RESUMO
Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs). First, a transient high-valent species is generated at the copper histidine brace active site following treatment of the LPMO with either hydrogen peroxide or peroxyacids in the absence of substrate. This intermediate, which we propose to be a CuII-(histidyl radical), then reacts with a nearby tyrosine residue in an intersystem-crossing reaction to give a ferromagnetically coupled (S = 1) CuII-tyrosyl radical pair, thereby restoring the histidine brace active site to its resting state and allowing it to re-enter the catalytic cycle through reduction. This process gives the enzyme the capacity to minimize damage to the active site histidine residues "on the fly" to increase the total turnover number prior to enzyme deactivation, highlighting how oxidative enzymes are evolved to protect themselves from deleterious side reactions during uncoupled turnover.
Assuntos
Cobre , Histidina , Oxigenases de Função Mista , Estresse Oxidativo , CatáliseRESUMO
PHT1 is a histidine /oligopeptide transporter with an essential role in Toll-like receptor innate immune responses. It can act as a receptor by recruiting the adaptor protein TASL which leads to type I interferon production via IRF5. Persistent stimulation of this signalling pathway is known to be involved in the pathogenesis of systemic lupus erythematosus (SLE). Understanding how PHT1 recruits TASL at the molecular level, is therefore clinically important for the development of therapeutics against SLE and other autoimmune diseases. Here we present the Cryo-EM structure of PHT1 stabilized in the outward-open conformation. By combining biochemical and structural modeling techniques we propose a model of the PHT1-TASL complex, in which the first 16 N-terminal TASL residues fold into a helical structure that bind in the central cavity of the inward-open conformation of PHT1. This work provides critical insights into the molecular basis of PHT1/TASL mediated type I interferon production.
Assuntos
Doenças Autoimunes , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Histidina , Proteínas Adaptadoras de Transdução de SinalRESUMO
Specialized enzymes add methyl groups to the nitrogens of the amino acid histidine, altering the chemical properties of its imidazole ring and, in turn, the function of the modified (poly)peptide. In this issue of Genes & Development, Shimazu and colleagues (pp. 724-742) make the remarkable discovery that CARNMT1 acts as a dual-specificity histidine methyltransferase, modifying both the small-molecule dipeptide carnosine and a set of proteins, predominantly within RNA-binding C3H zinc finger (C3H ZF) motifs. As a result, CARNMT1 modulates the activity of its protein targets to affect RNA processing and metabolism, ultimately contributing an essential function during mammalian development.
Assuntos
Aminoácidos , Histidina , Animais , Metilação , Metiltransferases , Organogênese , MamíferosRESUMO
The autosomal-recessive diphthamide deficiency syndrome presents as intellectual disability with developmental abnormalities, seizures, craniofacial and additional morphological phenotypes. It is caused by reduced activity of proteins that synthesize diphthamide on human translation elongation factor 2. Diphthamide synthesis requires seven proteins (DPH1-DPH7), with clinical deficiency described for DPH1, DPH2 and DPH5. A limited set of variant alleles from syndromic patients has been functionally analyzed, but databases (gnomAD) list additional so far uncharacterized variants in human DPH1 and DPH2. Because DPH enzymes are conserved among eukaryotes, their functionality can be assessed in yeast and mammalian cells. Our experimental assessment of known and uncharacterized DPH1 and DPH2 missense alleles showed that six variants are tolerated despite inter-species conservation. Ten additional human DPH1 (G113R, A114T, H132P, H132R, S136R, C137F, L138P, Y152C, S221P, H240R) and two DPH2 (H105P, C341Y) variants showed reduced functionality and hence are deficiency-susceptibility alleles. Some variants locate close to the active enzyme center and may affect catalysis, while others may impact on enzyme activation. In sum, our study has identified functionally compromised alleles of DPH1 and DPH2 genes that likely cause diphthamide deficiency syndrome.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Alelos , Histidina , Padrões de Herança , Síndrome , Mamíferos , Proteínas , Antígenos de Histocompatibilidade Menor , Proteínas Supressoras de Tumor , Metiltransferases , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
A high-throughput fluorimetric assay for histidine was developed, using a 96-well plates platform. The analyte reacts selectively with o-phthalaldehyde under mild alkaline conditions to form a stable derivative. Instrumental-free detection was carried out using a smartphone after illumination under UV light (365 nm). The method was proved to be linear up to 100 µM histidine, with an LLOQ (lower limit of quantification) of 10 µM. The assay was only prone to interference from glutathione and histamine that exist in the urine samples at levels that are orders of magnitude lower compared to histidine. Human urine samples were analyzed following minimum treatment and were found to contain histidine in the range of 280 to 1540 µM. The results were in good agreement with an HPLC corroborative method.
