Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.504
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000302

RESUMO

Dupuytren's disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM's content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease's severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease.


Assuntos
Colágeno , Decorina , Contratura de Dupuytren , Proteoglicanas , Humanos , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Colágeno/metabolismo , Proteoglicanas/metabolismo , Decorina/metabolismo , Matriz Extracelular/metabolismo , Masculino , Progressão da Doença , Feminino , Dermatan Sulfato/metabolismo , Pessoa de Meia-Idade , Idoso , Versicanas/metabolismo , Versicanas/genética , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Polissacarídeos
2.
Infect Immun ; 92(7): e0019924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842305

RESUMO

Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Enterococcus faecalis , Glicosaminoglicanos , Infecções por Bactérias Gram-Positivas , Infecções Urinárias , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Infecções Urinárias/microbiologia , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Feminino , Humanos , Ácido Hialurônico/metabolismo
3.
Biotechnol Adv ; 74: 108394, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38857660

RESUMO

Glycosaminoglycans (GAGs) are a family of structurally complex heteropolysaccharides that play pivotal roles in biological functions, including the regulation of cell proliferation, enzyme inhibition, and activation of growth factor receptors. Therefore, the synthesis of GAGs is a hot research topic in drug development. The enzymatic synthesis of GAGs has received widespread attention due to their eco-friendly nature, high regioselectivity, and stereoselectivity. The enhancement of the enzymatic synthesis process is the key to its industrial applications. In this review, we overviewed the construction of more efficient in vitro biomimetic synthesis systems of glycosaminoglycans and presented the different strategies to improve enzyme catalysis, including the combination of chemical and enzymatic methods, solid-phase synthesis, and protein engineering to solve the problems of enzyme stability, separation and purification of the product, preparation of structurally defined sugar chains, etc., and discussed the challenges and opportunities in large-scale green synthesis of GAGs.


Assuntos
Glicosaminoglicanos , Química Verde , Glicosaminoglicanos/química , Química Verde/métodos , Biocatálise , Engenharia de Proteínas/métodos , Enzimas/química , Enzimas/metabolismo , Catálise
4.
Nat Commun ; 15(1): 4912, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851738

RESUMO

Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.


Assuntos
Proteínas de Bactérias , Colágeno , Glicosaminoglicanos , Legionella pneumophila , Simulação de Dinâmica Molecular , Ligação Proteica , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Colágeno/metabolismo , Colágeno/química , Cristalografia por Raios X , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/química , Aderência Bacteriana , Domínios Proteicos , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Humanos , Sequência de Aminoácidos
5.
Int J Biol Macromol ; 272(Pt 1): 132848, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830491

RESUMO

Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.


Assuntos
Diferenciação Celular , Celulose , Condrogênese , Colágeno , Hidrogéis , Células-Tronco Mesenquimais , Nanopartículas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Celulose/química , Celulose/farmacologia , Condrogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Nanopartículas/química , Colágeno/química , Colágeno/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Plásticos/química , Plásticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Cartilagem/citologia , Cartilagem/efeitos dos fármacos
6.
Biomed Mater ; 19(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857607

RESUMO

Hypothyroidism is caused by insufficient stimulation or disruption of the thyroid. However, the drawbacks of thyroid transplantation have led to the search for new treatments. Decellularization allows tissue transplants to maintain their biomimetic structures while preserving cell adhesion, proliferation, and differentiation. This study aimed to decellularize human thyroid tissues using a structure-preserving optimization strategy and present preliminary data on recellularization. Nine methods were used for physical and chemical decellularization. Quantitative and immunohistochemical analyses were performed to investigate the DNA and extracellular matrix components of the tissues. Biomechanical properties were determined by compression test, and cell viability was examined after seeding MDA-T32 papillary thyroid cancer (PTC) cells onto the decellularized tissues. Decellularized tissues exhibited a notable decrease (<50 ng mg-1DNA, except for Groups 2 and 7) compared to the native thyroid tissue. Nonetheless, collagen and glycosaminoglycans were shown to be conserved in all decellularized tissues. Laminin and fibronectin were preserved at comparatively higher levels, and Young's modulus was elevated when decellularization included SDS. It was observed that the strain value in Group 1 (1.63 ± 0.14 MPa) was significantly greater than that in the decellularized tissues between Groups 2-9, ranging from 0.13 ± 0.03-0.72 ± 0.29 MPa. Finally, viability assessment demonstrated that PTC cells within the recellularized tissue groups successfully attached to the 3D scaffolds and sustained metabolic activity throughout the incubation period. We successfully established a decellularization optimization for human thyroid tissues, which has potential applications in tissue engineering and transplantation research. Our next goal is to conduct recellularization using the methods utilized in Group 1 and transplant the primary thyroid follicular cell-seeded tissues into anin vivoanimal model, particularly due to their remarkable 3D structural preservation and cell adhesion-promoting properties.


