RESUMO
Periplasmic nanowires and electric conductive filaments made of the polymeric assembly of c-type cytochromes from Geobacter sulfurreducens bacterium are crucial for electron storage and/or extracellular electron transfer. The elucidation of the redox properties of each heme is fundamental to the understanding of the electron transfer mechanisms in these systems, which first requires the specific assignment of the heme NMR signals. The high number of hemes and the molecular weight of the nanowires dramatically decrease the spectral resolution and make this assignment extremely complex or unattainable. The nanowire cytochrome GSU1996 (~42 kDa) is composed of four domains (A to D) each containing three c-type heme groups. In this work, the individual domains (A to D), bi-domains (AB, CD) and full-length nanowire were separately produced at natural abundance. Sufficient protein expression was obtained for domains C (~11 kDa/three hemes) and D (~10 kDa/three hemes), as well as for bi-domain CD (~21 kDa/six hemes). Using 2D-NMR experiments, the assignment of the heme proton NMR signals for domains C and D was obtained and then used to guide the assignment of the corresponding signals in the hexaheme bi-domain CD. This new biochemical deconstruction-based procedure, using nanowire GSU1996 as a model, establishes a new strategy to functionally characterize large multiheme cytochromes.
Assuntos
Proteínas de Bactérias , Geobacter , Proteínas de Bactérias/metabolismo , Oxirredução , Citocromos/metabolismo , Transporte de Elétrons , Geobacter/metabolismo , Heme/metabolismoRESUMO
The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formation by Geobacter sulfurreducens. We compared MeHg formation with and without addition of exogenous cysteine (Cys) to experimental assays with varying nutrient and bacterial metabolite concentrations. Cysteine additions initially (0-2 h) enhanced MeHg formation by two mechanisms: (i) altering the Hg(II) partitioning from the cellular to the dissolved phase and/or (ii) shifting the chemical speciation of dissolved Hg(II) in favor of the Hg(Cys)2 complex. Nutrient additions increased MeHg formation by enhancing cell metabolism. These two effects were, however, not additive since cysteine was largely metabolized to penicillamine (PEN) over time at a rate that increased with nutrient addition. These processes shifted the speciation of dissolved Hg(II) from complexes with relatively high availability, Hg(Cys)2, to complexes with lower availability, Hg(PEN)2, for methylation. This thiol conversion by the cells thereby contributed to stalled MeHg formation after 2-6 h Hg(II) exposure. Overall, our results showed a complex influence of thiol metabolism on microbial MeHg formation and suggest that the conversion of cysteine to penicillamine may partly suppress MeHg formation in cysteine-rich environments like natural biofilms.
Assuntos
Geobacter , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/metabolismo , Compostos de Sulfidrila/química , Cisteína , Geobacter/metabolismo , Fenômenos Fisiológicos Celulares , Poluentes Químicos da Água/metabolismoRESUMO
Geobacter sulfurreducens is an electroactive bacterium capable of reducing metal oxides in the environment and electrodes in engineered systems1,2. Geobacter sp. are the keystone organisms in electrogenic biofilms, as their respiration consumes fermentation products produced by other organisms and reduces a terminal electron acceptor e.g. iron oxide or an electrode. To respire extracellular electron acceptors with a wide range of redox potentials, G. sulfurreducens has a complex network of respiratory proteins, many of which are membrane-bound3-5. We have identified intracytoplasmic membrane (ICM) structures in G. sulfurreducens. This ICM is an invagination of the inner membrane that has folded and organized by an unknown mechanism, often but not always located near the tip of a cell. Using confocal microscopy, we can identify that at least half of the cells contain an ICM when grown on low potential anode surfaces, whereas cells grown at higher potential anode surfaces or using fumarate as electron acceptor had significantly lower ICM frequency. 3D models developed from cryo-electron tomograms show the ICM to be a continuous extension of the inner membrane in contact with the cytoplasmic and periplasmic space. The differential abundance of ICM in cells grown under different thermodynamic conditions supports the hypothesis that it is an adaptation to limited energy availability, as an increase in membrane-bound respiratory proteins could increase electron flux. Thus, the ICM provides extra inner-membrane surface to increase the abundance of these proteins. G. sulfurreducens is the first Thermodesulfobacterium or metal-oxide reducer found to produce ICMs.