Assuntos
Ensaios de Triagem em Larga Escala , Histidina , Smartphone , Fluorometria/métodos , Histidina/urina , Humanos , o-Ftalaldeído/químicaRESUMO
BACKGROUND: In contrast to modern rational metabolic engineering, classical strain development strongly relies on random mutagenesis and screening for the desired production phenotype. Nowadays, with the availability of biosensor-based FACS screening strategies, these random approaches are coming back into fashion. In this study, we employ this technology in combination with comparative genome analyses to identify novel mutations contributing to product formation in the genome of a Corynebacterium glutamicum L-histidine producer. Since all known genetic targets contributing to L-histidine production have been already rationally engineered in this strain, identification of novel beneficial mutations can be regarded as challenging, as they might not be intuitively linkable to L-histidine biosynthesis. RESULTS: In order to identify 100 improved strain variants that had each arisen independently, we performed > 600 chemical mutagenesis experiments, > 200 biosensor-based FACS screenings, isolated > 50,000 variants with increased fluorescence, and characterized > 4500 variants with regard to biomass formation and L-histidine production. Based on comparative genome analyses of these 100 variants accumulating 10-80% more L-histidine, we discovered several beneficial mutations. Combination of selected genetic modifications allowed for the construction of a strain variant characterized by a doubled L-histidine titer (29 mM) and product yield (0.13 C-mol C-mol-1) in comparison to the starting variant. CONCLUSIONS: This study may serve as a blueprint for the identification of novel beneficial mutations in microbial producers in a more systematic manner. This way, also previously unexplored genes or genes with previously unknown contribution to the respective production phenotype can be identified. We believe that this technology has a great potential to push industrial production strains towards maximum performance.
Assuntos
Bactérias , Histidina , Edição de Genes , Mutagênese , MutaçãoRESUMO
Amyloid-like assembly is not only associated with pathological events, but also leads to the development of novel nanomaterials with unique properties. Herein, using Fmoc diphenylalanine peptide (Fmoc-F-F) as a minimalistic model, we found that histidine can modulate the assembly behavior of Fmoc-F-F and induce enzyme-like catalysis. Specifically, the presence of histidine rearranges the ß structure of Fmoc-F-F to assemble nanofilaments, resulting in the formation of active site to mimic peroxidase-like activity that catalyzes ROS generation. A similar catalytic property is also observed in Aß assembled filaments, which is correlated with the spatial proximity between intermolecular histidine and F-F. Notably, the assembled Aß filaments are able to induce cellular ROS elevation and damage neuron cells, providing an insight into the pathological relationship between Aß aggregation and Alzheimer's disease. These findings highlight the potential of histidine as a modulator in amyloid-like assembly of peptide nanomaterials exerting enzyme-like catalysis.