Assuntos
Sobrevivência Celular , Matriz Extracelular , Glândula Tireoide , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Glândula Tireoide/citologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Alicerces Teciduais/química , Colágeno/química , Adesão Celular , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Linhagem Celular Tumoral , DNA , Módulo de Elasticidade , Proliferação de Células , Neoplasias da Glândula Tireoide/patologia , Matriz Extracelular Descelularizada/química , Laminina/química , Fenômenos Biomecânicos , Diferenciação Celular , Câncer Papilífero da Tireoide/patologia , Fibronectinas/química , Fibronectinas/metabolismo
7.
Carbohydr Polym ; 341: 122294, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876708

RESUMO

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.


Assuntos
Proteína Morfogenética Óssea 2 , Glicosaminoglicanos , Heparitina Sulfato , Transdução de Sinais , Proteína Morfogenética Óssea 2/metabolismo , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Humanos , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Simulação de Dinâmica Molecular , Animais , Ligação Proteica
8.
Langmuir ; 40(27): 14007-14015, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38916446

RESUMO

Allograft transplantation is an important method for tendon reconstruction after injury, and its clinical success highly relies on the storage and transportation of the grafts. Cryopreservation is a promising strategy for tendon storage. In this study, we report a novel cryopreservation agent (CPA) formulation with a high biocompatibility for tendon cryopreservation. Mainly composed of natural zwitterionic betaine and the biocompatible polymer poly(vinylpyrrolidone) (PVP), it exhibited ideal abilities to depress the freezing point and inhibit ice growth and recrystallization. Notably, after cryopreservation via plunge-freezing for 1 month, Young's modulus (144 MPa, 98% of fresh tendons) and ultimate stress (46.7 MPa, 99% of fresh tendons) remained stable, and the cross-linking of collagen microfibers, protein structures, and glycosaminoglycan (GAG) contents changed slightly. These results indicate that the formulation (5 wt % betaine and 5 wt % PVP in phosphate-buffered saline, PBS solution) effectively maintains the biomechanical properties and tissue structure. This work offers a novel cryopreservation method for tendons and may also provide insights into the long-term preservation of various other tissues.


Assuntos
Betaína , Criopreservação , Tendões , Criopreservação/métodos , Tendões/efeitos dos fármacos , Betaína/química , Animais , Congelamento , Crioprotetores/química , Crioprotetores/farmacologia , Povidona/química , Colágeno/química , Glicosaminoglicanos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
9.
Glycobiology ; 34(6)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38760939

RESUMO

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Assuntos
Inibidores Enzimáticos , Fibroblastos , Glicosaminoglicanos , Mucopolissacaridose I , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/patologia , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/antagonistas & inibidores , Carboidratos Epimerases/genética , Simulação de Acoplamento Molecular , Antígenos de Neoplasias , Proteínas de Ligação a DNA , Proteínas de Neoplasias
10.
Mar Drugs ; 22(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786589

RESUMO

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Assuntos
Sulfatos de Condroitina , Linguado , Glicosaminoglicanos , Espectrometria de Massas em Tandem , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/química , Cromatografia Líquida de Alta Pressão , Osso e Ossos/química , Pele/química , Pele/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Músculos/química
11.
Nat Commun ; 15(1): 4514, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802491

RESUMO

Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 µm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'. The zones of N- and O-glycosylation enzymes are colocalised. However, they are less colocalised with the zones of a glycosaminoglycan synthesizing enzyme. Golgi units change shapes dynamically and the zones of glycosylation enzymes rapidly move near the rim of the unit. Photobleaching analysis indicates that a glycosaminoglycan synthesizing enzyme moves between units. Depletion of giantin dissociates units and prevents the movement of glycosaminoglycan synthesizing enzymes, which leads to insufficient glycosaminoglycan synthesis. Thus, we show the structure-function relationship of the Golgi and its implications in human pathogenesis.