Assuntos
Geobacter , Geobacter/metabolismo , Proteínas de Membrana/metabolismo , Biofilmes , MembranasRESUMO
Nitrogen gas (N2) fixation in the anode-respiring bacterium Geobacter sulfurreducens occurs through complex, multistep processes. Optimizing ammonium (NH4+) production from this bacterium in microbial electrochemical technologies (METs) requires an understanding of how those processes are regulated in response to electrical driving forces. In this study, we quantified gene expression levels (via RNA sequencing) of G. sulfurreducens growing on anodes fixed at two different potentials (-0.15 V and +0.15 V versus standard hydrogen electrode). The anode potential had a significant impact on the expression levels of N2 fixation genes. At -0.15 V, the expression of nitrogenase genes, such as nifH, nifD, and nifK, significantly increased relative to that at +0.15 V, as well as genes associated with NH4+ uptake and transformation, such as glutamine and glutamate synthetases. Metabolite analysis confirmed that both of these organic compounds were present in significantly higher intracellular concentrations at -0.15 V. N2 fixation rates (estimated using the acetylene reduction assay and normalized to total protein) were significantly larger at -0.15 V. Genes expressing flavin-based electron bifurcation complexes, such as electron-transferring flavoproteins (EtfAB) and the NADH-dependent ferredoxin:NADP reductase (NfnAB), were also significantly upregulated at -0.15 V, suggesting that these mechanisms may be involved in N2 fixation at that potential. Our results show that in energy-constrained situations (i.e., low anode potential), the cells increase per-cell respiration and N2 fixation rates. We hypothesize that at -0.15 V, they increase N2 fixation activity to help maintain redox homeostasis, and they leverage electron bifurcation as a strategy to optimize energy generation and use. IMPORTANCE Biological nitrogen fixation coupled with ammonium recovery provides a sustainable alternative to the carbon-, water-, and energy-intensive Haber-Bosch process. Aerobic biological nitrogen fixation technologies are hindered by oxygen gas inhibition of the nitrogenase enzyme. Electrically driving biological nitrogen fixation in anaerobic microbial electrochemical technologies overcomes this challenge. Using Geobacter sulfurreducens as a model exoelectrogenic diazotroph, we show that the anode potential in microbial electrochemical technologies has a significant impact on nitrogen gas fixation rates, ammonium assimilation pathways, and expression of genes associated with nitrogen gas fixation. These findings have important implications for understanding regulatory pathways of nitrogen gas fixation and will help identify target genes and operational strategies to enhance ammonium production in microbial electrochemical technologies.
Assuntos
Compostos de Amônio , Geobacter , Fixação de Nitrogênio , Compostos de Amônio/metabolismo , Geobacter/metabolismo , Eletrodos , Nitrogenase/metabolismo , Nitrogênio/metabolismoRESUMO
Sustaining a metabolically active electroactive biofilm (EAB) is essential for the high efficiency and durable operation of microbial fuel cells (MFCs). However, EABs usually decay during long-term operation, and, until now, the causes remain unknown. Here, we report that lysogenic phages can cause EAB decay in Geobacter sulfurreducens fuel cells. A cross-streak agar assay and bioinformatic analysis revealed the presence of prophages on the G. sulfurreducens genome, and a mitomycin C induction assay revealed the lysogenic to lytic transition of those prophages, resulting in a progressive decay in both current generation and the EAB. Furthermore, the addition of phages purified from decayed EAB resulted in accelerated decay of the EAB, thereafter contributing to a faster decline in current generation; otherwise, deleting prophage-related genes rescued the decay process. Our study provides the first evidence of an interaction between phages and electroactive bacteria and suggests that attack by phages is a primary cause of EAB decay, having significant implications in bioelectrochemical systems.
