Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.891
Filtrar
1.
BMC Plant Biol ; 22(1): 6, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979912

RESUMO

BACKGROUND: The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated. RESULTS: In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differentially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncRNAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time points, suggesting that these genes are involved in both fiber development and the water-deficit response and could potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their corresponding DEGs in response to water deficit. CONCLUSIONS: This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the fiber development stage.


Assuntos
Fibra de Algodão/análise , Gossypium/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Água/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
2.
BMC Plant Biol ; 22(1): 5, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979924

RESUMO

BACKGROUND: Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a 60Co γ treated upland cotton semi-dwarf mutant Ari1327. RESULTS: Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80-9.66 Mb at D01 chromosome in two F2 populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring's phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information. CONCLUSIONS: Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética , Genótipo , Gossypium/genética , Fenótipo , Locos de Características Quantitativas , Mapeamento Cromossômico , Melhoramento Vegetal
3.
BMC Genomics ; 23(1): 40, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012446

RESUMO

BACKGROUND: RADIALIS (RAD), belongs to the MYB gene family and regulates a variety of functions including floral dorsoventral asymmetry in Antirrhinum majus and development of fruit proteins in Solanum lycopersicum. RAD genes contain an SNF2_N superfamily domain. Here, we comprehensively identified 68 RAD genes from six different species including Arabidopsis and five species of cotton. RESULTS: Phylogenetic analysis classified RAD genes into five groups. Gene structure, protein motifs and conserved amino acid residues indicated that GhRAD genes were highly conserved during the evolutionary process. Chromosomal location information showed that GhRAD genes were distributed unevenly on different chromosomes. Collinearity and selection pressure analysis indicated RAD gene family expansion in G. hirsutum and G. barbadense with purifying selection pressure. Further, various growth and stress related promotor cis-acting elements were observed. Tissue specific expression level indicated that most GhRAD genes were highly expressed in roots and flowers (GhRAD2, GhRAD3, GhRAD4 and GhRAD11). Next, GhRAD genes were regulated by phytohormonal stresses (JA, BL and IAA). Moreover, Ghi-miRN1496, Ghi-miR1440, Ghi-miR2111b, Ghi-miR2950a, Ghi-miR390a, Ghi-miR390b and Ghi-miR7495 were the miRNAs targeting most of GhRAD genes. CONCLUSIONS: Our study revealed that RAD genes are evolutionary conserved and might be involved in different developmental processes and hormonal stress response. Data presented in our study could be used as the basis for future studies of RAD genes in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Família Multigênica , Flores/fisiologia , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico
4.
Pest Manag Sci ; 78(1): 95-103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34448529

RESUMO

BACKGROUND: Diet-overlay bioassays suggest that Helicoverpa zea (Lepidoptera: Noctuidae) field populations have developed resistance to some of the Bt insecticidal proteins that are constituents of the pyramids expressed in the second and third generation Bt cotton technologies. Unfortunately, these bioassays are not always a reliable indicator for how a seemingly resistant population will perform in an actual cotton field, and thus, leaf tissue bioassays have been suggested as a method to better assess field performance. However, bollworm larvae typically prefer to feed on floral tissue rather than leaf tissue, and an alternative cotton structure type may be more ideal for use in plant tissue-based bioassays. A series of diet-overlay bioassays using Bt proteins and Bt cotton plant tissue were conducted with laboratory susceptible (Bz-SS) and resistant (Cry-RR, resistant to Cry1Ac and Cry2Ab) H. zea strains to determine if plant tissue overlays could detect resistance and which cotton plant structure type would be most ideal for use in bioassays. RESULTS: Results suggest that diet overlays using lyophilized plant tissue were able to detect resistance. Lyophilized tissue from white flowers was most ideal for use in bioassays, whereas tissue from non-Bt bolls and leaves affected larval health and behavior, confounding assay results. CONCLUSION: Overlays using white flower tissue could potentially be used to supplement Bt protein overlays and provide an improved assessment of larval performance on Bt cotton technologies. © 2021 Society of Chemical Industry.