Assuntos
Glicosaminoglicanos , Complexo de Golgi , Complexo de Golgi/metabolismo , Glicosilação , Humanos , Glicosaminoglicanos/metabolismo , Células HeLa , Sistemas CRISPR-Cas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas da Matriz do Complexo de Golgi
12.
Sci Rep ; 14(1): 11839, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782973

RESUMO

The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Sulfatos de Condroitina/metabolismo , Masculino , Feminino , Adulto , Adolescente , Criança , Glicosaminoglicanos/metabolismo , Adulto Jovem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Matriz Extracelular/metabolismo , Intestinos/patologia
13.
Mol Genet Metab ; 142(3): 108507, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815294

RESUMO

Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished. Despite the common primary metabolic deficit (inefficient GAG degradation), the course and symptoms of various MPS types can be different, though majority of the diseases from the group are characterized by severe symptoms and significantly shortened live span. Here, we analysed the frequency of specific, direct causes of death of patients with different MPS types, the subject which was not investigated comprehensively to date. We examined a total of 1317 cases of death among MPS patients, including 393 cases of MPS I, 418 cases of MPS II, 232 cases of MPS III, 45 cases of MPS IV, 208 cases of MPS VI, and 22 cases of MPS VII. Our analyses indicated that the most frequent causes of death differ significantly between MPS types, with cardiovascular and respiratory failures being predominant in MPS I, MPS II, and MPS VI, neurological deficits in MPS III, respiratory issues in MPS IV, and hydrops fetalis in MPS VII. Results of such studies suggest what specific clinical problems should be considered with the highest priority in specific MPS types, apart from attempts to correct the primary causes of the diseases, to improve the quality of life of patients and to prolong their lives.


Assuntos
Causas de Morte , Mucopolissacaridoses , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/complicações , Masculino , Criança , Feminino , Pré-Escolar , Adolescente , Lactente , Adulto , Adulto Jovem , Recém-Nascido , Glicosaminoglicanos/metabolismo , Pessoa de Meia-Idade , Mucopolissacaridose II/genética , Mucopolissacaridose II/mortalidade
14.
J Neural Eng ; 21(3)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38806019

RESUMO

Objective.Severe traumatic brain injury (sTBI) induced neuronal loss and brain atrophy contribute significantly to long-term disabilities. Brain extracellular matrix (ECM) associated chondroitin sulfate (CS) glycosaminoglycans promote neural stem cell (NSC) maintenance, and CS hydrogel implants have demonstrated the ability to enhance neuroprotection, in preclinical sTBI studies. However, the ability of neuritogenic chimeric peptide (CP) functionalized CS hydrogels in promoting functional recovery, after controlled cortical impact (CCI) and suction ablation (SA) induced sTBI, has not been previously demonstrated. We hypothesized that neuritogenic (CS)CP hydrogels will promote neuritogenesis of human NSCs, and accelerate brain tissue repair and functional recovery in sTBI rats.Approach.We synthesized chondroitin 4-Osulfate (CS-A)CP, and 4,6-O-sulfate (CS-E)CP hydrogels, using strain promoted azide-alkyne cycloaddition (SPAAC), to promote cell adhesion and neuritogenesis of human NSCs,in vitro; and assessed the ability of (CS-A)CP hydrogels in promoting tissue and functional repair, in a novel CCI-SA sTBI model,in vivo. Main results.Results indicated that (CS-E)CP hydrogels significantly enhanced human NSC aggregation and migration via focal adhesion kinase complexes, when compared to NSCs in (CS-A)CP hydrogels,in vitro. In contrast, NSCs encapsulated in (CS-A)CP hydrogels differentiated into neurons bearing longer neurites and showed greater spontaneous activity, when compared to those in (CS-E)CP hydrogels. The intracavitary implantation of (CS-A)CP hydrogels, acutely after CCI-SA-sTBI, prevented neuronal and axonal loss, as determined by immunohistochemical analyses. (CS-A)CP hydrogel implanted animals also demonstrated the significantly accelerated recovery of 'reach-to-grasp' function when compared to sTBI controls, over a period of 5-weeks.Significance.These findings demonstrate the neuritogenic and neuroprotective attributes of (CS)CP 'click' hydrogels, and open new avenues for the development of multifunctional glycomaterials that are functionalized with biorthogonal handles for sTBI repair.