Assuntos
Fontes de Energia Bioelétrica , Geobacter , Ativação Viral , Eletrodos , Biofilmes , Fontes de Energia Bioelétrica/microbiologiaRESUMO
Direct interspecies electron transfer (DIET) has been demonstrated to be an efficient type of mutualism in methanogenesis. However, few studies have reported its presence in mixed microbial communities and its trigger mechanism in the natural environment and engineered systems. Here, we reported DIET-like mutualism of Geobacter and methanogens in the planktonic microbiome for the first time in anaerobic electrochemical digestion (AED) fed with propionate, potentially triggered by excessive cathodic hydrogen (56 times higher than the lowest) under the electrochemical condition. In contrast with model prediction without DIET, the highest current density and hydrogen and methane production were concurrently observed at -0.2 V where an abundance of Geobacter (49%) and extracellular electron transfer genes were identified in the planktonic microbiome via metagenomic analysis. Metagenomic assembly genomes annotated to Geobacter anodireducens were identified alongside two methanogens, Methanothrix harundinacea and Methanosarcina mazei, which were previously identified to participate in DIET. This discovery revealed that DIET-like mutualism could be triggered without external conductive materials, highlighting its potentially ubiquitous presence. Such mutualism simultaneously boosted methane and hydrogen production, thereby demonstrating the potential of AED in engineering applications.
Assuntos
Geobacter , Propionatos , Simbiose , Metano , Hidrogênio , Transporte de Elétrons , Dieta , Reatores Biológicos , AnaerobioseRESUMO
Relatively low rate of electron recovery is one of the factors that limit the advancement of bioelectrochemical systems. Here, new periodic polarizations were investigated with electroactive biofilms (EABs) enriched from activated sludge and Geobacter sulfurreducens biofilms. When representative anode potentials (Ea ) were applied, redox centers with midpoint potentials (Emid ) higher than Ea were identified by localized cyclic voltammetry. The electrons held by these redox centers were accessible when Ea was raised to 0.4 V (vs. Ag/AgCl). New periodic polarizations that discharge at 0.4 V recovered electrons faster than normal periodic and fixed-potential polarizations. The best-performing periodic step polarization accelerated electron recovery by 23%-24% and 12%-76% with EABs and G. sulfurreducens biofilms, respectively, compared to the fixed-potential polarization. Quantitative reverse transcription polymerase chain reaction showed an increased abundance of omcZ mRNA transcripts from G. sulfurreducens after periodic step polarization. Therefore, both the rate of energy recovery by EABs and the performance of bioelectrochemical systems can be enhanced by improving the polarization schemes.
Assuntos
Fontes de Energia Bioelétrica , Geobacter , Elétrons , Biofilmes , Oxirredução , Eletrodos , Transporte de ElétronsRESUMO
Dissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet. In this work, after characterizing the types of c-Cyts released by Geobacter sulfurreducens under a variety of cultivation conditions, we found that these c-Cyts accumulated up to micromolar concentrations in the surrounding medium and conserved their chemical activities. Further studies demonstrated that the presence of c-Cyts accelerated the process of microbial extracellular electron transfer and mediated long-distance electron transfer. In particular, the presence of c-Cyts promoted the microbial respiration and affected the physiological state of the microbial community. In addition, c-Cyts were observed to be adsorbed on the surface of insoluble electron acceptors and modify electron acceptors. These results reveal the overlooked multiple roles of the released c-Cyts in acting as public goods, delivering electrons, modifying electron acceptors, and even regulating bacterial community structure in natural and artificial environments.