Assuntos
Proteínas Hemolisinas , Mariposas , Animais , Proteínas de Bactérias/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Gossypium/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Larva , Mariposas/genética , Plantas Geneticamente Modificadas/genética , Zea mays/genética
5.
Pest Manag Sci ; 78(1): 240-245, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34476893

RESUMO

BACKGROUND: The on-farm deployment of genetically modified crops may negatively affect nontarget arthropods, potentially disrupting food web structure and ecosystem functions. Aphid-parasitoid interactions are well-suited to study these potential impacts in agro-ecosystems. Over the span of 8 years, we systematically compared infestation levels of the aphid Aphis gossypii, its associated parasitoid community and overall parasitism rate between transgenic Cry1Ac + CpTI cotton and nontransgenic cotton. Furthermore, we measured the impact of transgenic Cry1Ac + CpTI cotton on structural traits and interspecies interactions within quantitative aphid-parasitoid food webs. RESULTS: Transgenic Cry1Ac + CpTI cotton did not affect the abundance of aphids and parasitoids, or in-field parasitism rates. Despite weak interannual variability, transgenic Cry1Ac + CpTI cotton also did not alter food web architecture or biological control services. CONCLUSIONS: Our work not only elucidates the impact of transgenic Cry1Ac + CpTI cotton on different nontarget arthropods (i.e. aphids, parasitoids, hyperparasitoids) and their associated ecosystem services or disservices, but also diversifies the ecological risk assessment toolbox for transgenic insecticidal crops. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Ecossistema , Animais , Afídeos/genética , Produtos Agrícolas , Cadeia Alimentar , Gossypium/genética , Plantas Geneticamente Modificadas/genética
6.
Gene ; 809: 146042, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34715303

RESUMO

Genetic diversity, kinship and population genetic structure analyses of Gossypium hirsutum germplasm can provide a better understanding of the origin and evolution of G. hirsutum biodiversity. In this study, adopt 273 elite upland cotton cultivar accessions collected from around the world, and especially from China to get 1,313,331 SNP molecular markers, it were used to construct a phylogenetic tree of each sample using MEGAX, to perform population structure analysis by ADMIXTURE software and principal component analysis (PCA) by EIGENSOFT software, and to estimate relatedness using SPAGeDi. ADMIXTURE software divided the experimental cotton population into 16 subgroups, and the Gossypium hirsutum samples could be roughly clustered according to source place, but there were some overlapping characteristics among samples. The experimental cotton population was divided into six groups according to source to calculate the genetic diversity index (H), and the obtained value (0.306) was close to that for germplasm collected by others in China. Cluster 4 had a relatively high genetic diversity level (0.390). The degrees of genetic differentiation within the experimental cotton population groups were low (the population differentiation indexes ranged from 0.02368 to 0.10664). The genetic distance among cotton accessions varied from 0.000332651 to 0.562664014, with an average of 0.25240429. The results of this study may provide a basis for mining elite alleles and using them for subsequent association analysis.


Assuntos
Genética Populacional , Gossypium/genética , Filogenia , Polimorfismo de Nucleotídeo Único , China , Variação Genética
7.
Plant Sci ; 314: 111098, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895536

RESUMO

Verticillium dahliae causes vascular wilt disease on cotton (Gossypium hirsutum), resulting in devastating yield loss worldwide. While little is known about the mechanism of long non-coding RNAs (lncRNAs), several lncRNAs have been implicated in numerous physiological processes and diseases. To better understand V. dahliae pathogenesis, lncRNA was conducted in a V. dahliae virulence model. Potential target genes of significantly regulated lncRNAs were predicted using cis/trans-regulatory algorithms. This study provides evidence for lncRNAs' regulatory role in pathogenesis-related genes. Interestingly, lncRNAs were identified and varying in terms of RNA length and nutrient starvation treatments. Efficient pathogen nutrition during the interaction with the host is a requisite factor during infection. Our observations directly link to mutated V. dahliae invasion, explaining infected cotton have lower pathogenicity and lethality compared to V. dahliae. Remarkably, lncRNAs XLOC_006536 and XLOC_000836 involved in the complex regulation of pathogenesis-related genes in V. dahliae were identified. For the first time the regulatory role of lncRNAs in filamentous fungi was uncovered, and it is our contention that elucidation of lncRNAs will advance our understanding in the development and pathogenesis of V. dahliae and offer alternatives in the control of the diseases caused by fungus V. dahliae attack.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Resistência à Doença/genética , Gossypium/microbiologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Longo não Codificante/análise , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Virulência/genética
8.
Plant Sci ; 314: 111126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895552

RESUMO

Auxin-mediated degradation of Aux/IAA proteins is a crucial step in auxin signaling. Recent researches indicate that Aux/IAA members also play a role in biotic and abiotic stresses. For example, Pseudomonas syringae infection causes Arabidopsis Aux/IAA protein (AXR2, AXR3) turnover. Here, by analyzing RNA-seq data we found that several cotton Aux/IAA genes are responsive to Verticillium dahliae infection, one of these named GhIAA43, was investigated for its role in cotton defense against V. dahliae infection. We demonstrate that the transcript levels of GhIAA43 were responsive to both V. dahliae infection and exogenous IAA application. By producing transgenic Arabidopsis plants overexpressing GhIAA43-GUS fusion, we show that IAA treatment and V. dahliae infection promoted GhIAA43 protein turnover. Silencing GhIAA43 in cotton enhanced wilt resistance, suggesting that GhIAA43 is a negative regulator in cotton defense against V. dahliae attack. By monitoring SA marker gene expression and measurement of SA content in GhIAA43-silenced cotton plants, we found that the enhanced resistance in GhIAA43-silenced cotton plants is due to the activation of SA-related defenses, and the activated defenses specifically occurred in the presence of V. dahliae. Furthermore, exogenous IAA application improve wilt resistance in cotton plants tested. Our results provide novel connection between auxin signaling and SA-related defenses in cotton upon V. dahliae attack.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Gossypium/genética , Gossypium/microbiologia , Interações Hospedeiro-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas
9.
Methods Mol Biol ; 2391: 191-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34686987

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. vasinfectum (Fov), is an important disease of cotton. More than 14 different genotypes as determined by VCG and sequence analyses are known to occur in the United States. Fov4 (race 4, VCG0114), originally found in India, was first detected in the United States in 2001 in California and recently in 2017 and 2019 in Texas and New Mexico, respectively. Four sub-genotypes of Fov4 have been identified, with Fov4 N, T, and MiT genotypes occurring in California, and Fov4 T and MT genotypes occurring in Texas. Unlike other genotypes of Fov in the United States, Fov4 does not require the presence of root-knot nematodes (Meloidogyne incognita) to cause severe wilt in cotton and is a major concern to US cotton growers. Fov4 can be spread through a variety of mechanisms including through infected seed. Once a field is infested, the fungus becomes endemic since there are no economically viable means to eradicate the pathogen from infested fields. Therefore, a rapid and accurate detection method is essential for early identification of infested fields and seed lots to prevent further spread of Fov4. This chapter describes multiplex and singleplex PCR diagnostics for detection of Fov4, and for detection and genotyping N, T, MiT, and MT genotypes of Fov4 from wilted cotton plants.


Assuntos
Fusarium , Fusarium/genética , Genótipo , Gossypium/genética , Doenças das Plantas
10.
Methods Mol Biol ; 2360: 217-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34495518

RESUMO

Cultivated cotton (Gossypium hirsutum) is heavily attacked by various species of insects worldwide and breeding of new varieties resistant to pests is still a hard battle to win. RNAi technology is an important reverse genetics tool to induce gene silencing in eukaryotic organisms and produce phenotypic modifications. In cotton, RNAi was applied to investigate gene function and enhance resistance to insects and pathogens. Different methods and techniques can be used to synthetize double stranded RNA (dsRNA) into plant cells. The Agrobacterium-mediated transformation is a common method to introduce RNAi binary plasmids into cotton genome and obtain stable transgenics plants. This methodology includes the coculture of cotton tissues with Agrobacterium cultures, selection of transgenic cells and induction of somatic embryogenesis to finally obtain transgenic plants after a relatively long period of time. The transient synthesis of dsRNA mediated by virus-induced gene silencing (VIGS) in cotton is an alternative to anticipate the silencing effect of a specific RNA sequence, prior to the development of a stable transgenic plant. VIGS vectors are incorporated into the plant by agroinfiltration technique. During VIGS replication inside plant cells, synthetized dsRNA allows the study on specific heterologous gene expression including the phenotypic effect on herbivorous target pests, thus facilitating a rapid evaluation of dsRNA expressed in cotton plants against individual insect target genes. Here we describe the complementation of these two techniques to evaluate RNAi-based cotton plant protection against insect pests.


Assuntos
Gossypium , Agrobacterium/genética , Animais , Gossypium/genética , Insetos , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Cadeia Dupla/genética
11.
PLoS One ; 16(12): e0260971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34969047

RESUMO

Gossypium hirsutum L. is also called upland cotton or Mexican cotton. It is the most widely cultivated species of cotton in the whole world. Globally, about 90% of all cotton production comes from the cultivars derived from this species. Some genetic parameters like monopodial branches per plant, sympodial branches per plant, sympodial branch length, bolls per plant, boll weight, sympo-boll distance, Ginning Out Turn%, staple length (rg = 0.9199**), and fiber strength along with seed cotton yield were evaluated for their potential utilization via selection in seed cotton yield improvement. Significant positive genetic correlations were estimated for monopodial branches per plant (rg = 0.9722**), sympodial branches per plant (rg = 0.7098**), sympodial branch length (rg = 0.617**), bolls per plant (rg = 0.8271**), boll weight (rg = 0.8065**), sympo-boll distance (rg = 0.6507**), Ginning Out Turn (GOT)% (rg = 0.7541**), staple length (rg = 0.9199**), and fiber strength (rg = 0.7534**) with seed cotton yield. A path analysis of all the yield traits under study revealed strong positive direct effects of monopodial branch length (1.1556), sympo-boll distance (0.8173) and staple length (0.7633), while plant height exerted a highly strong direct negative effect (-1.2096) on yield. It is concluded that a direct selection based on monopodial branch length and sympo-boll distance, and staple length is effective, whereas, monopodial branch length, and sympodial branch length are good selection indicators via bolls per plant for yield improvement in cotton.


Assuntos
Estudos de Associação Genética , Gossypium/crescimento & desenvolvimento , Gossypium/parasitologia , Insetos/fisiologia , Análise de Variância , Animais , Variação Genética , Genótipo , Gossypium/genética , Fenótipo
12.
Cells ; 10(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944096

RESUMO

As an ecofriendly biocontrol agent, antagonistic bacteria are a crucial class of highly efficient fungicides in the field against Verticillium dahliae, the most virulent pathogen for cotton and other crops. Toward identifying urgently needed bacterial candidates, we screened bacteria isolated from the cotton rhizosphere soil for antagonisitic activity against V. dahliae in an artificially infested nursery. In preliminary tests of antagonistic candidates to characterize the mechanism of action of on culture medium, 88 strains that mainly belonged to Bacillus strongly inhibited the colony diameter of V. dahliae, with inhibiting efficacy up to 50% in 9 strains. Among the most-effective bacterial strains, Bacillus sp. ABLF-18, and ABLF-50 and Paenibacillus sp. ABLF-90 significantly reduced the disease index and fungal biomass of cotton to 40-70% that of the control. In further tests to elucidate the biocontrol mechanism (s), the strains secreted extracellular enzymes cellulase, glucanase, and protease, which can degrade the mycelium, and antimicrobial lipopeptides such as surfactin and iturin homologues. The expression of PAL, MAPK and PR10, genes related to disease resistance, was also elicited in cotton plants. Our results clearly show that three candidate bacterial strains can enhance cotton defense responses against V. dahliae; the secretion of fungal cell-wall-degrading enzymes, synthesis of nonribosomal antimicrobial peptides and induction of systemic resistance shows that the strains have great potential as biocontrol fungicides.


Assuntos
Ascomicetos/fisiologia , Bactérias/isolamento & purificação , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Espaço Extracelular/enzimologia , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Lipopeptídeos/metabolismo , Controle Biológico de Vetores , Filogenia , Doenças das Plantas/genética
13.
J Nanosci Nanotechnol ; 21(6): 3531-3538, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739804

RESUMO

Cotton (Gossypium hirsutum L.), is an important fibre and oilseed crop of the world. India in particular has the largest area under cotton cultivation and around 60% proportion in the raw fibre textile industry is contributed by cotton alone. Cotton is affected by many diseases (bacterial blights, fungal leafspots, mildew) and pests (white flies, bollworms, aphids etc.). The bacterial blight disease caused by Xanthomonas axonopodis pv. malvacearum is considered as one of the most devastating one that cause huge losses in production every year. Due to systemic spread of this bacterial infection, combating this disease is slightly challenging. Spray of toxic chemicals like endosulfan, streptocycline and dimethoate is a common practice in fields but these chemicals are unable to control the disease spread substantially. Nanotechnology is a newly emerging technology that is being extensively exploited in the agriculture sector these days. Past studies have reported the antimicrobial effect of various metallic nanoparticles including zinc oxide nanoparticles which is known to possess antibacterial potential against both gram +ve and gram -ve bacteria. Based upon this, synthesis of ZnO nanoparticles was carried out using Morus alba plant leaf extract and the nanoparticles were characterised in detail using scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, electron dispersive X-ray spectroscopy study etc. The zinc oxide nanoparticles were found crystalline in nature and the size ranged between 10-50 nanometers. The efficacy of these nanoparticles was checked against Xanthomonas axonopodis pv. malvacearum under in vitro conditions and found to be very effective in controlling the bacterial spread in comparison to streptomycin that was used as control. Our results suggest that ZnO nanoparticles can be used as an effective antibacterial agent to control bacterial blight disease of cotton.


Assuntos
Nanopartículas Metálicas , Xanthomonas axonopodis , Xanthomonas , Óxido de Zinco , Antibacterianos/farmacologia , Bactérias , Gossypium , Doenças das Plantas , Óxido de Zinco/farmacologia
14.
Planta ; 254(6): 121, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779907

RESUMO

MAIN CONCLUSION: Host-derived suppression of nematode essential genes decreases reproduction of Meloidogyne incognita in cotton. Root-knot nematodes (RKN) represent one of the most damaging plant-parasitic nematode genera worldwide. RNAi-mediated suppression of essential nematode genes provides a novel biotechnological strategy for the development of sustainable pest-control methods. Here, we used a Host Induced Gene Silencing (HIGS) approach by stacking dsRNA sequences into a T-DNA construct to target three essential RKN genes: cysteine protease (Mi-cpl), isocitrate lyase (Mi-icl), and splicing factor (Mi-sf), called dsMinc1, driven by the pUceS8.3 constitutive soybean promoter. Transgenic dsMinc1-T4 plants infected with Meloidogyne incognita showed a significant reduction in gall formation (57-64%) and egg masses production (58-67%), as well as in the estimated reproduction factor (60-78%), compared with the susceptible non-transgenic cultivar. Galls of the RNAi lines are smaller than the wild-type (WT) plants, whose root systems exhibited multiple well-developed root swellings. Transcript levels of the three RKN-targeted genes decreased 13- to 40-fold in nematodes from transgenic cotton galls, compared with those from control WT galls. Finally, the development of non-feeding males in transgenic plants was 2-6 times higher than in WT plants, indicating a stressful environment for nematode development after RKN gene silencing. Data strongly support that HIGS of essential RKN genes is an effective strategy to improve cotton plant tolerance. This study presents the first application of dsRNA sequences to target multiple genes to promote M. incognita tolerance in cotton without phenotypic penalty in transgenic plants.


Assuntos
Gossypium , Tylenchoidea , Animais , Gossypium/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla , Tylenchoidea/genética
15.
Planta ; 254(6): 116, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34750674

RESUMO

MAIN CONCLUSION: The novel structural variations were identified in cotton chloroplast tRNAs and gene loss events were more obvious than duplications in chloroplast tRNAs. Transfer RNAs (tRNA) have long been believed an evolutionary-conserved molecular family, which play the key roles in the process of protein biosynthesis in plant life activities. In this study, we detected the evolutionary characteristics and phylogeny of chloroplast tRNAs in cotton plants, an economic and fibered important taxon in the world. We firstly annotated the chloroplast tRNAs of 27 Gossypium species to analyze their genetic composition, structural characteristics and evolution. Compared with the traditional view of evolutionary conservation of tRNA, some novel tRNA structural variations were identified in cotton plants. I.g., tRNAVal-UAC and tRNAIle-GAU only contained one intron in the anti-condon loop region of tRNA secondary structure, respectively. In the variable region, some tRNAs contained a circle structure with a few nucleotides. Interestingly, the calculation result of free energy indicated that the variation of novel tRNAs contributed to the stability of tRNA structure. Phylogenetic analysis suggested that chloroplast tRNAs have evolved from multiple common ancestors, and the tRNAMet seemed to be an ancestral tRNA, which can be duplicated and diversified to produce other tRNAs. The chloroplast tRNAs contained a group I intron in cotton plants, and the evolutionary analysis of introns indicated that group I intron of chloroplast tRNA originated from cyanobacteria. Analysis of gene duplication and loss events showed that gene loss events were more obvious than duplications in Gossypium chloroplast tRNAs. Additionally, we found that the rate of transition was higher than the ones of transversion in cotton chloroplast tRNAs. This study provided new insights into the structural characteristics and evolution of chloroplast tRNAs in cotton plants.


Assuntos
Evolução Molecular , Gossypium , Cloroplastos/genética , Gossypium/genética , Filogenia , RNA de Transferência/genética
16.
Biol Res ; 54(1): 36, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736526

RESUMO

BACKGROUND: Melatonin 2-hydroxylase (M2H) is the first enzyme in the catabolism pathway of melatonin, which catalyzes the production of 2-hydroxymelatonin (2-OHM) from melatonin. The content of 2-hydroxymelatonin in plants is much higher than that of melatonin. So M2H may be a key enzyme in the metabolic pathway of melatonin. METHOD: We conducted a systematic analysis of the M2H gene family in Gossypium hirsutum based on the whole genome sequence by integrating the structural characteristics, phylogenetic relationships, expression profile, and biological stress of the members of the Gossypium hirsutum M2H gene family. RESULT: We identified 265 M2H genes in the whole genome of Gossypium hirsutum, which were divided into 7 clades (clades I-VII) according to phylogenetic analysis. Most M2H members in each group had similar motif composition and gene structure characteristics. More than half of GhM2H members contain ABA-responsive elements and MeJA-responsive elements. Under different stress conditions, the expression levels of the gene changed, indicating that GhM2H members were involved in the regulation of abiotic stress. Some genes in the GhM2H family were involved in regulating melatonin levels in cotton under salt stress, and some genes were regulated by exogenous melatonin. CONCLUSION: This study is helpful to explore the function of GhM2H, the downstream metabolism gene of melatonin in cotton, and lay the foundation for better exploring the molecular mechanism of melatonin improving cotton's response to abiotic stress.


Assuntos
Gossypium , Melatonina , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
BMC Plant Biol ; 21(1): 448, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615467

RESUMO

BACKGROUND: Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 leads to reduced silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore the function of GhGASA10 in cotton fibers development. RESULTS: To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10-1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10-1 was localized in the cell membrane, which may synthesize and transport secreted proteins to the cell wall. Besides, GhGASA10-1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10-1 promotes cell elongation. Interestingly, GhGASA10-1 was upregulated by IAA at fiber elongation stages. CONCLUSION: We propose that GhGASA10-1 may promote fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation networks of GASA10-1 in cotton fiber development.


Assuntos
Proliferação de Células/genética , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Reguladores de Crescimento de Plantas/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibra de Algodão , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
18.
Plant Sci ; 312: 111055, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620449

RESUMO

High salt environments can induce stress in different plants. The genes containing the ZAT domain constitute a family that belongs to a branch of the C2H2 family, which plays a vital role in responding to abiotic stresses. In this study, we identified 169 ZAT genes from seven plant species, including 44 ZAT genes from G. hirsutum. Phylogenetic tree analysis divided ZAT genes in six groups with conserved gene structure, protein motifs. Two C2H2 domains and an EAR domain and even chromosomal distribution on At and Dt sub-genome chromosomes of G. hirsutum was observed. GhZAT6 was primarily expressed in the root tissue and responded to NaCl and ABA treatments. Subcellular localization found that GhZAT6 was located in the nucleus and demonstrated transactivation activity during a transactivation activity assay. Arabidopsis transgenic lines overexpressing the GhZAT6 gene showed salt tolerance and grew more vigorously than WT on MS medium supplemented with 100 mmol NaCl. Additionally, the silencing of the GhZAT6 gene in cotton plants showed more obvious leaf wilting than the control plants, which were subjected to 400 mmol NaCl treatment. Next, the expressions of GhAPX1, GhFSD1, GhFSD2, and GhSOS3 were significantly lower in the GhZAT6-silenced plants treated with NaCl than the control. Based on these findings, GhZAT6 may be involved in the ABA pathway and mediate salt stress tolerance by regulating ROS-related gene expression.


