RESUMO
With human space exploration back in the spotlight, recent studies have investigated the neuromuscular adjustments to simulated hypogravity running. They have examined the activity of individual muscles, whereas the central nervous system may rather activate groups of functionally related muscles, known as muscle synergies. To understand how locomotor control adjusts to simulated hypogravity, we examined the temporal (motor primitives) and spatial (motor modules) components of muscle synergies in participants running sequentially at 100%, 60%, and 100% body weight on a treadmill. Our results highlighted the paradoxical nature of simulated hypogravity running: The reduced mechanical constraints allowed for a more flexible locomotor control, which correlated with the degree of spatiotemporal adjustments. Yet, the increased temporal (shortened stance phase) and sensory (deteriorated proprioceptive feedback) constraints required wider motor primitives and a higher contribution of the hamstring muscles during the stance phase. These results are a first step towards improving astronaut training protocols.
Assuntos
Músculos Isquiossurais , Corrida , Voo Espacial , Humanos , Corrida/fisiologia , Hipogravidade , Sistema Nervoso Central , Músculo Esquelético/fisiologiaRESUMO
INTRODUCTION: The advancement of human spaceflight has made urgent the need to develop medical imaging technology to ensure a high level of in-flight care. To date, only ultrasound has been used in spaceflight. Radiography has multiple advantages over ultrasound, including lower operator dependence, more rapid acquisition, typically higher spatial resolution, and characterization of tissue with acoustic impedance precluding ultrasound. This proof-of-concept work demonstrates for the first time the feasibility of performing human radiographs in microgravity.METHODS: Radiographs of a phantom and human subject's hand, knee, chest, cervical spine, and pelvis were obtained aboard a parabolic flight in microgravity and simulated lunar gravity with various subject and operator positions. Control radiographs were acquired with the same system on the ground. These radiographs were performed with a Food and Drug Administration-approved ultra-portable, wireless, battery-powered, digital x-ray system.RESULTS: The radiographs of the phantom acquired in reduced gravity were qualitatively and quantitatively compared to the ground controls and found to exhibit similar diagnostic adequacy. There was no statistically significant difference in contrast resolution or spatial resolution with a spatial resolution across all imaging environments up to the Nyquist frequency of 3.6 line-pairs/mm and an average contrast-to-noise ratio of 2.44.DISCUSSION: As mass, power, and volume limitations lessen over the coming decades and the miniaturization of imaging equipment continues, in-flight implementation of nonsonographic modalities will become practical. Given the demonstrated ease of use and satisfactory image quality, portable radiography is ready to be the new frontier of space medical imaging.Lerner D, Pohlen M, Wang A, Walter J, Cairnie M, Gifford S. X-ray imaging in the simulated microgravity environment of parabolic flight. Aerosp Med Hum Perform. 2023; 94(10):786-791.
Assuntos
Voo Espacial , Ausência de Peso , Estados Unidos , Humanos , Raios X , Radiografia , HipogravidadeRESUMO
Humans have stepped on the Lunar surface for less than 80 h of Extravehicular Activity, providing a narrow understanding of Lunar gait patterns. NASA's Human-crewed Artemis missions are quickly approaching; understanding how fractional gravity affects gait patterns will be critical for the Moon's and Mars' long-term habitation. This study examined gait patterns under 1.0 g (Earth), simulated 0.38 g (Martian), and 0.17 g (Lunar). Participants walked and ran on a treadmill supported by ARGOS (Active Response Gravity Offload System), simulating fractional gravity. Vicon motion capture data and principal component analysis software were used to capture and quantify coordinated gait structures. There were found to be significant differences (p < 0.05) in the coordinative gait structures for ambulation between fractional gravity conditions. Additionally, there were significantly higher asymmetric gait components for Lunar conditions. Finally, a skipping coordinative structure was identified within Lunar and Martian running.
Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Marcha , Planeta Terra , HipogravidadeRESUMO
Small satellite technologies, particularly CubeSats, are enabling breakthrough research in space. Over the past 15 years, NASA Ames Research Center has developed and flown half a dozen biological CubeSats in low Earth orbit (LEO) to conduct space biology and astrobiology research investigating the effects of the space environment on microbiological organisms. These studies of the impacts of radiation and reduced gravity on cellular processes include dose-dependent interactions with antimicrobial drugs, measurements of gene expression and signaling, and assessment of radiation damage. BioSentinel, the newest addition to this series, will be the first deep space biological CubeSat, its heliocentric orbit extending far beyond the radiation-shielded environment of low Earth orbit. BioSentinel's 4U biosensing payload, the first living biology space experiment ever conducted beyond the Earth-Moon system, will use a microbial bioassay to assess repair of radiation-induced DNA damage in eukaryotic cells over a duration of 6-12 months. Part of a special collection of articles focused on BioSentinel and its science mission, this article describes the design, development, and testing of the biosensing payload's microfluidics and optical systems, highlighting improvements relative to previous CubeSat life-support and bioanalytical measurement technologies.
Assuntos
Lua , Voo Espacial , Planeta Terra , Hipogravidade , ExobiologiaRESUMO
BACKGROUND: Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity. OBJECTIVES: The aim of this paper is to define an experimental protocol and methodology suitable to estimate in high-fidelity hypogravity conditions the lower limb internal joint reaction forces. State-of-the-art movement kinetics, kinematics, muscle activation and muscle-tendon unit behaviour during locomotor and plyometric movements will be collected and used as inputs (Objective 1), with musculoskeletal modelling and an optimisation framework used to estimate lower limb internal joint loading (Objective 2). METHODS: Twenty-six healthy participants will be recruited for this cross-sectional study. Participants will walk, skip and run, at speeds ranging between 0.56-3.6 m/s, and perform plyometric movement trials at each gravity level (1, 0.7, 0.5, 0.38, 0.27 and 0.16g) in a randomized order. Through the collection of state-of-the-art kinetics, kinematics, muscle activation and muscle-tendon behaviour, a musculoskeletal modelling framework will be used to estimate lower limb joint reaction forces via tracking simulations. CONCLUSION: The results of this study will provide first estimations of internal musculoskeletal loads associated with human movement performed in a range of hypogravity levels. Thus, our unique data will be a key step towards modelling the musculoskeletal deconditioning associated with long term habitation on the Lunar surface, and thereby aiding the design of Lunar exercise countermeasures and mitigation strategies.
Assuntos
Movimento , Ausência de Peso , Humanos , Estudos Transversais , Movimento/fisiologia , Fenômenos Biomecânicos , HipogravidadeRESUMO
Space agencies are planning to send humans back to the Lunar surface, in preparation for crewed exploration of Mars. However, the effect of hypogravity on human skeletal muscle is largely unknown. A recently established rodent partial weight-bearing model has been employed to mimic various levels of hypogravity loading and may provide valuable insights to better understanding how human muscle might respond to this environment. The aim of this study was to perform a systematic review regarding the effects of partial weight-bearing on the morphology and function of rodent skeletal muscle. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (partial weight-bearing for ≥1 week), control (full weight-bearing), outcome(s) (skeletal muscle morphology/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. Partial weight-bearing at 20%, 40%, and 70% of full loading caused rapid deconditioning of skeletal muscle morphology and function within the first one to two weeks of exposure. Calf circumference, hindlimb wet muscle mass, myofiber cross-sectional area, front/rear paw grip force, and nerve-stimulated plantarflexion force were reduced typically by medium to very large effects. Higher levels of partial weight-bearing often attenuated deconditioning but failed to entirely prevent it. Species and sex mediated the deconditioning response. Risk of bias was low/unclear for most studies. These findings suggest that there is insufficient stimulus to mitigate muscular deconditioning in hypogravity settings highlighting the need to develop countermeasures for maintaining astronaut/cosmonaut muscular health on the Moon and Mars.