Assuntos
Lesões Encefálicas Traumáticas , Hidrogéis , Células-Tronco Neurais , Neuritos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Hidrogéis/administração & dosagem , Animais , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Masculino , Sulfatos de Condroitina/administração & dosagem , Sulfatos de Condroitina/farmacologia , Glicosaminoglicanos/administração & dosagem , Células Cultivadas , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia
15.
Am J Sports Med ; 52(7): 1834-1844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708721

RESUMO

BACKGROUND: Plantar fasciitis is a painful tendinous condition (tendinopathy) with a high prevalence in athletes. While a healthy tendon has limited blood flow, ultrasound has indicated elevated blood flow in tendinopathy, but it is unknown if this is related to a de facto increase in the tendon vasculature. Likewise, an accumulation of glycosaminoglycans (GAGs) is observed in tendinopathy, but its relationship to clinical pain is unknown. PURPOSE: To explore to what extent vascularization, inflammation, and fat infiltration were present in patients with plantar fasciitis and if they were related to clinical symptoms. STUDY DESIGN: Descriptive laboratory study. METHODS: Biopsy specimens from tendinopathic plantar fascia tissue were obtained per-operatively from both the primary site of tendon pain and tissue swelling ("proximal") and a region that appeared macroscopically healthy at 1 to 2 cm away from the primary site ("distal") in 22 patients. Biopsy specimens were examined with immunofluorescence for markers of blood vessels, tissue cell density, fat infiltration, and macrophage level. In addition, pain during the first step in the morning (registered during an earlier study) was correlated with the content of collagen and GAGs in tissue. RESULTS: High vascularization (and cellularity) was present in both the proximal (0.89%) and the distal (0.96%) plantar fascia samples, whereas inconsistent but not significantly different fat infiltration and macrophage levels were observed. The collagen content was similar in the 2 plantar fascia regions, whereas the GAG content was higher in the proximal region (3.2% in proximal and 2.8% in distal; P = .027). The GAG content in the proximal region was positively correlated with the subjective morning pain score in the patients with tendinopathy (n = 17). CONCLUSION: In patients with plantar fasciitis, marked tissue vascularization was present in both the painful focal region and a neighboring nonsymptomatic area. In contrast, the accumulation of hydrophilic GAGs was greater in the symptomatic region and was positively correlated with increased clinical pain levels in daily life. CLINICAL RELEVANCE: The accumulation of GAGs in tissue rather than the extent of vascularization appears to be linked with the clinical degree of pain symptoms of the disease.


Assuntos
Fasciíte Plantar , Glicosaminoglicanos , Humanos , Masculino , Glicosaminoglicanos/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Tendinopatia/metabolismo , Fáscia/metabolismo , Fáscia/irrigação sanguínea , Dor/etiologia , Idoso , Colágeno/metabolismo , Tendões/metabolismo , Tendões/irrigação sanguínea , Tecido Adiposo/metabolismo
16.
Acta Biomater ; 182: 42-53, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729549