Assuntos
Histidina , Nanoestruturas , Espécies Reativas de Oxigênio , Proteínas Amiloidogênicas , PeptídeosRESUMO
The use of model peptides that can simulate the behaviour of a protein domain is a very successful analytical method to study the metal coordination sites in biological systems. Here we study zinc and copper binding ability of the sequence HTHEHSHDHSHAH, which serves as model for the metal interactions with YrpE, a putative metal-binding protein of the ZinT family identified in Bacillus subtilis. Compared to other ZinT proteins secreted by Gram-negative bacteria, the metal-coordination properties of YrpE N-terminal histidine-rich domain have not been yet characterized. Different independent analytical methods, aimed at providing information on the stability and structure of the formed species, have been employed, including potentiometric titrations, electrospray ionization mass spectrometry, UV-Vis spectrophotometry, circular dichroism and electron paramagnetic resonance spectroscopy. The obtained speciation models and equilibrium constants allowed to compare the metal-binding ability of the investigated polyhistidine sequence with that of other well-known histidine-rich peptides. Our thermodynamic results revealed that the YrpE domain HTHEHSHDHSHAH forms more stable metal complexes than other His-rich domains of similar ZinT proteins. Moreover, the studied peptide, containing the alternated (-XH-)n motif, proved to be even more effective than the His6-tag (widely used in immobilized metal ion affinity chromatography) in binding zinc ions.
Assuntos
Bacillus subtilis , Histidina , Peptídeos , Metais , ZincoRESUMO
Developing high-performance magnetic particles for the effective separation and purification of target proteins has become an important topic in the area of biomedical research. In this work, a simple and novel strategy was proposed for fabricating magnetic Fe3O4@agarose-iminodiacetic acid-Ni microspheres (MAIN), which can efficiently and selectively isolate histidine-tagged/rich proteins (His-proteins). Based on the thermoreversible sol-gel transition of agarose, basic magnetic agarose microspheres were prepared through the inverse emulsion method, in which the emulsion contained agarose and amine-modified Fe3O4 nanoparticles. The size of the emulsion was controlled by the emulsification of a high-speed shear machine, which improved the specific surface area of MAIN. Subsequently, the amine-modified Fe3O4 nanoparticles were covalently crosslinked with agarose through epichlorohydrin, which could avoid leakage of the magnetic source during use and increase the stability of MAIN. The microsized MAIN exhibited a clearly visible spherical core-shell structure with a diameter range from 3.4 µm to 9.8 µm, and excellent suspension ability in aqueous solution. The maximum adsorption capacity of MAIN for histidine-rich bovine hemoglobin was 1069.2 mg g-1 at 35 °C, which was higher than those of commercialized and most reported magnetic agarose microspheres/nanoparticles. The MAIN showed excellent adsorption ability and selectivity toward His-proteins in a mixture of histidine-rich bovine serum albumin (BSA) and histidine-poor lysozyme (LYZ). When the amount of LYZ was 5-fold higher than that of BSA, the recovery of BSA reached 75.0%. To prove its practicability, MAIN was successfully employed for the enrichment of histidine-tagged RSV-F0 from the cell culture medium supernatant. According to the optimized conditions, MAIN could enrich approximately 0.1 mg of RSV-F0 from 1 mL of complex biological sample. Therefore, we believe that the novel MAIN could be applicable for efficient separation and purification of His-proteins from complex biological systems.
Assuntos
Histidina , Níquel , Sefarose , Emulsões , Soroalbumina Bovina , Aminas , Íons , Fenômenos MagnéticosRESUMO
CarH is a coenzyme B12-dependent photoreceptor involved in regulating carotenoid biosynthesis. How light-triggered cleavage of the B12 Co-C bond culminates in CarH tetramer dissociation to initiate transcription remains unclear. Here, a series of crystal structures of the CarH B12-binding domain after illumination suggest formation of unforeseen intermediate states prior to tetramer dissociation. Unexpectedly, in the absence of oxygen, Co-C bond cleavage is followed by reorientation of the corrin ring and a switch from a lower to upper histidine-Co ligation, corresponding to a pentacoordinate state. Under aerobic conditions, rapid flash-cooling of crystals prior to deterioration upon illumination confirm a similar B12-ligand switch occurs. Removal of the upper His-ligating residue prevents monomer formation upon illumination. Combined with detailed solution spectroscopy and computational studies, these data demonstrate the CarH photoresponse integrates B12 photo- and redox-chemistry to drive large-scale conformational changes through stepwise Co-ligation changes.
Assuntos
Temperatura Baixa , Histidina , Ligantes , Oxirredução , IluminaçãoRESUMO
The free exopolysaccharide (f-EPS) produced by Streptococcus thermophilus is a natural texture modifier with health-promoting properties and has thus become one of the most interesting metabolites for researchers. The present work aimed to further understand the nutritional requirements for the growth of and the f-EPS production by S. thermophilus. The types and concentrations of compounds in the complete chemically defined medium were changed in turn to evaluate the effects of single nutrients on the growth of and f-EPS production by S. thermophilus 937. The results showed that cysteine, glutamine, histidine, methionine, tryptophan, tyrosine, leucine, isoleucine, and valine played an important role in maintaining the rapid and stable growth of S. thermophilus 937. S. thermophilus 937 also required calcium pantothenate, niacin, pyridoxine, riboflavin, and thiamine hydrochloride as essential nutrients for growth. Increases in the concentrations of lactose, glutamate, histidine, or isoleucine significantly increased the production of free exopolysaccharide by S. thermophilus 937, and when the lactose concentration increased to 20 g·L-1 and the concentration of the three-amino-acid combination increased to 15 mM, the f-EPS yield increased to a maximum of 35.34 µg·mL-1. This finding indicated that lactose and the 3 amino acids exert synergistic effects on the promotion of f-EPS production. In addition, lactose and the three amino acids have strain specific promoting effects on f-EPS production by S. thermophilus. This study provides a further understanding of the effects of nutrients on the biosynthesis of f-EPS by S. thermophilus.
Assuntos
Histidina , Isoleucina , Lactose , Streptococcus thermophilus , Aminoácidos , NutrientesRESUMO
Histidine-containing polymers show promise in their transport of nucleic acids in vitro and in vivo. In addition to the pH-buffering histidine component, the polymer often contains a protonated component at physiological pH, such as lysine. These polyplexes usually accumulate in the tumor by enhanced permeability and retention, which has proved disappointing in clinical trials. We presently compare two histidine-lysine (HK) peptide polyplexes for their neuropilin-1-mediated transport of plasmids in vivo. While the polymerized HK (H2KC-48) polyplex was markedly better than the monomeric HK (H2K) polyplex in vitro, both HK polyplexes were effective in transfecting tumor xenografts over a wide range of peptide and plasmid ratios. Nevertheless, polyplexes of low peptide/DNA ratios gave higher tumor transfection and specificity than those of higher ratios. Surprisingly, there was minimal to no gel retardation of polyplexes made from these low ratios during electrophoresis. These results demonstrate that loosely packed HK polyplexes effectively transfected tumors in vivo.
Assuntos
Histidina , Ácidos Nucleicos , Humanos , Lisina , Xenoenxertos , Neuropilina-1 , PolímerosRESUMO
BACKGROUND: The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. METHODS: A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. RESULTS: The most effective histidine mutant, M1R56H, P96H, Y102H-neurotensin, caused > 8 °C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1R56H, P96H, Y102H-13A7-13A7 in capillary depleted brain lysates peaked at 1 h and were 60% retained at 8 h. A control construct with no brain targets was only 15% retained at 8 h. Addition of the albumin-binding Nb80 nanobody to make M1R56H, P96H, Y102H-13A7-13A7-Nb80 extended blood half-life from 21 min to 2.6 h. At 30-60 min, biotinylated M1R56H, P96H, Y102H-13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 h it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1R56H, P96H, Y102H-13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. CONCLUSION: The pH-sensitive mouse transferrin receptor binding nanobody M1R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.