Assuntos
Citocromos , Geobacter , Transporte de Elétrons , Citocromos/metabolismo , Membrana Celular/metabolismo , Metais , OxirreduçãoRESUMO
Protein nanowires are critical electroactive components for electron transfer of Geobacter sulfurreducens biofilm. To determine the applicability of the nanowire proteins in improving bioelectricity production, their genes including pilA, omcZ, omcS and omcT were overexpressed in G. sulfurreducens. The voltage outputs of the constructed strains were higher than that of the control strain with the empty vector (0.470-0.578 vs. 0.355 V) in microbial fuel cells (MFCs). As a result, the power density of the constructed strains (i.e. 1.39-1.58 W m-2 ) also increased by 2.62- to 2.97-fold as compared to that of the control strain. Overexpression of nanowire proteins also improved biofilm formation on electrodes with increased protein amount and thickness of biofilms. The normalized power outputs of the constructed strains were 0.18-0.20 W g-1 that increased by 74% to 93% from that of the control strain. Bioelectrochemical analyses further revealed that the biofilms and MFCs with the constructed strains had stronger electroactivity and smaller internal resistance, respectively. Collectively, these results demonstrate for the first time that overexpression of nanowire proteins increases the biomass and electroactivity of anode-attached microbial biofilms. Moreover, this study provides a new way for enhancing the electrical outputs of MFCs.
Assuntos
Fontes de Energia Bioelétrica , Geobacter , Nanofios , Geobacter/genética , Eletricidade , Transporte de Elétrons , Biofilmes , EletrodosRESUMO
OmcZ nanowires produced by Geobacter species have high electron conductivity (>30 S cm-1). Of 111 cytochromes present in G. sulfurreducens, OmcZ is the only known nanowire-forming cytochrome essential for the formation of high-current-density biofilms that require long-distance (>10 µm) extracellular electron transport. However, the mechanisms underlying OmcZ nanowire assembly and high conductivity are unknown. Here we report a 3.5-Å-resolution cryogenic electron microscopy structure for OmcZ nanowires. Our structure reveals linear and closely stacked haems that may account for conductivity. Surface-exposed haems and charge interactions explain how OmcZ nanowires bind to diverse extracellular electron acceptors and how organization of nanowire network re-arranges in different biochemical environments. In vitro studies explain how G. sulfurreducens employ a serine protease to control the assembly of OmcZ monomers into nanowires. We find that both OmcZ and serine protease are widespread in environmentally important bacteria and archaea, thus establishing a prevalence of nanowire biogenesis across diverse species and environments.
Assuntos
Geobacter , Nanofios , Geobacter/química , Geobacter/metabolismo , Citocromos/metabolismo , Transporte de Elétrons , Serina Proteases/metabolismoRESUMO
The reduction of Sb(V)-bearing ferrihydrite by Geobacter sulfurreducens was studied to determine the fate of the metalloid in Fe-rich systems undergoing redox transformations. Sb(V) added at a range of concentrations adsorbed readily to ferrihydrite, and the loadings had a pronounced impact on the rate and extent of Fe(III) reduction and the products formed. Magnetite dominated at low (0.5 and 1 mol%) Sb(V) concentrations, with crystallite sizes decreasing at higher Sb loadings: 37-, 25-, and 17-nm particles for no-Sb, 0.5% Sb, and 1% Sb samples, respectively. In contrast, goethite was the dominant end product for samples with higher antimony loadings (2 and 5 mol%), with increased goethite grain size in the 5% Sb sample. Inductively coupled mass spectrometry (ICP-MS) analysis confirmed that Sb was not released to solution during the bioreduction process, and X-ray photoelectron spectroscopy (XPS) analyses showed that no Sb(III) was formed throughout the experiments, confirming that the Fe(III)-reducing bacterium Geobacter sulfurreducens cannot reduce Sb(V) enzymatically or via biogenic Fe(II). These findings suggest that Fe (bio)minerals have a potential role in limiting antimony pollution in the environment, even when undergoing redox transformations. IMPORTANCE Antimony is an emerging contaminant that shares chemical characteristics with arsenic. Metal-reducing bacteria (such as Geobacter sulfurreducens) can cause the mobilization of arsenic from Fe(III) minerals under anaerobic conditions, causing widespread contamination of aquifers worldwide. This research explores whether metal-reducing bacteria can drive the mobilization of antimony under similar conditions. In this study, we show that G. sulfurreducens cannot reduce Sb(V) directly or cause Sb release during the bioreduction of the Fe(III) mineral ferrihydrite [although the sorbed Sb(V) did alter the Fe(II) mineral end products formed]. Overall, this study highlights the tight associations between Fe and Sb in environmental systems, suggesting that the microbial reduction of Fe(III)/Sb mineral assemblages may not lead to Sb release (in stark contrast to the mobilization of As in iron-rich systems) and offers potential Fe-based remediation options for Sb-contaminated environments.