RESUMO

Magnetic resonance elastography (MRE) and diffusion-weighted imaging (DWI) are complementary imaging techniques that detect disease based on viscoelasticity and water mobility, respectively. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering the clinical translation of combined DWI-MRE markers. We used DWI-MRE to study 129 biomaterial samples including native and cross-linked collagen, glycosaminoglycans (GAGs) with different sulfation levels, and decellularized specimens of pancreas and liver, all with different proportions of solid tissue, or solid fractions. We developed a theoretical framework of the relationship between mechanical loss and tissue-water mobility based on two parameters, solid and fluid viscosity. These parameters revealed distinct DWI-MRE property clusters characterizing weak, moderate, and strong water-network interactions. Sparse networks interacting weakly with water, such as collagen or diluted decellularized tissue, resulted in marginal changes in water diffusion over increasing solid viscosity. In contrast, dense networks with larger solid fractions exhibited both free and hindered water diffusion depending on the polarity of the solid components. For example, polar and highly sulfated GAGs as well as native soft tissues hindered water diffusion despite relatively low solid viscosity. Our results suggest that two fundamental properties of tissue networks, solid fraction and network polarity, critically influence solid and fluid viscosity in biological tissues. Since clinical DWI and MRE are sensitive to these viscosity parameters, the framework we present here can be used to detect tissue remodeling and architectural changes in the setting of diagnostic imaging. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of biological tissues provide a wealth of information on the vital state of cells and host matrix. Combined measurement of viscoelasticity and water diffusion by medical imaging is sensitive to tissue microarchitecture. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering full exploitation of these properties as a combined clinical biomarker. Therefore, we analyzed the parameter space accessible by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) and developed a theoretical framework for the relationship between water mobility and mechanical parameters in biomaterials. Our theory of solid material properties related to particle motion can be translated to clinical radiology using clinically established MRE and DWI.


Assuntos
Elasticidade , Água , Viscosidade , Água/química , Difusão , Animais , Técnicas de Imagem por Elasticidade/métodos , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Colágeno/química , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Fígado/diagnóstico por imagem
17.
J Biomech ; 169: 112131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739987

RESUMO

Cartilage endplates (CEPs) act as protective mechanical barriers for intervertebral discs (IVDs), yet their heterogeneous structure-function relationships are poorly understood. This study addressed this gap by characterizing and correlating the regional biphasic mechanical properties and biochemical composition of human lumbar CEPs. Samples from central, lateral, anterior, and posterior portions of the disc (n = 8/region) were mechanically tested under confined compression to quantify swelling pressure, equilibrium aggregate modulus, and hydraulic permeability. These properties were correlated with CEP porosity and glycosaminoglycan (s-GAG) content, which were obtained by biochemical assays of the same specimens. Both swelling pressure (142.79 ± 85.89 kPa) and aggregate modulus (1864.10 ± 1240.99 kPa) were found to be regionally dependent (p = 0.0001 and p = 0.0067, respectively) in the CEP and trended lowest in the central location. No significant regional dependence was observed for CEP permeability (1.35 ± 0.97 * 10-16 m4/Ns). Porosity measurements correlated significantly with swelling pressure (r = -0.40, p = 0.0227), aggregate modulus (r = -0.49, p = 0.0046), and permeability (r = 0.36, p = 0.0421), and appeared to be the primary indicator of CEP biphasic mechanical properties. Second harmonic generation microscopy also revealed regional patterns of collagen fiber anchoring, with fibers inserting the CEP perpendicularly in the central region and at off-axial directions in peripheral regions. These results suggest that CEP tissue has regionally dependent mechanical properties which are likely due to the regional variation in porosity and matrix structure. This work advances our understanding of healthy baseline endplate biomechanics and lays a groundwork for further understanding the role of CEPs in IVD degeneration.


Assuntos
Disco Intervertebral , Vértebras Lombares , Humanos , Vértebras Lombares/fisiologia , Disco Intervertebral/fisiologia , Pessoa de Meia-Idade , Masculino , Feminino , Porosidade , Adulto , Idoso , Glicosaminoglicanos/metabolismo , Fenômenos Biomecânicos , Cartilagem/fisiologia , Estresse Mecânico
18.
N Biotechnol ; 82: 75-84, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38750817