Assuntos
Barreira Hematoencefálica , Hipotermia , Animais , Camundongos , Histidina , Neurotensina , Transcitose , Concentração de Íons de HidrogênioRESUMO
This study aims to explore the relationship between macrosomia and amino acids in maternal and cord sera. METHODS: In the case-control study, 78 pairs of mothers and newborns were recruited from December 2016 to November 2019. Participants were divided into the macrosomia group (BW ≥ 4000 g, n = 39) and the control group (BW between 2500 g and 3999 g, n = 39) according to the birth weight (BW) of newborns. Maternal vein blood samples were collected before delivery and cord vein blood samples were collected after birth. The levels of amino acids in maternal and cord sera were measured by liquid chromatography and mass spectrometry (LC-MS/MS) in the year 2021. The difference in amino acid levels in maternal and cord sera between the two groups was compared, and the contribution of each amino acid to the difference between the two groups was analyzed. Unconditional logistic regression analysis was used to test the relationship between macrosomia and amino acids. RESULTS: In maternal serum during the antepartum, the levels of asparagine, glutamine, methionine, alanine, and threonine in the macrosomia group were higher but arginine was lower than that in the control group (p < 0.05). In cord serum, the levels of lysine, histidine, phenylalanine, arginine, tryptophan, valine, isoleucine, glutamate, tyrosine, and total essential amino acid (EAA) in the macrosomia group were lower while glutamine was higher than that in the control group (p < 0.05). The ratios of EAA, valine, threonine, methionine, tryptophan, and alanine in maternal serum to those in cord serum were higher, while the ratio of glutamine was lower in the macrosomia group (p < 0.05). Arginine and threonine in maternal serum and glutamate, glutamine, and histidine in cord serum were associated with macrosomia (p < 0.05). CONCLUSION: Most of the amino acid levels in the maternal sera of the macrosomia group are higher than those in the control group, while most of the amino acids' levels in the cord sera of the macrosomia group are lower than those in the control group. The ratios of some amino acids in maternal serum to those in cord serum were different between the two groups. Arginine and threonine in maternal serum and glutamate, glutamine, and histidine in cord serum are closely related to macrosomia.
Assuntos
Aminoácidos , Histidina , Feminino , Recém-Nascido , Humanos , Triptofano , Glutamina , Macrossomia Fetal , Cromatografia Líquida , Estudos de Casos e Controles , Leucina , Espectrometria de Massas em Tandem , Alanina , Metionina , Valina , Treonina , Arginina , Ácido GlutâmicoRESUMO
BACKGROUND: Published studies have shown positive associations of branched chain and aromatic amino acids with type 2 diabetes mellitus (T2DM), and the findings remain consistent. However, the associations of other essential and semi-essential amino acids, i.e., methionine (Met), threonine (Thr), lysine (Lys), arginine (Arg) and histidine (His), with T2DM remain unknown. Obesity is an important independent risk factor for T2DM, and excessive amino acids can convert into glucose and lipids, which might underlie the associations of amino acids with obesity. Therefore, we aimed to estimate the associations between dietary intakes of these 5 amino acids and T2DM risk, as well as the mediation effects of obesity on these associations, in a Chinese population. METHODS: A total of 10,920 participants (57,293 person-years) were included, and dietary intakes of 5 amino acids were investigated using 24-h dietary recalls. Anthropometric obesity indices were measured at both baseline and the follow-up endpoints. Associations of amino acids with T2DM were estimated using COX regression models, hazard ratios (HRs) and 95% confidence intervals (95% CIs) were shown. The mediation effects of obesity indices were analyzed, and the proportion of the mediation effect was estimated. RESULTS: Higher intakes of the 5 amino acids were associated with increasing T2DM risk, while significant HRs were only shown in men after adjustments. No interaction by gender was found. Regression analyses using quintiles of amino acids intakes showed that T2DM risk was positively associated with amino acids intakes only when comparing participants with the highest intake levels of amino acids to those with the lowest intake levels. Adjusted correlation coefficients between amino acid intakes and obesity indices measured at follow-up endpoints were significantly positive. Mediation analyses showed that mediation effects of obesity indices existed on associations between amino acids intakes and T2DM risk, and the mediation effect of waist circumference remained strongest for each amino acid. CONCLUSIONS: We found positive associations of dietary intakes of Met, Thr, Lys, Arg and His with increasing T2DM risk in general Chinese residents, on which the mediation effect of obesity existed. These findings could be helpful for developing more constructive guidance in the primary prevention of T2DM based on dietary interventions.
