Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.547
Filtrar
1.
Drug Deliv ; 29(1): 1983-1993, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35762637

RESUMO

Nanobiotechnology, the interface between biology and nanotechnology, has recently emerged in full bloom in the medical field due to its minimal side-effects and high efficiency. To broaden the application of nanobiotechnology, we composed gold nanoparticles from the extract of Pseudobulbus Cremastrae seu Pleiones (PCSP) using an efficient and green procedure. The biosynthesized Au nanoparticles containing PCSP (PCSP-AuNPs) were characterized by UV-vis spectroscopic, transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and Energy Dispersive X-ray (EDAX). After verifying the stability of PCSP-AuNPs, we detected its biosafety and immune-modulatory effects on RAW264.7 in vitro using NO assay, ELISA (TNF-α, IL-12p70, and IL-1ß), and CCK-8 test. Furthermore, we examined the direct in vitro effects of PCSP-AuNPs on hepatocellular carcinomas (HCCs). Finally, we evaluated the immune regulation of PCSP-AuNPs using a mouse model with H22-tumor by testing the index of immune organs, splenic lymphocyte proliferation, cytokines levels (TNF-α and IL-10), and the CD4+/CD8+ cell ratio in the peripheral blood. Immunohistochemical analyses including H&E and PCNA staining were performed to investigate the anti-cancer efficacy and biocompatibility of PCSP-AuNPs. We found that PCSP-AuNPs not just possessed low toxicity, but also improved the immune-mediated antitumor response as compared to PCSP alone, suggesting its potential as a novel and efficient drug for liver cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Carcinoma Hepatocelular/tratamento farmacológico , Ouro/química , Química Verde/métodos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas Metálicas/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Fator de Necrose Tumoral alfa
2.
Artif Cells Nanomed Biotechnol ; 50(1): 177-187, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35735785

RESUMO

The main aim of the study, green route to the synthesis of silver nanoparticles (AgNPs) is a new technique that has recently gained popularity due to several advantages over conventional chemical methods. The objective of the study was focused on the green synthesis of AgNPs using Barleria buxifolia leaf extract via a rapid and eco-friendly ultrasonic-assisted technique. The obtained AgNPs were characterized using ultraviolet-visible (UV-Vis) absorption spectrum of the organically reduced silver showed a surface plasmon peak at 435 nm, characteristic for silver colloidal solutions. UV-Vis absorption spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS) analysis showed that the obtained AgNPs were dispersed spheres with a uniform size of 80 nm. Furthermore, the Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. Green synthesized AgNPs showed the highest antioxidant, antibacterial and anti-biofilm activity than a plant extract. In vitro anticancer assay demonstrated half-maximal inhibitory concentration (IC50) values of 31.42, 30.67, 51.07 and 56.26 µg/mL against MCF-7, HeLa and HepG2 cancer cell lines, respectively, which confirms its potent anticancer action. The biocompatibility of green synthesized AgNPs is confirmed by their lack of cytotoxicity against normal human cells. The potent bioactivity exhibited by the green synthesized AgNPs leads towards the multiple use as antioxidant, antibacterial, anti-biofilm and cytotoxic agent.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antioxidantes/farmacologia , Química Verde , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Int J Nanomedicine ; 17: 2505-2533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677678

RESUMO

In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.


Assuntos
Química Verde , Nanopartículas Metálicas , Fungos , Nanopartículas Metálicas/química , Micologia , Nanotecnologia
4.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566145