Assuntos
Estresse Salino/genética , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Dedos de Zinco/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Cacau/genética , Cacau/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Gossypium/genética , Gossypium/fisiologia , Oryza/genética , Oryza/fisiologia , Filogenia , Plantas Geneticamente Modificadas , Sorghum/genética , Sorghum/fisiologia
19.
PLoS One ; 16(10): e0258836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714845

RESUMO

Cultivated cotton, such as Gossypium hirsutum L., produces extrafloral (EF) nectar on leaves (foliar) and reproductive structures (bracteal) as an indirect anti-herbivore defense. In exchange for this carbohydrate-rich substance, predatory insects such as ants protect the plant against herbivorous insects. Some EF nectar-bearing plants respond to herbivory by increasing EF nectar production. For instance, herbivore-free G. hirsutum produces more bracteal than foliar EF nectar, but increases its foliar EF nectar production in response to herbivory. This study is the first to test for systemically induced changes to the carbohydrate composition of bracteal EF nectar in response to foliar herbivory on G. hirsutum. We found that foliar herbivory significantly increased the sucrose content of bracteal EF nectar while glucose and fructose remained unchanged. Sucrose content is known to influence ant foraging behavior and previous studies of an herbivore-induced increase to EF nectar caloric content found that it led to increased ant activity on the plant. As a follow-up to our finding, ant recruitment to mock EF nectar solutions that varied in sucrose content was tested in the field. The ants did not exhibit any preference for either solution, potentially because sucrose is a minor carbohydrate component in G. hirsutum EF nectar: total sugar content was not significantly affected by the increase in sucrose. Nonetheless, our findings raise new questions about cotton's inducible EF nectar responses to herbivory. Further research is needed to determine whether an herbivore-induced increase in sucrose content is typical of Gossypium spp., and whether it constitutes a corollary of systemic sucrose induction, or a potentially adaptive mechanism which enhances ant attraction to the plant.


Assuntos
Formigas/fisiologia , Gossypium/química , Sacarose/química , Animais , Gossypium/parasitologia , Herbivoria , Folhas de Planta/química , Folhas de Planta/parasitologia , Néctar de Plantas/química
20.
Mol Genet Genomics ; 296(6): 1287-1298, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553246

RESUMO

Verticilllium wilt of cotton is a devastating soil-borne disease, which is caused by Verticillium dahliae Kleb. Bacillus velezensis strain AL7 was isolated from cotton soil. This strain efficiently inhibited the growth of V. dahliae. But the mechanism of the biocontrol strain AL7 remains poorly understood. To understand the possible genetic determinants for biocontrol traits of this strain, we conducted phenotypic, phylogenetic and comparative genomics analysis. Phenotypic analysis showed that strain AL7 exhibited broad-spectrum antifungal activities. We determined that the whole genome sequence of B. velezensis AL7 is a single circular chromosome that is 3.89 Mb in size. The distribution of putative gene clusters that could benefit to biocontrol activities was found in the genome. Phylogenetic analysis of Bacillus strains by using single core-genome clearly placed strain AL7 into the B. velezensis. Meantime, we performed comparative analyses on four Bacillus strains and observed subtle differences in their genome sequences. In addition, comparative genomics analysis showed that the core genomes of B. velezensis are more abundant in genes relevant to secondary metabolism compared with B. subtilis strains. Single mutant in the biosynthetic genes of fengycin demonstrated the function of fengycin in the antagonistic activity of B. velezensis AL7. Here, we report a new biocontrol bacterium B. velezensis AL7 and fengycin contribute to the biocontrol efficacy of the strain. The results showed in the research further sustain the potential of B. velezensis AL7 for application in agriculture production and may be a worthy biocontrol strain for further studies.


Assuntos
Bacillus/genética , Agentes de Controle Biológico/metabolismo , Gossypium/microbiologia , Lipopeptídeos/metabolismo , Doenças das Plantas/prevenção & controle , Verticillium/crescimento & desenvolvimento , Antifúngicos/metabolismo , Genoma Bacteriano/genética , Lipopeptídeos/genética , Doenças das Plantas/microbiologia , Metabolismo Secundário/genética , Microbiologia do Solo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...