Assuntos
Arsênio , Geobacter , Compostos Férricos/metabolismo , Antimônio , Arsênio/metabolismo , Minerais/metabolismo , Óxido Ferroso-Férrico/metabolismo , Geobacter/metabolismo , OxirreduçãoRESUMO
The combination of anaerobic digestion (AD) and microbial electrochemical technologies (METs) offers different opportunities to increase the efficiency and sustainability of AD processes. However, methanogenic archaea and/or particles may partially hinder combining MET and AD processes. Furthermore, it is unclear if the applied anode potential affects the activity and efficiency of electroactive microorganisms in AD-MET combinations as it is described for more controlled experimental conditions. In this study, we confirm that 6-week-old Geobacter spp. dominated biofilms are by far more active and stable in AD-effluents than 3-week-old Geobacter spp. dominated biofilms. Furthermore, we show that the biofilms are twice as active at -0.2 V compared to 0.4 V, even under challenging conditions occurring in AD-MET systems. Paired-end amplicon sequencing at the DNA level using 16S-rRNA and mcrA gene shows that hydrogenotrophic methanogens incorporate into biofilms immersed in AD-effluent without any negative effect on biofilm stability and electrochemical activity.
Assuntos
Fontes de Energia Bioelétrica , Geobacter , Anaerobiose , Biofilmes , EletrodosRESUMO
Exo-electrogenic microorganisms have been extensively studied for their ability to transfer electrons with solid surfaces using a large variety of metabolic pathways. Most of the studies on these microorganisms consist in the replacement of solid electron acceptors such as Fe(III) oxides found in nature by electrodes with the objective of generating harvestable current in devices such as microbial fuel cells. In this study we show how the presence of solid ferric oxide (Fe2O3) particles in the inoculum during bio-anode development influences extracellular electron transfer to the electrode. Amplification and sequencing of the 16S rRNA (V4-V5 region) show bacteria and archaea communities with a large predominance of the Pelobacter genus, which is known to be phylogenetically close to the Geobacter genus, regardless of the presence or absence of ferric oxide in the inoculum. Data indicate that the bacteria at the bio-anode surface can preferentially utilize solid ferric oxide as terminal electron acceptors instead of the anode, though extracellular electron transfer to the anode can be restored by removing the particles. Mixed inoculum commonly used to develop bioanodes may produce similar bacterial communities with divergent electrochemical responses due to the presence of alternate electron acceptors, with direct implications for microbial fuel cell performance.
Assuntos
Fontes de Energia Bioelétrica , Deltaproteobacteria , Geobacter , Compostos Férricos/metabolismo , Óxidos , Elétrons , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias/metabolismo , Deltaproteobacteria/genética , Fontes de Energia Bioelétrica/microbiologia , Geobacter/metabolismo , Eletrodos , BiofilmesRESUMO
The fixed arsenic in soil is easy to be released into the aquatic environment in the form of arsenite (As(III)) with high toxicity and mobility due to the eutrophication of environment under anaerobic conditions. However, As(III) is difficult to be fixed in situ continuously by traditional methods, especially for the most efficient fixation method by iron ores. Based on that Fe(II) could promote the fixation of As(III), this study investigated the possibility that Geobacter sulfurreducens (G. sulfurreducens) cooperates with ferrihydrite to fix released As(III) from flooded soil in a glass column continuously under anaerobic conditions. During 42 days of operation of reactors that simulated the actual flooded soil environment, the concentration of released As(III) in the reactor with adding G. sulfurreducens and ferrihydrite is always lower than that in reactors with adding ferrihydrite or no treatment. Compared with reactors without treatment, the accumulated content of released As(III) (2455.0 ± 313.1 µg) decreased by 39.4% in the reactor with adding G. sulfurreducens and ferrihydrite on the last day, while that in reactors with adding ferrihydrite only decreased by 11.6%, respectively. These were caused by the cooperation of G. sulfurreducens and ferrihydrite, which increased the relative abundance of iron-reducing microorganisms to inhibit metabolisms of As-reducing microorganisms, inhibited the quick release of As(III) from solid soil, and promoted the release of iron to accelerate the formation of stable secondary ores with As. This study could provide an environmentally friendly method to fix dissolved As(III) pollutants from soil continuously.