RESUMO

Nanoscience is a multidisciplinary skill with elucidated nanoscale particles and their advantages in applications to various fields. Owing to their economical synthesis, biocompatible nature, and widespread biomedical and environmental applications, the green synthesis of metal nanoparticles using medicinal plants has become a potential research area in biomedical research and functional food formulations. Gynostemma pentaphyllum (GP) has been extensively used in traditional Chinese medicine to cure several diseases, including diabetes mellitus (DM). This is the first study in which we examined the efficacy of G. pentaphyllum gold nanoparticles (GP-AuNPs) against obesity and related inflammation. GP extract was used as a capping agent to reduce Au2+ to Au0 to form stable gold nanoparticles. The nanoparticles were characterized by using UV-VIS spectroscopy, and TEM images were used to analyze morphology. In contrast, the existence of the functional group was measured using FTIR, and size and shape were examined using XRD analysis. In vitro analysis on GP-AuNPs was nontoxic to RAW 264.7 cells and 3T3-L1 cells up to a specific concentration. It significantly decreased lipid accumulation in 3T3-L1 obese and reduced NO production in Raw 264.7 macrophage cells. The significant adipogenic genes PPARγ and CEPBα and a major pro-inflammatory cytokine TNF-α expression were quantified using RT-PCR. The GP-AuNPs decreased the face of these genes remarkably, revealing the antiadipogenic and anti-inflammatory activity of our synthesized GP-AuNPs. This study represents thorough research on the antiobesity effect of Gynostemma pentaphyllum gold nanoparticles synthesized using a green approach and the efficacy instead of related inflammatory responses.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Regulação para Baixo , Expressão Gênica , Ouro/química , Ouro/farmacologia , Química Verde/métodos , Gynostemma , Inflamação/tratamento farmacológico , Inflamação/genética , Nanopartículas Metálicas/química , Camundongos , Obesidade , PPAR gama/genética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/genética
5.
Sci Rep ; 12(1): 7902, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551489

RESUMO

Increasing demand for green or biological nanoparticles has led to various green technologies and resources, which play a critical role in forming biocompatible or green nanoparticles. So far, numerous medicinal plants have been explored for this purpose, assuming that medicinal components from the plant's material will contribute to corona formation around nanoparticles and enhance their efficacy. Research is also extended to other green and waste resources to be utilized for this purpose. In the current study, we explored Ligustrum vulgare berries, also known as privet berries, to reduce gold and silver salts into nanoparticles. L. vulgare berries showed great potential to form these nanoparticles, as gold nanoparticles (LV-AuNPs) formed within 5 min at room temperature, and silver nanoparticles (LV-AgNPs) formed in 15 min at 90 °C. LV-AuNPs and LV-AgNPs were characterized by various analytical methods, including UV-Vis, SEM, EDX, TEM, DLS, sp-ICP-MS, TGA, FT-IR, and MALDI-TOF. The results demonstrate that the LV-AuNPs are polydisperse in appearance with a size range 50-200 nm. LV-AuNPs exhibit various shapes, including spherical, triangular, hexagonal, rod, cuboid, etc. In contrast, LV-AgNPs are quite monodisperse, 20-70 nm, and most of the population was spherical. The nanoparticles remain stable over long periods and exhibit high negative zeta potential values. The antimicrobial investigation of LV-AgNPs demonstrated that the nanoparticles exhibit antibacterial ability with an MBC value of 150 g/mL against P. aeruginosa and 100 g/mL against E. coli, as determined by plate assay, live and dead staining, and SEM cell morphology analysis.


Assuntos
Ligustrum , Nanopartículas Metálicas , Antibacterianos/farmacologia , Escherichia coli , Frutas , Ouro/farmacologia , Química Verde/métodos , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Sci Rep ; 12(1): 8383, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589849

RESUMO

The green synthesis of silver nanoparticles (AgNPs) and their applications have attracted many researchers as the AgNPs are used effectively in targeting specific tissues and pathogenic microorganisms. The purpose of this study is to synthesize and characterize silver nanoparticles from fully expanded leaves of Eugenia roxburghii DC., as well as to test their effectiveness in inhibiting biofilm production. In this study, at 0.1 mM concentration of silver nitrate (AgNO3), stable AgNPs were synthesized and authenticated by monitoring the color change of the solution from yellow to brown, which was confirmed with spectrophotometric detection of optical density. The crystalline nature of these AgNPs was detected through an X-Ray Diffraction (XRD) pattern. AgNPs were characterized through a high-resolution transmission electron microscope (HR-TEM) to study the morphology and size of the nanoparticles (NPs). A new biological approach was undertaken through the Congo Red Agar (CRA) plate assay by using the synthesized AgNPs against biofilm production. The AgNPs effectively inhibit biofilm formation and the biofilm-producing bacterial colonies. This could be a significant achievement in contending with many dynamic pathogens.


Assuntos
Eugenia , Nanopartículas Metálicas , Antibacterianos/química , Bactérias , Biofilmes , Química Verde , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Difração de Raios X
7.
Artif Cells Nanomed Biotechnol ; 50(1): 130-146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35620802

RESUMO

We investigated the effect of green tea extract PEGylated gold nanoparticles (P-AuNPs) making use of its targeted and sustained drug delivery against cyclophosphamide (CYP)-induced cystitis. AuNPs were synthesized by reduction reaction of gold salts with green tea extract following the concept of green synthesis. Mostly spherical-shaped P-AuNPs were synthesized with an average size of 14.3 ± 3.3 nm. Pre-treatment with P-AuNPs (1, 10 mg/kg, i.p.) before CYP (150 mg/kg, i.p.) challenge suggested its uroprotective properties. P-AuNPs significantly reversed all pain-like behaviours and toxicities produced by CYP resulting in a decreased aspartate aminotransferase, alanine aminotransferase, C-reactive protein, and creatinine level. P-AuNPs increased anti-oxidant system by increasing the level of reduced glutathione, glutathione-S-transferase, catalase and superoxide dismutase, and reduced nitric oxide production in bladder tissue. Additionally, it attenuated hypokalaemia and hyponatremia, along with a decrease in Evans blue content in bladder tissue and peritoneal cavity. CYP-induced bladder tissue damage observed by macroscopic and histological findings were remarkably attenuated by P-AuNPs, along with reduced fibrosis of collagen fibre in bladder smooth muscles shown by Masson's trichrome staining. Additionally, alterations in hematological parameters and clinical scoring were also prevented by P-AuNPs suggesting its uroprotective effect.


Assuntos
Cistite , Nanopartículas Metálicas , Antioxidantes , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Ouro/farmacologia , Química Verde/métodos , Humanos , Extratos Vegetais , Polietilenoglicóis , Chá
8.
Sci Rep ; 12(1): 8148, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581357

RESUMO

The aim of our work was the synthesis of ZnO nano- and microparticles and to study the effect of shapes and sizes on cytotoxicity towards normal and cancer cells and antibacterial activity toward two kinds of bacteria. We fabricated ZnO nano- and microparticles through facile chemical and physical routes. The crystal structure, morphology, textural properties, and photoluminescent properties were characterized by powder X-ray diffraction, electron microscopies, nitrogen adsorption/desorption measurements, and photoluminescence spectroscopy. The obtained ZnO structures were highly crystalline and monodispersed with intensive green emission. ZnO NPs and NRs showed the strongest antibacterial activity against Escherichia coli and Staphylococcus aureus compared to microparticles due to their high specific surface area. However, the ZnO HSs at higher concentrations also strongly inhibited bacterial growth. S. aureus strain was more sensitive to ZnO particles than the E. coli. ZnO NPs and NRs were more harmful to cancer cell lines than to normal ones at the same concentration.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Química Verde/métodos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Difração de Raios X , Óxido de Zinco/química , Óxido de Zinco/farmacologia
9.
Int J Biol Macromol ; 211: 380-389, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35569681

RESUMO

Nanoparticles of green materials have gained enormous interest due to their broad range of applications in several disciplines since they have significantly improved multifunctional activities. This article attempts a sustainable green approach to synthesize sodium lignosulfonate nanoparticles (SLS NPs) using another biomolecule, i.e., chitosan. The synthesized SLS NPs (with an average diameter of ~125 nm to 129 nm) have demonstrated synergetic efficacy by exhibiting outstanding multifunctional properties due to the presence of two types of biomolecules (i.e., lignosulfonate as well as chitosan) in their structure. The synthesized SLS NPs have bestowed excellent antibacterial activity against both the Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. Moreover, SLS NPs have displayed ~92% antioxidant property. Having polyphenolic entities in the structure of SLS NPs, they have shown UV-visible absorption peak at 224 nm, which directly indicates that they can act as an outstanding UV protective agent which has also been proven experimentally.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Escherichia coli , Química Verde , Lignina/análogos & derivados , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Sódio , Staphylococcus aureus
10.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630680

RESUMO

Biogenic metal oxide nanoparticles (NPs) have emerged as a useful tool in biology due to their biocompatibility properties with most biological systems. In this study, we report the synthesis of copper oxide (CuO), zinc oxide (ZnO) nanoparticles (NPs), and their nanocomposite (CuO-ZnO) prepared using the phytochemical extracts from the leaves of Dovyalis caffra (kei apple). The physicochemical properties of these nanomaterials were established using some characterization techniques including X-ray diffraction analysis (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The XRD result confirmed the presence of a monoclinic CuO (Tenorite), and a hexagonal ZnO (Zincite) nanoparticles phase, which were both confirmed in the CuO-ZnO composite. The electron microscopy of the CuO-ZnO, CuO, and ZnO NPs showed a mixture of nano-scale sizes and spherical/short-rod morphologies, with some agglomeration. In the constituent's analysis (EDX), no unwanted peak was found, which showed the absence of impurities. Antioxidant properties of the nanoparticles was studied, which confirmed that CuO-ZnO nanocomposite exhibited better scavenging potential than the individual metal oxide nanoparticles (CuO, and ZnO), and ascorbic acid with respect to their minimum inhibitory concentration (IC50) values. Similarly, the in vitro anticancer studies using MCF7 breast cancer cell lines indicated a concentration-dependent profile with the CuO-ZnO nanocomposite having the best activity over the respective metal oxides, but slightly lower than the standard 5-Fluorouracil drug.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Cobre , Química Verde/métodos , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
11.
Biomolecules ; 12(5)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35625555

RESUMO

The vastness of metal-based nanoparticles has continued to arouse much research interest, which has led to the extensive search and discovery of new materials with varying compositions, synthetic methods, and applications. Depending on applications, many synthetic methods have been used to prepare these materials, which have found applications in different areas, including biology. However, the prominent nature of the associated toxicity and environmental concerns involved in most of these conventional methods have limited their continuous usage due to the desire for more clean, reliable, eco-friendly, and biologically appropriate approaches. Plant-mediated synthetic approaches for metal nanoparticles have emerged to circumvent the often-associated disadvantages with the conventional synthetic routes, using bioresources that act as a scaffold by effectively reducing and stabilizing these materials, whilst making them biocompatible for biological cells. This capacity by plants to intrinsically utilize their organic processes to reorganize inorganic metal ions into nanoparticles has thus led to extensive studies into this area of biochemical synthesis and analysis. In this review, we examined the use of several plant extracts as a mediating agent for the synthesis of different metal-based nanoparticles (MNPs). Furthermore, the associated biological properties, which have been suggested to emanate from the influence of the diverse metabolites found in these plants, were also reviewed.


Assuntos
Química Verde , Nanopartículas Metálicas , Química Verde/métodos , Nanopartículas Metálicas/química , Metais/metabolismo , Extratos Vegetais/química , Plantas/metabolismo
12.
Molecules ; 27(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458641

RESUMO

Cancer is one of the leading causes of death worldwide, accountable for a total of 10 million deaths in the year 2020, according to GLOBOCAN 2020. The advancements in the field of cancer research indicate the need for direction towards the development of new drug candidates that are instrumental in a tumour-specific action. The pool of natural compounds proves to be a promising avenue for the discovery of groundbreaking cancer therapeutics. Elaeocarpus ganitrus (Rudraksha) is known to possess antioxidant properties and after a thorough review of literature, it was speculated to possess significant biomedical potential. Green synthesis of nanoparticles is an environmentally friendly approach intended to eliminate toxic waste and reduce energy consumption. This approach was reported for the synthesis of silver nanoparticles from two different solvent extracts: aqueous and methanolic. These were characterized by biophysical and spectroscopic techniques, namely, UV-Visible Spectroscopy, FTIR, XRD, EDX, DLS, SEM, and GC-MS. The results showed that the nanoconjugates were spherical in geometry. Further, the assessment of antibacterial, antifungal, and antiproliferative activities was conducted which yielded results that were qualitatively positive at the nanoscale. The nanoconjugates were also evaluated for their anticancer properties using a standard MTT Assay. The interactions between the phytochemicals (ligands) and selected cancer receptors were also visualized in silico using the PyRx tool for molecular docking.


Assuntos
Elaeocarpaceae , Nanopartículas Metálicas , Antibacterianos/química , Química Verde , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Nanoconjugados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
13.
BMC Res Notes ; 15(1): 149, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468836

RESUMO

OBJECTIVE: Green synthesized iron(III) oxide (Fe3O4) nanoparticles are gaining appeal in targeted drug delivery systems because of their low cost, fast processing and nontoxicity. However, there is no known research work undertaken in the production of green synthesized nano-particles from the Ugandan grown Moringa Oleifera (MO). This study aims at exploring and developing an optimized protocol aimed at producing such nanoparticles from the Ugandan grown Moringa. RESULTS: While reducing ferric chloride solution with Moringa oleifera leaves, Iron oxide nanoparticles (Fe3O4-NPs) were synthesized through an economical and completely green biosynthetic method. The structural properties of these Fe3O4-NPs were investigated by Ultra Violet-visible (UV-Vis) spectrophotometry, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). These nanoparticles exhibited UV-visible absorption peaks at 225 nm (nm) for the sixth dilution and 228 nm for the fifth dilution which indicated that the nanoparticles were photosensitive and the SEM study confirmed the spherical nature of these nanoparticles. The total synthesis time was approximately 5 h after drying the moringa leaves, and the average particle size was approximately 16 nm. Such synthesized nanoparticles can potentially be useful for drug delivery, especially in Low and Middle Income Countries (LMICs).


Assuntos
Moringa oleifera , Nanopartículas , Países em Desenvolvimento , Compostos Férricos , Química Verde , Ferro , Moringa oleifera/química , Nanopartículas/química , Óxidos , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Drug Deliv ; 29(1): 997-1006, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35363110

RESUMO

Gold nanoparticles (AuNPs) were successfully fabricated by Pholiota adiposa polysaccharide (PAP-1a) without employing any other chemicals. The physical and chemical properties of PAP-AuNPs were determined using transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDXR), Fourier-transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM). In an attempt to analyze the immune regulation, antitumor effect, and biological safety, the production of NO and TNF-α, IL-12p70, and IL-1ß from RAW264.7 as well as the proliferation of RAW264.7 were detected in vitro. Flow cytometry was conducted to determine the ratio of the CD4+/CD8+ cell in peripheral blood and immunohistochemical analysis involving hematoxylin and eosin (H&E) and proliferating cell nuclear antigen (PCNA) staining were conducted in vivo. The results of this study showed that PAP-AuNPs had a significantly improved immune regulation and anti-tumor effect in comparison to PAP-1a alone. PAP-AuNPs showed no toxicity both in vivo and in vitro. This study demonstrates a useful application of PAP-AuNPs as a novel nanomedicine for hepatic carcinoma.


Assuntos
Carcinoma , Nanopartículas Metálicas , Ouro/química , Química Verde/métodos , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Pholiota , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
IET Nanobiotechnol ; 16(4): 115-144, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426251

RESUMO

The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco-friendly nature, and long-term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio-coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant-based silver nanoparticles and their antimicrobial activity.