RESUMO

Natural biopolymers become increasingly attractive as bio-based alternatives to petrol-based rheological modifiers, especially in personal care applications. However, many polysaccharides exhibit undesired properties in cosmetic applications such as limited viscosifying characteristics, unpleasant sensory properties, or incompatibility with certain formulation compounds. Here, a comprehensive rheological analysis of non-decorated acetan-like heteroexopolysaccharides derived from two Kozakia baliensis strains was performed in selected surfactant formulations. The results were compared to native xanthan gum and a genetically engineered xanthan variant, Xan∆gumFGL, which lacks any acetyl- and pyruvyl moieties and whose rheological properties are unaffected by saline environments. All four polysaccharides displayed a highly similar rheological performance in the non-ionic surfactant lauryl glucoside, while the rheological properties differed in amphoteric and anionic surfactants cocamidopropyl betaine and sodium laureth sulfate due to minor changes in side chain composition. Polysaccharide precipitation was observed in the presence of the cationic surfactant. Nevertheless, the native heteroexopolysaccharide derived from K. baliensis LMG 27018 shows significant potential as a salt-independent rheological modifier compared to the genetically engineered Xan∆gumFGL variant. In addition, blends of heteroexopolysaccharides from K. baliensis and several galactomannans displayed synergistic effects which were comparable to native xanthan gum-galactomannan blends. This study shows that heteroexopolysaccharides of K. baliensis are capable of further extending the portfolio of bio-based rheological modifiers.


Assuntos
Galactose , Mananas , Polissacarídeos Bacterianos , Reologia , Tensoativos , Mananas/química , Galactose/análogos & derivados , Galactose/química , Tensoativos/química , Polissacarídeos Bacterianos/química , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo
19.
Arch Ital Urol Androl ; 96(2): 12367, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722147

RESUMO

OBJECTIVE: The aim of this study was to investigate whether urinary glycosaminoglycans (GAG) levels reflect clinical status in men with lower urinary tract symptoms and if they could be used as a marker in management of overactive bladder (OAB). METHODS: A total of 34 patients were recruited who were admitted with LUTS and diagnosed as having clinically bladder outlet obstruction (BOO) due to prostate enlargement. These newly diagnosed, never treated patients underwent routine investigation, consisting of history, physical examination, PSA, ultrasound, uroflowmetry, assessment of symptoms scored by both International Prostate Symptom Score (IPSS) and Marmara- Overactive Bladder Questionnaire (M-OBQ). The patients were divided into two groups as those with an initial M-OBQ score < 12 (group 1) and ≥ 13 (group 2). Alfa blocker was initiated in eligible patients. Further evaluations included prostate volume measurement, pre- and post-treatment urinary GAG levels, IPSS and M-QAOB values and maximum urine flow rate (Qmax). RESULTS: Before treatment, urinary GAG level was 21.5 mg/gCr (6.1-45.5) in Group 1, and 23.35 mg/gCr (15.6-32.6) in Group 2 (p =0.845). After the treatment, the GAG level in Group 1 and Group 2 were found to be 19.8 mg/gCr (7.4-70.5) and 18 (7.6- 41.7), respectively (p = 0.511). No difference in GAG levels was found in subgroup analysis for patients with or without OAB. CONCLUSIONS: In recent years, there have been many studies investigating the relationship between LUTS and urinary markers. However, in our prospective study, no relationship was found between pre- and post- treatment urinary GAG levels in patients with LUTS with or without OAB.


Assuntos
Biomarcadores , Glicosaminoglicanos , Sintomas do Trato Urinário Inferior , Obstrução do Colo da Bexiga Urinária , Humanos , Masculino , Glicosaminoglicanos/urina , Sintomas do Trato Urinário Inferior/urina , Sintomas do Trato Urinário Inferior/etiologia , Idoso , Pessoa de Meia-Idade , Biomarcadores/urina , Seguimentos , Obstrução do Colo da Bexiga Urinária/urina , Obstrução do Colo da Bexiga Urinária/complicações , Obstrução do Colo da Bexiga Urinária/diagnóstico , Bexiga Urinária Hiperativa/urina , Bexiga Urinária Hiperativa/diagnóstico , Hiperplasia Prostática/urina , Hiperplasia Prostática/complicações , Inquéritos e Questionários , Estudos Prospectivos
20.
Biomaterials ; 309: 122629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797120

RESUMO

Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.


Assuntos
Materiais Biocompatíveis , Doenças do Sistema Nervoso Central , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Humanos , Animais , Materiais Biocompatíveis/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Hidrogéis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA