Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.834
Filtrar
1.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158801

RESUMO

The maintenance of plasma membrane integrity and a capacity for efficiently repairing damaged membranes are essential for cell survival. Large-scale wounding depletes various membrane components at the wound sites, including phosphatidylinositols, yet little is known about how phosphatidylinositols are generated after depletion. Here, working with our in vivo C. elegans epidermal cell wounding model, we discovered phosphatidylinositol 4-phosphate (PtdIns4P) accumulation and local phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] generation at the wound site. We found that PtdIns(4,5)P2 generation depends on the delivery of PtdIns4P, PI4K, and PI4P 5-kinase PPK-1. In addition, we show that wounding triggers enrichment of the Golgi membrane to the wound site, and that is required for membrane repair. Moreover, genetic and pharmacological inhibitor experiments support that the Golgi membrane provides the PtdIns4P for PtdIns(4,5)P2 generation at the wounds. Our findings demonstrate how the Golgi apparatus facilitates membrane repair in response to wounding and offers a valuable perspective on cellular survival mechanisms upon mechanical stress in a physiological context.


Assuntos
Membrana Celular , Complexo de Golgi , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositóis , Animais , Caenorhabditis elegans/genética , Estresse Mecânico
2.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37195633

RESUMO

Phosphatidylinositol 4-monophosphate [PtdIns(4)P] is a precursor for various phosphoinositides but also a membrane-embedded component crucial for membrane contact sites (MCSs). Several lipid transfer proteins are recruited to MCSs by recognizing PtdIns(4)P; however, it remains poorly elucidated how the production of PtdIns(4)P for lipid transport at MCSs is regulated. Following human genome-wide screening, we discovered that the PtdIns(4)P-related genes PI4KB, ACBD3, and C10orf76 are involved in endoplasmic reticulum-to-Golgi trafficking of ceramide by the ceramide transport protein CERT. CERT preferentially utilizes PtdIns(4)P generated by PI4KB recruited to the Golgi by C10orf76 rather than by ACBD3. Super-resolution microscopy observation revealed that C10orf76 predominantly localizes at distal Golgi regions, where sphingomyelin (SM) synthesis primarily occurs, while the majority of ACBD3 localizes at more proximal regions. This study provides a proof-of-concept that distinct pools of PtdIns(4)P are generated in different subregions, even within the same organelle, to facilitate interorganelle metabolic channeling for the ceramide-to-SM conversion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ceramidas , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
3.
Nat Plants ; 9(5): 685-686, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37160997
4.
Proc Natl Acad Sci U S A ; 120(20): e2219953120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155866

RESUMO

The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signaling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid Golgi immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi-resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome, and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified proteins not previously associated with the Golgi. Metabolite profiling established the human Golgi metabolome and revealed the enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol, and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease.


Assuntos
Complexo de Golgi , Proteoma , Humanos , Complexo de Golgi/metabolismo , Cromatografia Líquida , Proteoma/metabolismo , Lipídeos , Difosfato de Uridina/metabolismo
5.
Nat Commun ; 14(1): 2683, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160917

RESUMO

Many secretory enzymes acquire essential zinc ions (Zn2+) in the Golgi complex. ERp44, a chaperone operating in the early secretory pathway, also binds Zn2+ to regulate its client binding and release for the control of protein traffic and homeostasis. Notably, three membrane transporter complexes, ZnT4, ZnT5/ZnT6 and ZnT7, import Zn2+ into the Golgi lumen in exchange with protons. To identify their specific roles, we here perform quantitative Zn2+ imaging using super-resolution microscopy and Zn2+-probes targeted in specific Golgi subregions. Systematic ZnT-knockdowns reveal that ZnT4, ZnT5/ZnT6 and ZnT7 regulate labile Zn2+ concentration at the distal, medial, and proximal Golgi, respectively, consistent with their localization. Time-course imaging of cells undergoing synchronized secretory protein traffic and functional assays demonstrates that ZnT-mediated Zn2+ fluxes tune the localization, trafficking, and client-retrieval activity of ERp44. Altogether, this study provides deep mechanistic insights into how ZnTs control Zn2+ homeostasis and ERp44-mediated proteostasis along the early secretory pathway.


Assuntos
Complexo de Golgi , Proteostase , Humanos , Homeostase , Transporte Biológico , Bioensaio , Proteínas de Membrana , Chaperonas Moleculares
6.
PLoS One ; 18(4): e0280975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079572

RESUMO

Nucleotide Sugar Transporters (NSTs) belong to the SLC35 family (human solute carrier) of membrane transport proteins and are crucial components of the glycosylation machinery. NSTs are localized in the ER and Golgi apparatus membranes, where they accumulate nucleotide sugars from the cytosol for subsequent polysaccharide biosynthesis. Loss of NST function impacts the glycosylation of cell surface molecules. Mutations in NSTs cause several developmental disorders, immune disorders, and increased susceptibility to infection. Atomic resolution structures of three NSTs have provided a blueprint for a detailed molecular interpretation of their biochemical properties. In this work, we have identified, cloned, and expressed 18 members of the SLC35 family from various eukaryotic organisms in Saccharomyces cerevisiae. Out of 18 clones, we determined Vrg4 from Chaetomium thermophilum (CtVrg4) is a GDP-mannose transporter with an enhanced melting point temperature (Tm) of 56.9°C, which increases with the addition of substrates, GMP and GDP-mannose. In addition, we report-for the first time-that the CtVrg4 shows an affinity to bind to phosphatidylinositol lipids.


Assuntos
Proteínas de Transporte , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Glicosilação , Nucleotídeos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 14(1): 2273, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080980

RESUMO

Bulky cargos like procollagens, apolipoproteins, and mucins exceed the size of conventional COPII vesicles. During evolution a process emerged in metazoans, predominantly governed by the TANGO1 protein family, that organizes cargo at the exit sites of the endoplasmic reticulum and facilitates export by the formation of tunnel-like connections between the ER and Golgi. Hitherto, cargo-recognition appeared to be mediated by an SH3-like domain. Based on structural and dynamic data as well as interaction studies from NMR spectroscopy and microscale thermophoresis presented here, we show that the luminal cargo-recognition domain of TANGO1 adopts a new functional fold for which we suggest the term MOTH (MIA, Otoraplin, TALI/TANGO1 homology) domain. These MOTH domains, as well as an evolutionary intermediate found in invertebrates, constitute a distinct domain family that emerged from SH3 domains and acquired the ability to bind collagen.


Assuntos
Colágeno , Domínios de Homologia de src , Transporte Proteico , Colágeno/metabolismo , Pró-Colágeno/metabolismo , Complexo de Golgi/metabolismo
8.
Sci Adv ; 9(16): eadf6059, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075112

RESUMO

Intracellular G protein-coupled receptors (GPCRs) can be activated by permeant ligands, which contributes to agonist selectivity. Opioid receptors (ORs) provide a notable example, where opioid drugs rapidly activate ORs in the Golgi apparatus. Our knowledge on intracellular GPCR function remains incomplete, and it is unknown whether OR signaling in plasma membrane (PM) and Golgi apparatus differs. Here, we assess the recruitment of signal transducers to mu- and delta-ORs in both compartments. We find that Golgi ORs couple to Gαi/o probes and are phosphorylated but, unlike PM receptors, do not recruit ß-arrestin or a specific Gα probe. Molecular dynamics simulations with OR-transducer complexes in bilayers mimicking PM or Golgi composition reveal that the lipid environment promotes the location-selective coupling. We then show that delta-ORs in PM and Golgi have distinct effects on transcription and protein phosphorylation. The study reveals that the subcellular location defines the signaling effects of opioid drugs.


Assuntos
Analgésicos Opioides , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo
9.
PLoS Comput Biol ; 19(4): e1010995, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068117

RESUMO

Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.


Assuntos
Neoplasias da Mama , Proteínas de Membrana , Humanos , Feminino , Proteínas de Membrana/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Neoplasias da Mama/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia
10.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108712

RESUMO

Today, the future paradigm of intracellular transport could be based on four competing models, namely the vesicular model, the cisterna maturation-progression model, the diffusion model, and the kiss-and-run model [...].


Assuntos
Complexo de Golgi , Membranas Intracelulares , Complexo de Golgi/metabolismo , Transporte Biológico , Difusão , Membranas Intracelulares/metabolismo
11.
Viruses ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37112806

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) utilizes cellular trafficking pathways to process its structural proteins and move them to the site of assembly. Nevertheless, the exact process of assembly and subcellular trafficking of SARS-CoV-2 proteins remains largely unknown. Here, we have identified and characterized Rab1B as an important host factor for the trafficking and maturation of the spike protein (S) after synthesis at the endoplasmic reticulum (ER). Using confocal microscopy, we showed that S and Rab1B substantially colocalized in compartments of the early secretory pathway. Co-expression of dominant-negative (DN) Rab1B N121I leads to an aberrant distribution of S into perinuclear spots after ectopic expression and in SARS-CoV-2-infected cells caused by either structural rearrangement of the ERGIC or Golgi or missing interaction between Rab1B and S. Western blot analyses revealed a complete loss of the mature, cleaved S2 subunit in cell lysates and culture supernatants upon co-expression of DN Rab1B N121I. In sum, our studies indicate that Rab1B is an important regulator of trafficking and maturation of SARS-CoV-2 S, which not only improves our understanding of the coronavirus replication cycle but also may have implications for the development of antiviral strategies.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Complexo de Golgi/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/análise , Proteínas rab1 de Ligação ao GTP/metabolismo
12.
ACS Chem Biol ; 18(5): 1047-1053, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37098188

RESUMO

Small-molecule fluorescent probes enabling visualization of the Golgi apparatus in living cells are essential tools for studying Golgi-associated biological processes and diseases. So far, several fluorescent Golgi stains have been developed by linking ceramide lipids to fluorophores. However, ceramide-based probes suffer from cumbersome staining procedures and low Golgi specificity. Here, we introduce fluorescent Golgi-staining probes based on the tri-N-methylated myristoyl-Gly-Cys (myrGC3Me) motif. The cell-permeable myrGC3Me motif localizes to the Golgi membrane upon S-palmitoylation. By modularly conjugating the myrGC3Me motif to fluorophores, we developed blue, green, and red fluorescent Golgi probes, all of which allowed simple and rapid staining of the Golgi in living cells with high specificity and no cytotoxicity. The probe was also applicable to the visualization of dynamic changes of the Golgi morphology induced by drug treatments and during cell division. The present work provides an entirely new series of live-cell Golgi probes useful for cell biological and diagnostic applications.


Assuntos
Corantes Fluorescentes , Lipoilação , Corantes Fluorescentes/metabolismo , Complexo de Golgi/metabolismo , Ceramidas/metabolismo , Diagnóstico por Imagem
13.
Nat Plants ; 9(5): 749-765, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081290

RESUMO

Above-optimal growth temperatures, usually referred to as heat stress (HS), pose a challenge to organisms' survival as they interfere with essential physiological functions and disrupt cellular organization. Previous studies have elucidated the complex transcriptional regulatory networks involved in plant HS responses, but the mechanisms of organellar remodelling and homeostasis during plant HS adaptations remain elusive. Here we report a non-canonical function of ATG8 in regulating the restoration of plant Golgi damaged by HS. Short-term acute HS causes vacuolation of the Golgi apparatus and translocation of ATG8 to the dilated Golgi membrane. The inactivation of the ATG conjugation system, but not of the upstream autophagic initiators, abolishes the targeting of ATG8 to the swollen Golgi, causing a delay in Golgi recovery after HS. Using TurboID-based proximity labelling, we identified CLATHRIN LIGHT CHAIN 2 (CLC2) as an interacting partner of ATG8 via the AIM-LDS interface. CLC2 is recruited to the cisternal membrane by ATG8 to facilitate Golgi reassembly. Collectively, our study reveals a hitherto unanticipated process of Golgi stack recovery from HS in plant cells and uncovers a previously unknown mechanism of organelle resilience involving ATG8.


Assuntos
Complexo de Golgi , Plantas , Autofagia/fisiologia , Organelas , Resposta ao Choque Térmico
14.
Talanta ; 259: 124520, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058943

RESUMO

Glutathione (GSH) is present in almost every cell in the body and plays various integral roles in many biological processes. The Golgi apparatus is a eukaryotic organelle for the biosynthesis, intracellular distribution, and secretion of various macromolecules; however, the mechanism of GSH in the Golgi apparatus has not been fully elucidated. Here, specific and sensitive sulfur-nitrogen co-doped carbon dots (SNCDs) with orange-red fluorescence was synthesized for the detection of GSH in the Golgi apparatus. The SNCDs have a Stokes shift of 147 nm and excellent fluorescence stability, and they exhibited excellent selectivity and high sensitivity to GSH. The linear response of the SNCDs to GSH was in the range of 10-460 µM (LOD = 0.25 µΜ). More importantly, we used SNCDs with excellent optical properties and low cytotoxicity as probes, and successfully realized golgi imaging in HeLa cells and GSH detection at the same time.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Humanos , Células HeLa , Corantes Fluorescentes/toxicidade , Pontos Quânticos/toxicidade , Carbono/toxicidade , Glutationa , Complexo de Golgi , Nitrogênio , Limite de Detecção
15.
Dev Cell ; 58(8): 709-723.e7, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37023749

RESUMO

Intracellular trafficking of secretory proteins plays key roles in animal development and physiology, but so far, tools for investigating the dynamics of membrane trafficking have been limited to cultured cells. Here, we present a system that enables acute manipulation and real-time visualization of membrane trafficking through the reversible retention of proteins in the endoplasmic reticulum (ER) in living multicellular organisms. By adapting the "retention using selective hooks" (RUSH) approach to Drosophila, we show that trafficking of GPI-linked, secreted, and transmembrane proteins can be controlled with high temporal precision in intact animals and cultured organs. We demonstrate the potential of this approach by analyzing the kinetics of ER exit and apical secretion and the spatiotemporal dynamics of tricellular junction assembly in epithelia of living embryos. Furthermore, we show that controllable ER retention enables tissue-specific depletion of secretory protein function. The system is broadly applicable to visualizing and manipulating membrane trafficking in diverse cell types in vivo.


Assuntos
Drosophila , Complexo de Golgi , Animais , Transporte Proteico/fisiologia , Complexo de Golgi/metabolismo , Transporte Biológico , Exocitose
16.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37052186

RESUMO

Newly synthesized membrane proteins pass through the secretory pathway, starting at the endoplasmic reticulum and packaged into COPII vesicles, to continue to the Golgi apparatus before reaching their membrane of residence. It is known that cargo receptor proteins form part of the COPII complex and play a role in the recruitment of cargo proteins for their subsequent transport through the secretory pathway. The role of cornichon proteins is conserved from yeast to vertebrates, but it is poorly characterized in plants. Here, we studied the role of the two cornichon homologs in the secretory pathway of the moss Physcomitrium patens. Mutant analyses revealed that cornichon genes regulate different growth processes during the moss life cycle by controlling auxin transport, with CNIH2 functioning as a specific cargo receptor for the auxin efflux carrier PINA, with the C terminus of the receptor regulating the interaction, trafficking and membrane localization of PINA.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Membrana Transportadoras , Animais , Transporte Proteico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
J Biol Chem ; 299(5): 104696, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37044218

RESUMO

KDEL receptor (KDELR) is a key protein that recycles escaped endoplasmic reticulum (ER) resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.


Assuntos
Proteínas de Ancoragem à Quinase A , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Complexo de Golgi/metabolismo , Transporte Biológico , Retículo Endoplasmático/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transporte Proteico
18.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37102998

RESUMO

ADP-ribosylation factor (ARF) GTPases are major regulators of cellular membrane homeostasis. High sequence similarity and multiple, possibly redundant functions of the five human ARFs make investigating their function a challenging task. To shed light on the roles of the different Golgi-localized ARF members in membrane trafficking, we generated CRISPR-Cas9 knockins (KIs) of type I (ARF1 and ARF3) and type II ARFs (ARF4 and ARF5) and mapped their nanoscale localization with stimulated emission depletion (STED) super-resolution microscopy. We find ARF1, ARF4, and ARF5 on segregated nanodomains on the cis-Golgi and ER-Golgi intermediate compartments (ERGIC), revealing distinct roles in COPI recruitment on early secretory membranes. Interestingly, ARF4 and ARF5 define Golgi-tethered ERGIC elements decorated by COPI and devoid of ARF1. Differential localization of ARF1 and ARF4 on peripheral ERGICs suggests the presence of functionally different classes of intermediate compartments that could regulate bi-directional transport between the ER and the Golgi. Furthermore, ARF1 and ARF3 localize to segregated nanodomains on the trans-Golgi network (TGN) and are found on TGN-derived post-Golgi tubules, strengthening the idea of distinct roles in post-Golgi sorting. This work provides the first map of the nanoscale organization of human ARF GTPases on cellular membranes and sets the stage to dissect their numerous cellular roles.


Assuntos
Fatores de Ribosilação do ADP , Complexo de Golgi , Humanos , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Transporte Proteico , Transporte Biológico , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo
19.
J Virol ; 97(4): e0018823, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039642

RESUMO

Stimulator of interferon (IFN) genes (STING) was recently pinpointed as an antiviral innate immune factor during the infection of RNA viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), the swine arterivirus, is an enveloped RNA virus which has evolved many strategies to evade innate immunity. To date, the interactive network between PRRSV and STING remains to be fully established. Herein, we report that STING suppresses PRRSV replication through type I interferon signaling. However, PRRSV impedes STING trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, leading to the decreased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Furthermore, PRRSV nonstructural protein 2 (Nsp2) colocalizes with STING, blocks STING translocation, and disrupts the STING-TBK1-IRF3 complex. Mechanistically, PRRSV Nsp2 retains STING at the ER by increasing the level of Ca2+ sensor stromal interaction molecule 1 (STIM1) protein. Functional analysis reveals that PRRSV Nsp2 deubiquitinates STIM1 by virtue of its papain-like protease 2 (PLP2) deubiquitinating (DUB) activity. Finally, we demonstrate that loss of STIM1 is associated with an elevated IFN response and restricts PRRSV replication. This work delineates the relationship between PRRSV infection and STING signaling and the importance of papain-like proteases (PLPs) in interfering in this axis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the family Arteriviridae, is responsible for reproductive disorders in pregnant sows and respiratory problems in piglets, resulting in huge losses in the swine industry worldwide. Of note, PRRSV infection causes immunosuppression, of which the mechanism is not completely understood. Here, we demonstrate for the first time that STING, a protein typically associated with the antiviral response in DNA viruses, plays a critical role in controlling PRRSV infection. However, PRRSV utilizes its encoded protein Nsp2 to inhibit STING activity by blocking its translocation from the ER to the Golgi apparatus. In particular, Nsp2 retains STING at the ER by interacting with and further deubiquitinating STIM1. For this process, the activity of the viral PLP2 DUB enzyme is indispensable. The study describes a novel mechanism by which PLP2 plays a critical role in suppressing the innate immune response against arteriviruses and potentially other viruses that encode similar proteases.


Assuntos
Proteínas de Membrana , Peptídeo Hidrolases , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Molécula 1 de Interação Estromal , Animais , Feminino , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Suínos , Proteínas não Estruturais Virais/metabolismo , Proteínas de Membrana/metabolismo , Imunidade Inata/imunologia , Ubiquitinação/fisiologia
20.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047566

RESUMO

Golgi-derived PI4P-containing vesicles play important roles in mitochondrial division, which is essential for maintaining cellular homeostasis. However, the mechanism of the PI4P-containing vesicle effect on mitochondrial division is unclear. Here, we found that actin appeared to polymerize at the contact site between PI4P-containing vesicles and mitochondria, causing mitochondrial division. Increasing the content of PI4P derived from the Golgi apparatus increased actin polymerization and reduced the length of the mitochondria, suggesting that actin polymerization through PI4P-containing vesicles is involved in PI4P vesicle-related mitochondrial division. Collectively, our results support a model in which PI4P-containing vesicles derived from the Golgi apparatus cooperate with actin filaments to participate in mitochondrial division by contributing to actin polymerization, which regulates mitochondrial dynamics. This study enriches the understanding of the pathways that regulate mitochondrial division and provides new insight into mitochondrial dynamics.


Assuntos
Actinas , Dinâmica Mitocondrial , Actinas/metabolismo , Complexo de Golgi/metabolismo , Citoesqueleto de Actina/metabolismo , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...