Assuntos
Músculo Esquelético , Roedores , Animais , Astronautas , Humanos , Hipogravidade , Suporte de Carga/fisiologiaRESUMO
Space agencies are preparing to send humans to the Moon (16% Earth's gravity) and Mars (38% Earth's gravity), however, there is limited evidence regarding the effects of hypogravity on the skeletal system. A novel rodent partial weight-bearing (PWB) model may provide insight into how human bone responds to hypogravity. The aim of this study was to perform a systematic review investigating the effect of PWB on the structure and function of rodent bone. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (PWB for ≥1-week), control (full weight-bearing), outcomes (bone structure/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. The main findings were that partial weight-bearing exposure for 21-28 days at 20%, 40%, and 70% of full loading causes: (1) loss of bone mineral density, (2) loss of trabecular bone volume, thickness, number, and increased separation, (3) loss of cortical area and thickness, and 4) reduced bone stiffness and strength. These findings predominately relate the tibia/femur of young/mature female mice, however, their deconditioning response appeared similar, but not identical, to male rats. A dose-response trend was frequently observed between the magnitude of deconditioning and PWB level. The deconditioning patterns in PWB resembled those in rodents and humans exposed to microgravity and microgravity analogs. The present findings suggest that countermeasures against bone deconditioning may be required for humans exploring the Lunar and Martian surfaces.
Assuntos
Meio Ambiente Extraterreno , Marte , Animais , Densidade Óssea , Feminino , Humanos , Hipogravidade , Masculino , Camundongos , Ratos , Roedores , Suporte de Carga/fisiologiaRESUMO
Quasi-stiffness characterizes the dynamics of a joint in specific sections of stance-phase and is used in the design of wearable devices to assist walking. We sought to investigate the effect of simulated reduced gravity and walking speed on quasi-stiffness of the hip, knee, and ankle in overground walking. 12 participants walked at 0.4, 0.8, 1.2, and 1.6 m/s in 1, 0.76, 0.54, and 0.31 gravity. We defined 11 delimiting points in stance phase (4 each for the ankle and hip, 3 for the knee) and calculated the quasi-stiffness for 4 phases for both the hip and ankle, and 2 phases for the knee. The R2 value quantified the suitability of the quasi-stiffness models. We found gravity level had a significant effect on 6 phases of quasi-stiffness, while speed significantly affected the quasi-stiffness in 5 phases. We concluded that the intrinsic muscle-tendon unit stiffness was the biggest determinant of quasi-stiffness. Speed had a significant effect on the R2 of all phases of quasi-stiffness. Slow walking (0.4 m/s) was the least accurately modelled walking speed. Our findings showed adaptions in gait strategy when relative power and strength of the joints were increased in low gravity, which has implications for prosthesis and exoskeleton design.
Assuntos
Tornozelo , Velocidade de Caminhada , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Hipogravidade , Articulação do Joelho , CaminhadaRESUMO
Skilled movements result from a mixture of feedforward and feedback mechanisms conceptualized by internal models. These mechanisms subserve both motor execution and motor imagery. Current research suggests that imagery allows updating feedforward mechanisms, leading to better performance in familiar contexts. Does this still hold in radically new contexts? Here, we test this ability by asking participants to imagine swinging arm movements around shoulder in normal gravity condition and in microgravity in which studies showed that movements slow down. We timed several cycles of actual and imagined arm pendular movements in three groups of subjects during parabolic flight campaign. The first, control, group remained on the ground. The second group was exposed to microgravity but did not imagine movements inflight. The third group was exposed to microgravity and imagined movements inflight. All groups performed and imagined the movements before and after the flight. We predicted that a mere exposure to microgravity would induce changes in imagined movement duration. We found this held true for the group who imagined the movements, suggesting an update of internal representations of gravity. However, we did not find a similar effect in the group exposed to microgravity despite the fact that the participants lived the same gravitational variations as the first group. Overall, these results suggest that motor imagery contributes to update internal representations of the considered movement in unfamiliar environments, while a mere exposure proved to be insufficient.NEW & NOTEWORTHY Gravity strongly affects the way movements are performed. How internal models process this information to adapt behavior to novel contexts is still unknown. The microgravity environment itself does not provide enough information to optimally adjust the period of natural arm swinging movements to microgravity. However, motor imagery of the task while immersed in microgravity was sufficient to update internal models. These results show that actually executing a task is not necessary to update graviception.