Assuntos
Diabetes Mellitus Tipo 2 , Dieta , Obesidade , Humanos , Masculino , Aminoácidos/efeitos adversos , Aminoácidos/metabolismo , Arginina , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , População do Leste Asiático , Histidina , Lisina , Metionina , Obesidade/epidemiologia , Obesidade/complicações , Racemetionina , Fatores de Risco , TreoninaRESUMO
Quinone redox reactions involve a semiquinone (SQ) intermediate state. The catalytic sites in enzymes stabilize the SQ state via various molecular interactions, such as hydrogen bonding to oxygens of the two carbonyls of the benzoquinone ring. To understand how these interactions contribute to SQ stabilization, we examined SQ in the quinone reduction site (Qi) of cytochrome bc1 using electron paramagnetic resonance (ESEEM, HYSCORE) at the X-band and quantum mechanical (QM) calculations. We compared native enzyme (WT) with a H217R mutant (replacement of histidine that interacts with one carbonyl of the occupant of Qi to arginine) in which the SQ stability has previously been shown to markedly increase. The 14N region of the HYSCORE 2D spectrum for SQi in WT had a shape typical of histidine residue, while in H217R, the spectrum shape changed significantly and appeared similar to the pattern described for SQ liganded natively by arginine in cytochrome bo3. Parametrization of hyperfine and quadrupolar interactions of SQi with surrounding magnetic nuclei (1H, 14N) allowed us to assign specific nitrogens of H217 or R217 as ligands of SQi in WT and H217R, respectively. This was further substantiated by qualitative agreement between the experimental (EPR-derived) and theoretical (QM-derived) parameters. The proton (1H) region of the HYSCORE spectrum in both WT and H217R was very similar and indicative of interactions with two protons, which in view of the QM calculations, were identified as directly involved in the formation of a H-bond with the two carbonyl oxygens of SQ (interaction of H217 or R217 with O4 and D252 with O1). In view of these assignments, we explain how different SQ ligands effectively influence SQ stability. We also propose that the characteristic X-band HYSCORE pattern and parameters of H217R are highly specific to the interaction of SQ with the nitrogen of arginine. These features can thus be considered as potential markers of the interaction of arginine with SQ in other proteins.
Assuntos
Benzoquinonas , Histidina , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Benzoquinonas/química , Quinonas/química , Citocromos , Nitrogênio/químicaRESUMO
We demonstrated the fractionation of two amino acids, glutamic acid and histidine, separated via isoelectric focusing (IEF) on filter paper folded and stacked in an origami fashion. Channels for electrophoresis were fabricated as circular zones acquired via wax printing onto the filter paper. An ampholyte solution with amphiphilic samples was deposited on all the circle zones, which was followed by folding to form the electrophoresis channels. IEF was achieved by applying an electrical potential between the anodic and cathodic chambers filled with phosphoric acid and sodium hydroxide solutions, respectively. A pH gradient was formed using either a wide-range ampholyte with a pH of 3 to 10 or a narrow-range version with a pH of 5 to 8, which was confirmed by adding pH indicators to each layer. The origami IEF was used to separate the amino acids, glutamic acid and histidine, by mixing with the ampholytes, which were deposited on the layers. The components in each layer were extracted with water and measured by high-performance liquid chromatography using pre-column derivatization with dansyl chloride. The results indicated that the focus for glutamic acid and that for histidine were at different layers, according to their isoelectric points. The origami isoelectric focusing achieved the fractionation of amino acids in less than 3 min using voltage as low as 30 V.
Assuntos
Misturas Anfolíticas , Ácido Glutâmico , Misturas Anfolíticas/química , Proteínas/análise , Histidina , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/métodos , AminoácidosRESUMO
Pharmaceutical formulations are sensitive to light-induced degradation. Recent studies have attributed some of the light sensitivity to the presence of Fe(III), the most prevalent metal leachable from pharmaceutical containers. Histidine (His) can promote Fe(III) leaching from stainless steel, especially at elevated storage temperatures. Since there is the chance that combinations of His and Fe(III) are present in pharmaceutical formulations, we investigated the photo-degradation mechanisms of Fe(III)-containing His buffer during expsoure to near UV light. Our results indicate the formation of carbon dioxide radical anion (â¢CO2-), a powerful reductant, and other photoproducts such as aldehydes and His-derived radicals. The generation of â¢CO2- can be promoted by increasing concentrations of Fe(III) and inhibited by the addition of the Fe(III) chelator EDTA. Mechanistically, product formation can be rationalized by photo-induced ligand-to-metal-charge-transfer (LMCT), followed by a series of radical transformations of reaction intermediates.