Assuntos
Nanopartículas Metálicas , Plantas Medicinais , Química Verde/métodos , Extratos Vegetais , Prata/farmacologia
16.
Food Chem ; 385: 132602, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278731

RESUMO

Synthesis of silver nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the conventional chemical ways. The overall objective of the research was focused on the green synthesis of silver nanoparticles using pomelo peel waste via a rapid and eco-friendly ultrasonic-assisted technique and their characterization. Different factors affecting the synthesis, like methodology for the preparation of extract and various treatment conditions for the synthesis, were also studied. The developed nanoparticles were characterized for their optical, molecular, microstructural, and physical properties by UV-visible spectroscopy, dynamic light scattering (DLS), zeta-potential measurements, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The green synthesized nanoparticles were found almost spherical when treated at room and high temperatures and cubical when treated with ultrasonication. As obtained from the XRD studies, the size of crystallitenanoparticles was 35 to 40 nm in diameter. The EDX, FT-IR, and zeta potential analysis corroborated the role of phenolic compounds in capping and reduction of the metal ion. The capping ability of the polyphenolic component in the extract was used to achieve size stability. The nanoparticles also showed antibacterial activity against gram-negative and gram-positive bacteria, owing to the inherent antibacterial capability of silver nanoparticles.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323486

RESUMO

The beneficial effects of fish-derived lipid bioactives have come to prominence over the last few decades, especially for their utilization in fish oils, supplements, and nutraceuticals. Omega-3 (n-3) polyunsaturated fatty acids (PUFA), lipid vitamins, carotenoids, and polar lipid bioactives from fish have shown to possess a vast range of beneficial effects against a multitude of chronic disorders and especially against inflammation-and cardiovascular disorders (CVD). The observed cardio-protective effects and health benefits are believed to be attributed to the synergy of these fish-derived lipid bioactives. Within the present article the recent findings in the literature on the lipid content of the mainly consumed fish species, their bio-functionality, and cardio-protective benefits is thoroughly reviewed. Moreover, the recovery and valorization of such lipid bioactives from fish by-products and fishing by-catch, in order to reduce waste, while developing useful products containing cardio-protective lipids from the leftover materials of fisheries and aquaculture industries, are also of industrial and environmental interest. Emphasis is also given to the effects of heat treatments during fish processing on the structures and bio-functionality of these marine lipid bioactives, based on the paradigm of different cooking methodologies and thermal processing, while the compounds produced during such treatment(s) with detrimental changes in the fish lipid profile, which can reduce its cardio-protective efficacy, are also reviewed. Novel green extraction technologies and low temperature processing and cooking of fish and fishery by-products are needed to reduce these undesirable effects in a sustainable and environmentally friendly way.


Assuntos
Cardiotônicos , Produtos Pesqueiros , Manipulação de Alimentos , Lipídeos , Animais , Cardiotônicos/química , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Peixes , Química Verde , Temperatura Alta , Humanos , Lipídeos/química , Lipídeos/farmacologia , Lipídeos/uso terapêutico
18.
Environ Res ; 211: 113046, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35300965

RESUMO

The present study focused to synthesize the copper oxide nanoparticles (CuONPs) using novel Canthium coromandelicum leaves in a cost-effective, easy, and sustainable approach. The obtained Canthium coromandelicum-copper oxide nanoparticles (CC-CuONPs) were characterized using UV-Visible spectroscopy, FT-IR analysis, FESEM, HR-TEM imaging, and XRD study. The XRD pattern verified the development of crystalline CC-CuONPs with an average size of 33 nm. The biosynthesized CC-CuONPs were roughly spherical, according to HR-TEM and FESEM analyses. FT-IR research verified the existence of functional groups involved in CC-CuONPs production. Cu and O2 have high-energy signals of 78.32% and 12.78%, respectively, according to data from EDX. The photocatalytic evaluation showed that synthesized CC-CuONPs have the efficiency of degrading methylene blue (MB) and methyl orange (MO) by 91.32%, 89.35% respectively. The findings showed that biosynthesized CC-CuONPs might effectively remove contaminants in an environmentally acceptable manner.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antibacterianos/química , Corantes , Cobre/química , Química Verde/métodos , Nanopartículas Metálicas/química , Nanopartículas/química , Óxidos , Extratos Vegetais , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis
19.
Oxid Med Cell Longev ; 2022: 3863138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251470