Assuntos
Arsenitos , Geobacter , Solo , Arsenitos/metabolismo , Oxirredução , Compostos Férricos/metabolismo , Ferro/metabolismo , Geobacter/metabolismoRESUMO
Bacteria have evolved several mechanisms to resist Cd toxicity, which are crucial for Cd detoxication and have the potential to be used for bioremediation of Cd. Geobacter species are widely found in anaerobic environments and play important roles in natural biogeochemical cycles. However, the transcriptomic response of Geobacter sulfurreducens under Cd stress have not been fully elucidated. Through integrated analysis of transcriptomic and protein-protein interaction (PPI) data, we uncovered a global view of mRNA changes in Cd-induced cellular processes in this study. We identified 182 differentially expressed genes (|log2(fold change)| > 1, adjusted P < 0.05) in G. sulfurreducens exposed to 0.1 mM CdCl2 using RNA sequencing (RNA-seq). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that CdCl2 significantly affected sulfur compound metabolic processes. In addition, through PPI network analysis, hub genes related to molecular chaperones were identified to play important role in Cd stress response. We also identified a Cd-responsive transcriptional regulator ArsR2 (coded by GSU2149) and verified the function of ArsR2-ParsR2 regulatory circuit in Escherichia coli. This study provides new insight into Cd stress response in G. sulfurreducens, and identified a potential sensor element for Cd detection.
Assuntos
Geobacter , Transcriptoma , Cádmio/toxicidade , Geobacter/genética , Perfilação da Expressão GênicaRESUMO
The organized self-assembly of conductive biological structures holds promise for creating new bioelectronic devices. In particular, Geobacter sulfurreducens type IVa pili have proven to be a versatile material for fabricating protein nanowire-based devices. To scale the production of conductive pili, we designed a strain of Shewanella oneidensis that heterologously expressed abundant, conductive Geobacter pili when grown aerobically in liquid culture. S. oneidensis expressing a cysteine-modified pilin, designed to enhance the capability to bind to gold, generated conductive pili that self-assembled into biohybrid filaments in the presence of gold nanoparticles. Elemental composition analysis confirmed the filament-metal interactions within the structures, which were several orders of magnitude larger than previously described metal:organic filaments. The results demonstrate that the S. oneidensis chassis significantly advances the possibilities for facile conductive protein nanowire design and fabrication.
Assuntos
Técnicas Biossensoriais , Geobacter , Nanopartículas Metálicas , Ouro , Fímbrias Bacterianas/metabolismo , Transporte de ElétronsRESUMO
Scorodite (FeAsO4·H2O) is a common arsenic-bearing (As-bearing) iron mineral in near-surface environments that could immobilize or store As in a bound state. In flooded soils, microbe induced Fe(III) or As(V) reduction can increase the mobility and bioavailability of As. Additionally, humic substances can act as electron shuttles to promote this process. The dynamics of As release and diversity of putative As(V)-reducing bacteria during scorodite reduction have yet to be investigated in detail in flooded soils. Here, the microbial reductive dissolution of scorodite was conducted in an flooded soil in the presence of anthraquinone-2,6-disulfonate (AQDS). Anaeromyxobacter, Dechloromonas, Geothrix, Geobacter, Ideonella, and Zoogloea were found to be the dominant indigenous bacteria during Fe(III) and As(V) reduction. AQDS increased the relative abundance of dominant species, but did not change the diversity and microbial community of the systems with scorodite. Among these bacteria, Geobacter exhibited the greatest increase and was the dominant Fe(III)- and As(V)-reducing bacteria during the incubation with AQDS and scorodite. AQDS promoted both Fe(III) and As(V) reduction, and over 80% of released As(V) was microbially transformed to As(III). The increases in the abundance of arrA gene and putative arrA sequences of Geobacter were higher with AQDS than without AQDS. As a result, the addition of AQDS promoted microbial Fe(III) and As(V) release and reduction from As-bearing iron minerals into the environment. These results contribute to exploration of the transformation of As from As-bearing iron minerals under anaerobic conditions, thus providing insights into the bioremediation of As-contaminated soil.
