Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.463
Filtrar
1.
Environ Pollut ; 292(Pt A): 118326, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653591

RESUMO

Bauxite residue, an industrial alkaline solid waste, has a low organic carbon content which hinders plant growth. Dissolved organic matter (DOM) drives many biogeochemical processes including carbon storage and soil formation in soils. Input of exogenous organic materials may provide organic carbon and accelerate soil formation processes in bauxite residue. However, the potential effects of ameliorants on the quantity and quality of DOM in bauxite residue are still poorly understood. Here, the integration of ultraviolet-visible (UV-Vis) spectra, fluorescence spectra, and parallel factor (PARAFAC) analysis were used to investigate the vertical characteristics of DOM in bauxite residue treated by PV (the combined addition of 2% phosphogypsum and 4% vermicompost, w/w) and BS (6% w/w including 4% bagasse and 2% bran) with 2-year column experiments. The content of DOM in untreated residues ranged from 0.064 to 0.096 g/kg, whilst higher contents of DOM were observed in PV (0.13 g/kg) and BS (0.26 g/kg) treatment. Meanwhile, with the increase of residue depth, the aromaticity and hydrophobic components of DOM in residue decreased, which indicated that the degree of humification of the treated residues in the upper layer was higher than that in the lower layer. Compared with BR, BS and PV treatment accumulated the related content of fulvic acid-like substance from 36.14% to 71.33% and 74.86%, respectively. The incorporation of vermicompost and biosolids increased the content of humic-like substances, whilst decreasing the content of protein-like substances in the surface layer, which may be due to the enrichment of the microbial community. During soil formation processes, the application of organic amendments reduced both salinity and alkalinity, enhanced microbial community diversity, and changed the quantity and quality of DOM in bauxite residue. These findings improve our understanding of the dynamics of DOM and response of DOM to soil formation processes in bauxite residue.


Assuntos
Substâncias Húmicas , Solo , Óxido de Alumínio , Carbono , Análise Fatorial , Substâncias Húmicas/análise , Espectrometria de Fluorescência
2.
Chemosphere ; 287(Pt 1): 131985, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34454229

RESUMO

Humic acids (HA) are considered a promising and inexpensive source for novel multifunctional materials for a huge range of applications. However, aggregation and degradation phenomena in aqueous environment prevent from their full exploitation. A valid strategy to address these issues relies on combining HA moieties at the molecular scale with an inorganic nanostructured component, leading to more stable hybrid nanomaterials with tunable functionalities. Indeed, chemical composition of HA can determine their interactions with the inorganic constituent in the hybrid nanoparticles and consequently affect their overall physico-chemical properties, including their stability and functional properties in aqueous environment. As a fundamental contribution to HA materials-based technology, this study aims at unveiling this aspect. To this purpose, SiO2 nanoparticles have been chosen as a model platform and three different HAs extracted from composted biomasses, manure (HA_Man), artichoke residues (HA_Art) and coffee grounds (HA_Cof), were employed to synthetize hybrid HA-SiO2 nanoparticles through in-situ sol-gel synthesis. Prepared samples were submitted to aging in water to assess their stability. Furthermore, antioxidant properties and physico-chemical properties of both as prepared and aged samples in aqueous environment were assessed through Scanning Electron Microscopy (SEM), N2 physisorption, Simultaneous Thermogravimetric (TGA) and Differential Scanning Calorimetric (DSC) Analysis, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR) spectroscopies. The experimental results highlighted that hybrid HA-SiO2 nanostructures acted as dynamic systems which exhibit structural supramolecular reorganization during aging in aqueous environment with marked effects on physico-chemical and functional properties, including improved antioxidant activity. Obtained results enlighten a unique aspect of interactions between HA and inorganic nanoparticles that could be useful to predict their behavior in aqueous environment. Furthermore, the proposed approach traces a technological route for the exploitation of organic biowaste in the design of hybrid nanomaterials, providing a significant contribution to the development of waste to wealth strategies based on humic substances.