Assuntos
Compostos Férricos , Raios Ultravioleta , Histidina , Dióxido de Carbono , Preparações Farmacêuticas , OxirreduçãoRESUMO
N-(2-Deoxy-D-glucos-2-yl)-L-histidine (Glu-His), one of Heyns rearrangement products (HRPs), was prepared by condensation, dehydration and rearrangement using l-Histidine and d-Fructose as raw materials with methanol as solvent. The response surface method (RSM) was used to improve yield of product and the optimal reaction condition was as following: the original ratio of Fru:His was 1.2:1 and the temperature and time of reaction was 73.2 °C and 4.7 h, and the yield of final product was 74.10% with the purity of 99.7%. The structure of product was identified by IR, NMR and conformed as C12H19N3O7 (317.1 Da) by high-resolution mass spectrometry (HRMS) and UPLC-MS/MS. The pyrolysis behavior of Glu-His showed that its initial pyrolysis temperature was 145.2 °C and the total weight loss reached 70.61% at 800 °C. The number of pyrolysis products increased with the increase of temperature, and the main pyrolysis products were pyrans, furans, pyrazines, pyrroles, pyridines, indoles and etc. with burnt-sweet, baking, nutty, sweet and floral aroma features. At last, the fragrance enhancement effect of Glu-His in the preparation of reconstructed tobacco stem (RTS) was investigated and the result of sensory evaluation showed that the smoke of RTS cigarettes brought about more sweet and moist, less irritation, better flavor and comfort with the addition of Glu-His (0.25%, w/w).
Assuntos
Glucose , Histidina , Reação de Maillard , Odorantes , Cromatografia Líquida , Espectrometria de Massas em TandemRESUMO
Polyamidoamine (PAMAM) dendrimers have been explored as an alternative to polyethylenimine (PEI) as a gene delivery carrier because of their relatively low cytotoxicity and excellent biocompatibility. The transfection efficiency of PAMAM dendrimers can be improved by the addition of nuclear localization signal (NLS), a positively charged peptide sequence recognized by cargo proteins in the cytoplasm for nuclear transport. However, increased positive charges from NLS can cause damage to the cytoplasmic and mitochondrial membranes and lead to reactive oxygen species (ROS)-induced cytotoxicity. This negative effect of NLS can be negated without a significant reduction in transfection efficiency by adding histidine, an essential amino acid known as a natural antioxidant, to NLS. However, little is known about the exact mechanism by which histidine reduces cytotoxicity of NLS-modified dendrimers. In this study, we selected cystamine core PAMAM dendrimer generation 2 (cPG2) and conjugated it with NLS derived from Merkel cell polyomavirus large T antigen and histidine (n = 0-3) to improve transfection efficiency and reduce cytoxicity. NLS-modified cPG2 derivatives showed similar or higher transfection efficiency than PEI 25 kDa in NIH3T3 and human mesenchymal stem cells (hMSC). The cytotoxicity of NLS-modified cPG2 derivatives was substantially lower than PEI 25 kDa and was further reduced as the number of histidine in NLS increased. To understand the mechanism of cytoprotective effect of histidine-conjugated NLS, we examined ROS scavenging, hydroxyl radical generation and mitochondrial membrane potential as a function of the number of histidine in NLS. As the number of hisidine increased, cPG2 scavenged ROS more effectively as evidenced by the hydroxyl radical antioxidant capacity (HORAC) assay. This was consistent with the reduced intracellular hydroxyl radical concentration measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) assay in NIH3T3. Finally, fluorescence imaging with JC-1 confirmed that the mitochondrial membranes of NIH 3T3 were well-protected during the transfection when NLS contained histidine. These experimental results confirm the hypothesis that histidine residues scavenge ROS that is generated during the transfection process, preventing the excessive damage to mitochondrial membranes, leading to reduced cytotoxicity.