Assuntos
Arsênio , Geobacter , Solo , Elétrons , Compostos Férricos , FerroRESUMO
Geobacter species have great application potential in remediation processes and electrobiotechnology. In all applications, understanding the metabolism will enable target-oriented optimization of the processes. The typical electron donor and carbon source of the Geobacter species is acetate, while fumarate is the usual electron acceptor. Here, we could show that depending on the donor/acceptor ratio in batch cultivation of Geobacter sulfurreducens different product patterns occur. With a donor/acceptor ratio of 1:2.5 malate accumulated as an intermediate product but was metabolized to succinate subsequently. At the end of the cultivation, the ratio of fumarate consumed and succinate produced was approximately 1:1. When fumarate was added in excess, malate accumulated in the fermentation broth without further metabolization. After the addition of acetate to stationary cells, malate concentration decreased immediately and additional succinate was synthesized. Finally, it was shown that also resting cells of G. sulfurreducens could efficiently convert fumarate to malate without an additional electron donor. Overall, it was demonstrated that by altering the donor/acceptor ratio, targeted optimization of the metabolite conversion by G. sulfurreducens can be realized.
Assuntos
Geobacter , Geobacter/metabolismo , Malatos/metabolismo , Transporte de Elétrons , Ácido Succínico/metabolismo , Fumaratos/metabolismo , Acetatos/metabolismo , OxirreduçãoRESUMO
Relying on surface functional groups and graphitized structure, pyrogenic carbon (PC) was reported to facilitate microbial extracellular electron transfer (EET), which plays a crucial role in diverse biogeochemical reactions. However, little is known about the role of electrical capacitance on EET between microbes and PCs. Here, PCs were obtained from fermented steam bread after carbonization at different temperatures from 700 °C to 1100 °C. PC-900 exhibited the lowest charge transfer resistance and highest electrical capacitance, ascribed to combined effects of graphitic structure and hierarchical porous structure. The interfacial EET was further investigated by enriching electroactive biofilms on PC surface. Faster interfacial EET was demonstrated in PC-900. Maximum power density was proportional to electrical capacitance rather than conductivity. PC-900 enriched the most Geobacter sp., which was positively correlated with electrical capacitance according to the distance-based redundancy analysis. Electrical capacitance was suggested to act as electron pool to facilitate interfacial EET efficiency.
Assuntos
Carbono , Geobacter , Elétrons , Transporte de Elétrons , Eletrodos , BiofilmesRESUMO
While early genetic and low-resolution structural observations suggested that extracellular conductive filaments on metal-reducing organisms such as Geobacter were composed of type IV pili, it has now been established that bacterial c-type cytochromes can polymerize to form extracellular filaments capable of long-range electron transport. Atomic structures exist for two such cytochrome filaments, formed from the hexaheme cytochrome OmcS and the tetraheme cytochrome OmcE. Due to the highly conserved heme packing within the central OmcS and OmcE cores, and shared pattern of heme coordination between subunits, it has been suggested that these polymers have a common origin. We have now used cryo-electron microscopy (cryo-EM) to determine the structure of a third extracellular filament, formed from the Geobacter sulfurreducens octaheme cytochrome, OmcZ. In contrast to the linear heme chains in OmcS and OmcE from the same organism, the packing of hemes, heme:heme angles, and between-subunit heme coordination is quite different in OmcZ. A branched heme arrangement within OmcZ leads to a highly surface exposed heme in every subunit, which may account for the formation of conductive biofilm networks, and explain the higher measured conductivity of OmcZ filaments. This new structural evidence suggests that conductive cytochrome polymers arose independently on more than one occasion from different ancestral multiheme proteins.