Assuntos
Substâncias Húmicas , Nanoestruturas , Idoso , Humanos , Substâncias Húmicas/análise , Masculino , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água
3.
Chemosphere ; 287(Pt 1): 132027, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34455123

RESUMO

The binding interactions between Hg and dissolved organic matter (DOM) affect the fate and transport of Hg in the aquatic environment. Here, we investigate the effects of photo-irradiation on the binding characteristics of dissolved organic matter with Hg(II) using FT-IR and synchronous fluorescence two-dimensional correlation spectroscopy (2D-COS). Results showed that the binding of Hg(II) onto humic acid (HA) followed the order of humic-like fraction > fulvic-like fraction > protein-like fraction and photo-irradiation did not affect this order. The binding affinity of each site within the fluorescent fraction was affected by the photoreaction patterns. Pre-irradiation of HA before Hg(II) binding changed its structures and binding ability. UV irradiation showed a more obvious effect on Hg(II)-HA complexes than solar irradiation, and UV irradiation enhanced the reactivity of aromatic groups of HA. The amine or amide N-H of HA played a leading role in binding with Hg(II) in the dark, whereas the aromatic amine C-N became dominant after UV irradiation. In fulvic acid (FA), the aromatic hydrogen C-H played a leading role in Hg(II) binding in the dark, but solar irradiation promoted the binding ability of polysaccharide C-O and the carboxyl CO became dominant after UV irradiation. The response sensitivity of the fulvic-like fraction to Hg(II) was higher than that of the protein-like fraction in FA. Multiple types of sites binding to Hg(II) were verified in the fulvic-like fraction and protein-like fraction of FA. These findings provide new insight into photo-induced structural changes of DOM upon Hg binding.


Assuntos
Substâncias Húmicas , Mercúrio , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Chemosphere ; 287(Pt 1): 132057, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34474376

RESUMO

High-salinity organic wastewater usually consists of diverse highly concentrated ions such as Na+, Ca2+ and Al3+ etc., which may significantly influence the fouling propensity when membrane technique is employed for contaminants removal. The current work investigated the effects of high salinity especially high-concentration Na+, Ca2+ and Al3+ on UF fouling characteristics, where 2 M Na+ and 0.5-1.0 M Ca2+ or Al3+ were applied according to the general composition of high-salinity wastewater. The results demonstrated that the presence of high-concentration Na+ alone benefited the ultrafiltration of bovine serum albumin (BSA) solution, but posed adverse effects on the ultrafiltration of humic acid (HA) solution. Further addition of Ca2+ or Al3+ on the basis of Na+ was found to aggravate the development of BSA fouling. Such differentiated behaviors were further elucidated by the comprehensive fouling characterizations in terms of foulant properties, specific resistances, filtration modelling and fouling layer observations. Correlation analysis suggested that irreversible fouling had strong relationship with Al3+ addition, while reversible fouling seemed to be primarily influenced by foulant size. Meanwhile, membrane rejection in the presence of various salts remarkably decreased, which was negatively correlated with zeta potential. Consequently, this study should shed light on the membrane fouling formation for treating high-salinity organic wastewater using membrane techniques.


Assuntos
Ultrafiltração , Purificação da Água , Substâncias Húmicas/análise , Membranas Artificiais , Salinidade , Águas Residuárias
5.
Sci Total Environ ; 802: 149812, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455275