Assuntos
Sensação Gravitacional/fisiologia , Hipogravidade , Imaginação/fisiologia , Atividade Motora/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
The development of hypogravitational motor syndrome is an essential negative consequence of weightlessness for humans; an important role in the pathogenesis of this syndrome is played by changes in axons of the spinal tracts. Myelinated fibers and transcriptome of the spinal cord were studied in mice exposed to hypogravity during a 30-day flight on a biosatellite. Morphometric analysis of myelinated fibers of the spinal tracts showed a decrease in the thickness of the myelin sheath. Analysis of spinal cord transcriptome revealed a decrease in the expression of genes involved in the myelination of nerve fibers. These results suggest that the processes of nerve fiber myelination are involved in the development of the hypogravitational motor syndrome under weightless conditions; the 7-day readaptation period was found to be insufficient for reversion of the negative changes in the myelinated fibers of the spinal cord.
Assuntos
Bainha de Mielina , Ausência de Peso , Humanos , Camundongos , Animais , Bainha de Mielina/patologia , Ausência de Peso/efeitos adversos , Axônios , Medula Espinal/patologia , HipogravidadeRESUMO
We studied the influence of ionizing radiation and hypogravity as negative factors of space flights on DNA damage in peripheral blood lymphocytes of rhesus monkeys at different times after exposure (from 1 to 446 days). The proportion of cells with high numbers of DNA double-strand breaks (DSB), positive for the surrogate DSB marker-protein γH2AX, was monitored using flow cytometry. Some animals were exposed to 7-day antiorthostatic hypokinesia simulating hypogravity, the others to a combined effect of antiorthostatic hypokinesia, whole-body γ-irradiation (2.34 cGy/h, dose 1 Gy), and irradiation of the head with 12C ions (450 MeV, dose 1 Gy). Exposure to antiorthostatic hypokinesia led to a significant increase in the proportion of γH2AX+ lymphocytes only on the first day after exposure, whereas after combined exposure, increased numbers of damaged lymphocytes were recorded up to 42 days after exposure.
Assuntos
Hipogravidade/efeitos adversos , Hipocinesia/fisiopatologia , Linfócitos/fisiologia , Radiação Ionizante , Voo Espacial , Irradiação Corporal Total/efeitos adversos , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Citometria de Fluxo , Histonas/metabolismo , Linfócitos/metabolismo , Macaca mulatta , MasculinoRESUMO
Gravity plays a crucial role in shaping patterned locomotor output to maintain dynamic stability during locomotion. The present study aimed to clarify the gravity-dependent regulation of modules that organize multiple muscle activities during walking in humans. Participants walked on a treadmill at seven speeds (1-6 km h-1 and a subject- and gravity-specific speed determined by the Froude number (Fr) corresponding to 0.25) while their body weight was partially supported by a lift to simulate walking with five levels of gravity conditions from 0.07 to 1 g. Modules, i.e., muscle-weighting vectors (spatial modules) and phase-dependent activation coefficients (temporal modules), were extracted from 12 lower-limb electromyographic (EMG) activities in each gravity (Fr ~ 0.25) using nonnegative matrix factorization. Additionally, a tensor decomposition model was fit to the EMG data to quantify variables depending on the gravity conditions and walking speed with prescribed spatial and temporal modules. The results demonstrated that muscle activity could be explained by four modules from 1 to 0.16 g and three modules at 0.07 g, and the modules were shared for both spatial and temporal components among the gravity conditions. The task-dependent variables of the modules acting on the supporting phase linearly decreased with decreasing gravity, whereas that of the module contributing to activation prior to foot contact showed nonlinear U-shaped modulation. Moreover, the profiles of the gravity-dependent modulation changed as a function of walking speed. In conclusion, reduced gravity walking was achieved by regulating the contribution of prescribed spatial and temporal coordination in muscle activities.