RESUMO

Green-based synthesis of metal nanoparticles using marine seaweeds is a rapidly growing technology that is finding a variety of new applications. In the present study, the aqueous extract of a marine seaweed, Gracilaria edulis, was employed for the synthesis of metallic nanoparticles without using any reducing and stabilizing chemical agents. The visual color change and validation through UV-Vis spectroscopy provided an initial confirmation regarding the Gracilaria edulis-mediated green synthesized silver nanoparticles. The dynamic light scattering studies and high-resolution transmission electron microscopy pictographs exhibited that the synthesized Gracilaria edulis-derived silver nanoparticles were roughly spherical in shape having an average size of 62.72 ± 0.25 nm and surface zeta potential of -15.6 ± 6.73 mV. The structural motifs and chemically functional groups associated with the Gracilaria edulis-derived silver nanoparticles were observed through X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. Further, the synthesized nanoparticles were further screened for their antioxidant properties through DPPH, hydroxyl radical, ABTS, and nitric oxide radical scavenging assays. The phycosynthesized nanoparticles exhibited dose-dependent cytotoxicity against MDA-MB-231 breast carcinoma cells having IC50 value of 344.27 ± 2.56 µg/mL. Additionally, the nanoparticles also exhibited zone of inhibition against pathogenic strains of Bacillus licheniformis (MTCC 7425), Salmonella typhimurium (MTCC 3216), Vibrio cholerae (MTCC 3904), Escherichia coli (MTCC 1098), Staphylococcus epidermidis (MTCC 3615), and Shigella dysenteriae (MTCC9543). Hence, this investigation explores the reducing and stabilizing capabilities of marine sea weed Gracilaria edulis for synthesizing silver nanoparticles in a cost-effective approach with potential anticancer and antimicrobial activity. The nanoparticles synthesized through green method may be explored for their potential utility in food preservative film industry, biomedical, and pharmaceutical industries.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Gracilaria/química , Química Verde/métodos , Nanopartículas Metálicas/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Alga Marinha/química , Prata/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
20.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335190

RESUMO

Advanced innovations for combating variants of aggressive breast cancer and overcoming drug resistance are desired. In cancer treatment, ZnO nanoparticles (NPs) have the capacity to specifically and compellingly activate apoptosis of cancer cells. There is also a pressing need to develop innovative anti-cancer therapeutics, and recent research suggests that ZnO nanoparticles hold great potential. Here, the in vitro chemical effectiveness of ZnO NPs has been tested. Zinc oxide (ZnO) nanoparticles were synthesized using Citrullus colocynthis (L.) Schrad by green methods approach. The generated ZnO was observed to have a hexagonal wurtzite crystal arrangement. The generated nanomaterials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy. The crystallinity of ZnO was reported to be in the range 50-60 nm. The NPs morphology showed a strong absorbance at 374 nm with an estimated gap band of 3.20 eV to 3.32 eV. Microscopy analysis proved the morphology and distribution of the generated nanoparticles to be around 50 nm, with the elemental studies showing the elemental composition of ZnO and further confirming the purity of ZnO NPs. The cytotoxic effect of ZnO NPs was evaluated against wild-type and doxorubicin-resistant MCF-7 and MDA-MB-231 breast cancer cell lines. The results showed the ability of ZnO NPs to inhibit the prefoliation of MCF-7 and MDA-MB-231 prefoliation through the induction of apoptosis without significant differences in both wild-type and resistance to doxorubicin.


Assuntos
Neoplasias da Mama , Nanopartículas , Óxido de Zinco , Neoplasias da Mama/tratamento farmacológico , Feminino , Química Verde/métodos , Humanos , Nanopartículas/química , Extratos Vegetais/química , Difração de Raios X , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...