RESUMO

While ubiquitous natural organic matters (NOMs) are capable of enhancing zero-valent iron (ZVI) performance under aerobic conditions, there is limited understanding of how the properties of NOMs affect the reactivity of ZVI towards contaminants removal. Here, the corresponding activity of ZVI under aerobic conditions was investigated in the presence of humic acid (HA), fulvic acid (FA), bovine serum albumin (BSA). It was found that three models of NOMs were all effective in promoting diatrizoate (DTA) reduction via depassivating ZVI. Interestingly, fast adsorption of NOM onto ZVI surface initially caused inconspicuous impact or visible inhibition on hydrophilic DTA reduction depending on their hydrophobicity. However, subsequent exposure of more reactive sites with high hydrophilicity arising from the detachment of surfaced NOM-associated iron oxide finally contributed to the enhanced consumption of Fe0 with the ability: HA > FA ≈ BSA, and 1-2 times increase in DTA removal kinetic rate following the order: HA > FA > BSA. It further revealed that there were two key factors in determining DTA removal under aerobic conditions, including the ability of NOMs to boost Fe0 consumption as contributed by their aromaticity degree and amino groups, and the hydrophobicity of NOMs to initially affect the property of ZVI surfaces.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Substâncias Húmicas/análise , Ferro , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 802: 149779, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525680

RESUMO

The importance of evaluating how natural organic matter influences the mobility of arsenic species in an ecosystem is an environmental concern. This work aimed to evaluate the interaction between humic substances (HS) and four arsenic species of high toxicity [As(III), As(V), MMA(V), and DMA(V)] (HS-As) under the influence of HS concentration and pH. Next, the complexing capacity (CC) of HS by As(III) was determined in function of pH, ionic strength and co-existing ions. The free arsenic (Asfree) was determined after a tangential flow ultrafiltration procedure by hydride generation atomic fluorescence spectrometry. The better HS-As interactions for As(III) and As(V) at pH 10.5 reached 52% and 61%, respectively. The increase in pH and ionic strength, as well as co-existing ions increased the CC, which reached 1.57 mg of As(III) g-1 HS. We proposed a HS-As interaction model based on the inner and outer binding sites of HS from these results. The inner sites were occupied through hydrogen bonds, Pearson acid-base, hydrophobic, and van der Waals interactions for trivalent arsenic species, while the interactions through the outer sites for pentavalent arsenic species were mostly by hydrogen bonds and electrostatic forces. According to ecotoxicological studies against Artemia salina, the presence of HS decreased the toxicity of As(III) and As(V) as the lethal concentration increased from 5.81 to 8.82 mg L-1 and from 8.82 to 13.37 mg L-1, respectively. From the results through the proposed model, it was possible to successfully understand the interaction dynamic between soil HS and As(III), As(V), MMA(V) and DMA(V) under simulated environmental conditions.


Assuntos
Arsênio , Arsenicais , Ecossistema , Substâncias Húmicas , Espectrometria de Fluorescência
7.
Sci Total Environ ; 802: 150005, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525729

RESUMO

Humification processes of phenolic pollutants may play a profound role in environment purification and plant growth. However, little literature is performed to explore exoenzyme-driven humification to polymerize 17ß-estradiol (E2) and humic constituents (HCs), and the effects of their polymeric precipitates on plant growth are usually overlooked. Herein, E2 conversion and radish (Raphanus sativus L.) growth were systematically investigated under humification mediated by extracellular laccase (EL) of Trametes versicolor. Results disclosed that EL-assisted humification achieved a wonderful E2 conversion efficiency (>99%) within 2-h, but the presence of HCs such as humic acid (HA), vanillic acid (VA), and ferulic acid (FA) impeded E2 elimination significantly. Compared with HC-free, the kinetics constants declined by 2.84-, 5.72-, and 5.22-fold with HA, VA, and FA present, respectively. Intriguingly, three close-knit self/cross-linked precipitates (i.e., E2-HA, E2-VA, and E2-FA hybrid precipitates) in dark gray, dark brown, and deep yellow were created after a continuous humification by phenolic radical-initiated polymerization mechanisms. The formation of these humified precipitates was extremely effective on circumventing phytotoxicity caused by monomeric E2, VA, or FA. Furthermore, they acted as humic-like organic fertilizers, accelerating seed germination, root elongation, and enhancing NaCl-tolerance of radish through the combination of oxygen-contained functional components and auxin structural analogues with unstable and stubborn carbon skeletons. This is the first study reporting the pollution purification and plant growth promotion in EL-activated humification. Our findings frame valuable perspectives regarding the natural detoxification and carbon sequestration of phenolic pollutants and the application of their polymeric precipitates in global crop production.


Assuntos
Poluentes Ambientais , Lacase , Substâncias Húmicas/análise , Polyporaceae , Trametes
8.
J Environ Manage ; 301: 113837, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592668

RESUMO

The hyperaccumulating mechanism concerning heavy metal activation or passivation and plant response triggered by fulvic acid (FA) and humic acid (HA) recruitments are investigated herein. We carefully examine the Cd activation effect by various FA and HA, tracing from pig, goat, and duck manure composts to straw compost and commercial materials (i.e., PC, GC, DC, SC, and CM), as well as their roles in plant growth promotion and Cd uptake. Our results indicate that due to the decrease of soil pH and their multiple functional groups, the contents of available Cd (AE-Cd) increased by 4.3-4.8% and 3.6-6.3% when all FA and HA sources were applied for 30 days. A 13.1-19.9% increase in AE-Cd was observed when CFA, DFA, and PFA were applied for five days, and a 9.5% increment was found when PHA was applied for 10 days. In the pot experiment, the Cd accumulation in plants increased by 2.78 and 2.17 folds with PFA and PHA applications, respectively, compared to the blank control group. This result can be attributed to the stimulative effects of the simultaneous Sedum alfredii growth and Cd phytoavailability. Notably, the Cd accumulation increased by 2.26 times with the SFA amendment due to the predominant stimulation effect to the phytoavailable Cd rather than plant growth. However, slight inhibitory effects were observed upon plant growth or Cd uptake, which led to the reduction of the Cd accumulation with DHA, SHA, and CHA employments. Consistently, the corresponding soil Cd removal efficiencies were 43.5% and 34.6% with PFA and PHA, respectively, which hold abundant O- and N-containing groups. Our research aims to gain insights into the ternary interaction in the presence of heavy metal, humic substances, and S. alfredii to simultaneously accelerate Cd activation and hyperaccumulation.


Assuntos
Compostagem , Sedum , Poluentes do Solo , Animais , Biodegradação Ambiental , Cádmio/análise , Substâncias Húmicas , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Suínos
9.
J Environ Manage ; 301: 113914, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628280

RESUMO

Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671-1479 µmol gHA-1) and thermophilic (774-1506 µmol gHA-1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.


Assuntos
Euryarchaeota , Substâncias Húmicas , Anaerobiose , Reatores Biológicos , Elétrons , Metano , Esgotos , Temperatura
10.
J Hazard Mater ; 421: 126685, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34332485

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are toxic and recalcitrant pollutants, with an urgent need for bioremediation. Systematic biodegradation studies show that surfactant-mediated bioremediation is still poorly understood. Here, we investigated a comprehensive cellular response pattern of the PAH degrading strain B. subtilis ZL09-26 to (non-)green surfactants at the cellular and proteomic levels. Eight characteristic cellular factor investigations and detailed quantitative proteomics analyses were performed to understand the highly enhanced phenanthrene (PHE) degradation efficiency (2.8- to 3-fold improvement) of ZL09-26 by humic acid (HA) or Tween80. The commonly upregulated pathway and proteins (Arginine generation, LacI-family transcriptional regulator, and Lactate dehydrogenase) and various metabolic pathways (such as phenanthrene degradation upstream pathway and central carbon metabolism) jointly govern the change of cellular behaviors and improvement of PHE transport, emulsification, and degradation in a network manner. The obtained molecular knowledge empowers engineers to expand the application of surfactants in the biodegradation of PAHs and other pollutants.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Substâncias Húmicas , Hidrocarbonetos Policíclicos Aromáticos/análise , Polissorbatos , Proteômica
11.
J Hazard Mater ; 421: 126739, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34339985

RESUMO

The structure and composition of biochar-derived dissolved organic matter (DOM) at different pyrolysis temperatures differed significantly, affecting the environmental geochemical behavior of heavy metals (HMs). Herein, the binding properties of Cu(II) onto walnut-shell DOM were investigated using spectroscopic methods. The results showed that the DOM at low pyrolysis temperatures (300 °C and 500 °C) showed higher Cu(II) affinity than that at high pyrolysis temperature (700 °C). There was a preferential Cu(II) binding with fulvic-like substances (360 nm) at 300 °C, and with protein-like materials (275 nm) at 500 °C and 700 °C. The C-O group of alcohols, ethers, and esters showed preferential binding with Cu(II) at 300 °C and 700 °C pyrolysis temperatures. However, preferential bonding of Cu(II) to the C-O stretching vibration and O-H bending vibration of carboxyl was exhibited at 500 °C pyrolysis temperature. Pyrolysis temperature played a crucial role in the release of biochar-derived DOM and in the migration and bioavailability of HMs. Meanwhile, the adsorption effect of Cu(II) increased by 11.2% for biochar at 300 °C, and decreased by 15.0% and 61.1% for biochar at 500 °C and 700 °C, respectively, after the removal of DOM, suggesting that the presence of DOM influenced the adsorption behavior of biochar towards Cu(II).


Assuntos
Substâncias Húmicas , Pirólise , Carvão Vegetal , Substâncias Húmicas/análise , Temperatura
12.
J Hazard Mater ; 421: 126747, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34364210

RESUMO

The synthesis of Bi2WO6 and CeO2 photocatalytic nanomaterials exhibit a great ability to photodegrade the antibiotics and shown excellent oxidation of various organic pollutants. Heterostructure 1:1 & 2:1 Bi2WO6/CeO2 nanocomposite was successfully synthesized via the facile sono-dispersion method and exquisite photocatalytic activity. The 0.5 wt% of nanocomposites were well-grafted on PVDF membrane surface via an in-situ polymerization method using polyacrylic acid. The fourier transform infrared (FTIR) spectra demonstrated that the network formation in PVDF induced by the -COOH functional group in acrylic acid. The grafted membrane morphology and strong binding ability over the membranes were validated by scanning electron microscope with energy dispersion (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The permeate flux of 49.2 L.m-2 h-1 and 41.65 L.m-2 h were observed for tetracycline and the humic acid solution respectively for 1 wt% of PVP and 0.5 wt% of photocatalytic nanomaterials in PVDF membrane. The tetracycline and humic acid photodegradation rate of 82% and 78% and total resistance of 1.43 × 1010 m-1 and 1.64 × 1010 m-1, 83.5% and 77% flux recovery ratio were observed with N5 membrane. The 2:1 Bi2WO6/CeO2 nanocomposite grafted membrane showed a high permeate flux and better photodegradation ability of organic pollutants in the wastewater.


Assuntos
Substâncias Húmicas , Tetraciclina , Antibacterianos , Catálise , Polivinil
13.
Chemosphere ; 286(Pt 1): 131604, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303905

RESUMO

The complexation mechanism between pharmaceuticals and natural colloids is still uncertain due to the complexity, heterogeneity, and polydispersity of colloids. Therefore, this study investigated the effect of fluorescence properties on the complexation of chloramphenicol (CAP) and carbamazepine (CBZ) to the colloids from Poyang Lake Basin based on the multiple spectroscopic techniques and methods. Three-dimensional excitation-emission matrix fluorescence spectroscopy-parallel factor analysis results illustrated that two humic-like components and two protein-like components of colloids from the rivers and lakes were identified, with the much higher fluorescence intensity of the protein-like substance observed in lake samples. The protein-like substance decreased dramatically with the addition of CAP and CBZ, suggesting its higher binding capacity towards these drugs, especially for CBZ. In addition, the fluorescence quenching titration was proceeded to explore the binding mechanism between the colloids and the pharmaceuticals. Results of synchronous fluorescence spectra and two-dimensional correlation spectroscopy demonstrated that the fluorescence quenching effect occurred preferentially between the protein-like substances and the pharmaceuticals, with the stronger complexation for CBZ. Ryan-Weber model fitting results showed that the stability constant ranged from 4.02 to 5.04 with the higher binding capacity observed for the tryptophan-like substance. Combined, the fluorescence components in aquatic colloids could be significantly impacted the complexation of the pharmaceuticals. This study provides deep insights into the fate and pollution protection of pharmaceuticals.


