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Relação Estrutura-Atividade , Raios Ultravioleta
20.
J Nat Prod ; 83(10): 3173-3180, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33008263

RESUMO

Herein is reported the first total synthesis of benzyl salicylate and benzyl gentisate glucosides present in various plant species, in particular the Salix genus, such as Populus balsamifera and P. trichocarpa. The method permits the synthesis of several natural phenolic acid derivatives and their glucosides starting from salicylic or gentisic acid. The divergent approach afforded access to three different acetylated glucosides from a common synthetic intermediate. The key step in the total synthesis of naturally occurring glycosides-the selective deacetylation of the sugar moiety-was achieved in the presence of a labile benzyl ester group by employing mild deacetylation conditions. The protocol permitted synthesis of trichocarpine (4 steps, 40% overall yield), isotrichocarpine (3 steps, 51% overall yield), trichoside (6 steps, 40% overall yield), and deoxytrichocarpine (3 steps, 42% overall yield) for the first time (>95% purity). Also, the optimized mild deacetylation conditions allowed synthesis of 2-O-acetylated derivatives of all four glycosides (5-17% overall yield, 90-95% purity), which are rare plant metabolites.


Assuntos
Compostos de Benzil/síntese química , Gentisatos/síntese química , Glicosídeos/química , Populus/química , Salicilatos/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...