Assuntos
Extremidade Inferior/fisiologia , Caminhada , Adulto , Eletromiografia , Teste de Esforço , Humanos , Hipogravidade , Masculino , Músculo Esquelético/fisiologia , Velocidade de Caminhada , Adulto JovemRESUMO
Reducing the mechanical load on the human body through simulated reduced gravity can reveal important insight into locomotion biomechanics. The purpose of this study was to quantify the effects of simulated reduced gravity on muscle activation levels and lower limb biomechanics across a range of overground walking speeds. Our overall hypothesis was that muscle activation amplitudes would not decrease proportionally to gravity level. We recruited 12 participants (6 female, 6 male) to walk overground at 1.0, 0.76, 0.55, and 0.31 G for four speeds: 0.4, 0.8, 1.2, and 1.6 ms-1. We found that peak ground reaction forces, peak knee extension moment in early stance, peak hip flexion moment, and peak ankle extension moment all decreased substantially with reduced gravity. The peak knee extension moment at late stance/early swing did not change with gravity. The effect of gravity on muscle activity amplitude varied considerably with muscle and speed, often varying nonlinearly with gravity level. Quadriceps (rectus femoris, vastus lateralis, & vastus medialis) and medial gastrocnemius activity decreased in stance phase with reduced gravity. Soleus and lateral gastrocnemius activity had no statistical differences with gravity level. Tibialis anterior and biceps femoris increased with simulated reduced gravity in swing and stance phase, respectively. The uncoupled relationship between simulated gravity level and muscle activity have important implications for understanding biomechanical muscle functions during human walking and for the use of bodyweight support for gait rehabilitation after injury.
Assuntos
Marcha/fisiologia , Hipogravidade , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , MasculinoRESUMO
BACKGROUND: During large angles of self-tilt in the roll plane on Earth, measurements of the subjective visual vertical (SVV) in the dark show a bias towards the longitudinal body axis, reflecting a systematic underestimation of self-tilt. OBJECTIVE: This study tested the hypothesis that self-tilt is underestimated in partial gravity conditions, and more so at lower gravity levels. METHODS: The SVV was measured in parabolic flight at three partial gravity levels: 0.25, 0.50, and 0.75âg. Self-tilt was varied amongst 0, 15, 30, and 45 deg, using a tiltable seat. The participants indicated their SVV by setting a linear array of dots projected inside a head mounted display to the perceived vertical. The angles of participants' body and head roll tilt relative to the gravito-inertial vertical were measured by two separate inertial measurement units. RESULTS: Data on six participants were collected. Per G-level, a regression analysis was performed with SVV setting as dependent variable and head tilt as independent variable. The latter was used instead of chair tilt, because not all the participants' heads were aligned with their bodies. The estimated regression slopes significantly decreased with smaller G-levels, reflecting an increased bias of the SVV towards the longitudinal body axis. On average, the regression slopes were 0.95 (±0.38) at 0.75âg; 0.84 (±0.22) at 0.5âg; and 0.63 (±0.33) at 0.25âg. CONCLUSIONS: The results of this study show that reduced gravity conditions lead to increased underestimation of roll self-tilt.
Assuntos
Hipogravidade , Orientação , Gravitação , Sensação Gravitacional , Humanos , Percepção EspacialRESUMO
BACKGROUND: Limited research exists into extraterrestrial CPR, despite the drive for interplanetary travel. This study investigated whether the terrestrial CPR method can provide quality external chest compressions (ECCs) in line with the 2015 UK resuscitation guidelines during ground-based hypogravity simulation. It also explored whether gender, weight, and fatigue influence CPR quality.METHODS: There were 21 subjects who performed continuous ECCs for 5 min during ground-based hypogravity simulations of Mars (0.38 G) and the Moon (0.16 G), with Earths gravity (1 G) as the control. Subjects were unloaded using a body suspension device (BSD). ECC depth and rate, heart rate (HR), ventilation (VE), oxygen uptake (Vo2), and Borg scores were measured.RESULTS: ECC depth was lower in 0.38 G (42.9 9 mm) and 0.16 G (40.8 9 mm) compared to 1 G and did not meet current resuscitation guidelines. ECC rate was adequate in all gravity conditions. There were no differences in ECC depth and rate when comparing gender or weight. ECC depth trend showed a decrease by min 5 in 0.38 G and by min 2 in 0.16 G. Increases in HR, VE, and Vo2 were observed from CPR min 1 to min 5.DISCUSSION: The terrestrial method of CPR provides a consistent ECC rate but does not provide adequate ECC depths in simulated hypogravities. The results suggest that a mixed-gender space crew of varying bodyweights may not influence ECC quality. Extraterrestrial-specific CPR guidelines are warranted. With a move to increasing ECC rate, permitting lower ECC depths and substituting rescuers after 1 min in lunar gravity and 4 min in Martian gravity is recommended.Sriharan S, Kay G, Lee JCY, Pollock RD, Russomano T. Cardiopulmonary resuscitation in hypogravity simulation. Aerosp Med Hum Perform. 2021; 92(2):106112.
Assuntos
Reanimação Cardiopulmonar/métodos , Meio Ambiente Extraterreno , Hipogravidade , Adulto , Feminino , Humanos , Masculino , Treinamento por SimulaçãoRESUMO
The response of plants to the spaceflight environment and microgravity is still not well understood, although research has increased in this area. Even less is known about plants' response to partial or reduced gravity levels. In the absence of the directional cues provided by the gravity vector, the plant is especially perceptive to other cues such as light. Here, we investigate the response of Arabidopsis thaliana 6-day-old seedlings to microgravity and the Mars partial gravity level during spaceflight, as well as the effects of red-light photostimulation by determining meristematic cell growth and proliferation. These experiments involve microscopic techniques together with transcriptomic studies. We demonstrate that microgravity and partial gravity trigger differential responses. The microgravity environment activates hormonal routes responsible for proliferation/growth and upregulates plastid/mitochondrial-encoded transcripts, even in the dark. In contrast, the Mars gravity level inhibits these routes and activates responses to stress factors to restore cell growth parameters only when red photostimulation is provided. This response is accompanied by upregulation of numerous transcription factors such as the environmental acclimation-related WRKY-domain family. In the long term, these discoveries can be applied in the design of bioregenerative life support systems and space farming.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Gravitação , Plântula/genética , Voo Espacial , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Hipogravidade , Luz , Marte , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Ausência de Peso/efeitos adversosRESUMO
BACKGROUND: Progressive loading of the lower limb muscles during running on a positive pressure or reduced gravity (Alter-G™) treadmill is suggested as a rehabilitation strategy after muscle and tendon injury but the influence of running up or downhill and at higher speeds is not known, nor are the interaction effects of speed, inclination, and indicated bodyweight. RESEARCH QUESTION: What are the lower limb EMG activation levels and cadence when running up and downhill in normal and reduced gravity? METHODS: 10 recreationally active male athletes ran on a positive-pressure Alter-G™ treadmill at: 3 indicated bodyweights (60 %, 80 %, and 100 %); 5 speeds (12, 15, 18, 21, and 24â¯km/h); for incline, decline, and flat conditions (-15 %, -10 %, -5%, 0%, 5%, 10 %, and 15 %); while monitoring the surface EMG of 11 leg muscles as well as cadence (strides per minute). RESULTS AND SIGNIFICANCE: Linear mixed models showed significant effect of running speed, inclination, and indicated bodyweight, with interaction effects observed. Increasing running speed was associated with the largest change in activity, with smaller effects for increasing bodyweight and inclination. Downhill running was associated with reduced activity in all muscle groups, and more tightly clustered activity patterns independent of speed. Substantial variation in sEMG activity occurred in the flat and uphill conditions. Subject responses were quite variable for sEMG, less so for cadence. For the conditions examined, increasing running speed induced the largest changes in EMG of all muscles examined with smaller changes seen for manipulations of inclination and bodyweight.
Assuntos
Fenômenos Biomecânicos/fisiologia , Eletromiografia/métodos , Hipogravidade , Extremidade Inferior/fisiologia , Corrida/fisiologia , Adulto , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologiaRESUMO
The data obtained by transcriptome analysis of lumbar spinal cord segments, sciatic nerve, and the respiratory diaphragm of the mice performed after a space flight on board Bion-M1 biosatellite were processed by bioinformatic methods aimed at elucidation of the regularities in hypogravity-induced transcriptome changes in various compartments of motor neurons. The study revealed abnormalities of axonal transport in spinal motor neurons provoked by weightlessness. These data agree with the results of electron microscopy examination of the spinal cord in experimental animals. In space group mice sacrificed on the landing day, the content of perinuclear ribosomes in lumbar motoneurons surpassed that in control mice or in the recovery group examined 1 week after the flight. The data corroborate our hypothesis on contribution of axonal transport disturbances into pathogenesis of hypogravity motor syndrome. They can be employed as a launching pad for further study of hypogravity-triggered motor disorder mechanisms in order to elaborate the preventive therapy against the development of hypogravity motor syndrome in space flights.