Assuntos
Carbamazepina , Cloranfenicol , Coloides , Substâncias Húmicas/análise , Rios , Espectrometria de Fluorescência
14.
Chemosphere ; 286(Pt 1): 131624, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315070

RESUMO

Quantitative characterization of dissolved organic matter (DOM) in various aquatic ecosystems has become of increasing importance as its transformation plays a key role in inland water carbon, yet few studies have quantified water DOM inputs to storage lakes for water quality control and safety assurance. This study assessed the quantity and quality of DOM in 21 inflow rivers of Nansi Lake as the important storage lake of large-scale water transfer projects by using excitation-emission matrix spectroscopy coupled with parallel factor analysis (EEM-PARAFAC) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that DOM contents varied significantly with an average value of 5.8 mg L-1 in different inflow rivers, and three fluorescence substances (including UVC humic-like, UVA humic-like and tyrosine-like components) were identified by EEM-PARAFAC. The distribution of the DOM components was distinctively different among sampling sites, and UVA humic-like component mainly dominated in Nansi Lake. Meanwhile, DOM components with higher aromaticity and molecular weight were found in the west side of lake. Fluorescence spectral indexes manifested that the source of DOM was mainly from allochthonous or terrestrial input. Moreover, significant correlations between water quality and DOM characteristics were observed in Nansi Lake. These findings would be beneficial to understand the biogeochemical role and impact of DOM in inflowing rivers in the water-quality monitoring and control of storage lakes.


Assuntos
Lagos , Qualidade da Água , Ecossistema , Análise Fatorial , Substâncias Húmicas/análise , Lagos/análise , Controle de Qualidade , Rios , Espectrometria de Fluorescência
15.
Chemosphere ; 286(Pt 2): 131699, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34358892

RESUMO

Cationic dyes exist in various industrial wastewaters and removal prior to discharge is necessary due to their carcinogenic behavior which poses a serious threat to human health. Iron based humic acid coated magnetic nanoparticles (HA-MNPs) were evaluated for the removal of 2-[4-(dimethylamino) styryl]-1-methylpyridinium iodide (2-ASP) as a model compound for cationic styryl pyridinium dyes from aqueous media. HA-MNPs were prepared by co-precipitation and characterized. The adsorption of 2-ASP, measured by fluorescence, demonstrates HA-MNPs are efficient for the 2-ASP removal with a maximum adsorption capacity of ~8 mg/g. Kinetic behavior and equilibrium studies showed the adsorption process fits with pseudo 2nd order and Langmuir isotherm models. The adsorption is relatively fast with ~70% of the adsorption complete within 30 min. The overall removal increases by increasing solution pH. The observed increase in adsorption can be assigned to an enhanced electrostatic attraction between the positively charged 2-ASP and the increase in the negative charge on the HA-MNPs surface as a function of increasing solution pH. Effective and repetitive regeneration of the HA-MNPs was achieved using NaOH treatment of saturated sorbent. Regeneration of HA-MNPs showed that removal efficiency remains consistently high after five consecutive cycles. Dimensional analysis suggested that initial concentration/sorbent dose ratio should be considered for accurate sorption modeling confirmed by experimental data. Then generalized empirical models for isothermal study and removal efficiency prediction were accurately deduced. This finding will help researchers in sorption studies to design their experiments more efficiently and to develop improved empirical models in removal prediction.


Assuntos
Substâncias Húmicas , Nanopartículas de Magnetita , Adsorção , Corantes , Humanos , Concentração de Íons de Hidrogênio , Ferro , Cinética
16.
Chemosphere ; 286(Pt 2): 131755, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365173

RESUMO

Humic substances (HS) possess redox active groups covering a wide range of potentials and are used by facultative anaerobic microorganisms as electron acceptors. To serve as suitable electron shuttles for anaerobic respiration, HS should be able to re-oxidize relatively quickly to prevent polarization of the surrounding medium. Mediated electrochemical oxidation and decolorization assays, based on the reduction of the radical ion of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•-) allow to determine the electron donating capacity (EDC) of HS, but uncertainties remain about the reaction time that should be allowed to obtain environmentally meaningful EDC values. In this work, we performed a kinetic analysis of the time trend of the reduction of ABTS•- by HS by Vis and Electron Paramagnetic Resonance (EPR) spectroscopies and by cyclic voltammetry. We found evidences of two concomitant separate mechanisms of electron exchange: a fast and a slow transfer processes which may have different environmental roles. These results can set a base to identify the appropriate conditions for the spectrophotometric determination of the fast and slow components of the EDC of HS.


Assuntos
Elétrons , Substâncias Húmicas , Transporte de Elétrons , Substâncias Húmicas/análise , Cinética , Oxirredução
17.
Chemosphere ; 286(Pt 2): 131784, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371358

RESUMO

Humus is an important parameter to affect the environmental fate of arsenic (As) in tailing soil. According to the batch and column experiment, the effects of humus (HS) including humic acid (HA), fulvic acid (FA) on the As release and basic properties of soil were studied in the soil from a mining region. In addition, HA was modified by 3-mercaptopropyltrimethoxysilane (3-MPTS) with different sulfur content (S%) to improve the release capacity of As. The results indicated that HS could destroy the binding of As with Fe, Mn, Al and Ca without affecting the basic properties of tailings soil, thus achieving the co-release of As and associated metals. Besides, the As release capacity of FA (25.47 %) was slightly higher than that of HA (21.90 %). The ability of thiol-modified HAs to release As from tailings soil after being modified with different S% of 3-MPTS was significantly improved, of which 2 % had the best treatment. The thiol groups (-SH) reached 45.00 % of total S. With the increase of S%, the surface thoil content, aromatization degree and total reduction capacity (TRC) of HA increased. The study demonstrated that HS and thiol-modified HA could promote the migration of As and could advance the treatment of heavy metal contaminated tailing soil.


Assuntos
Arsênio , Poluentes do Solo , Benzopiranos , Substâncias Húmicas/análise , Solo , Poluentes do Solo/análise , Compostos de Sulfidrila
18.
Chemosphere ; 286(Pt 3): 131717, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418660

RESUMO

Aiming to bring photocatalytic and electrocatalytic oxidation processes into solving practical issue of organics and ammonia-nitrogen pollution in landscape water that resulting in algae bloom and eutrophication, this work firstly investigates photocatalytic oxidation of humic acid and electrochemical oxidation of ammonia upon optimization of each process parameters, respectively. The platinum modified titania (Pt/TiO2) exhibits improved activity than pure titania and CuOx, MnOx and NiOx modified titania for decomposition of humic acid. As an application-oriented study, this work has developed a simple and effective brushing and annealing method for immobilization of TiO2 and Pt/TiO2 onto ceramic foam for further application. In addition, the RuO2-IrO2/Ti electrode presents the best electrocatalytic activity compared with RuO2/Ti and IrO2/Ti electrodes in terms of ammonia oxidation, and the ammonia conversion pathways have been studied. Lastly, an integrated and enlarged reactor system employing optimized photocatalytic ceramic foam and stable electrodes has been developed for simultaneous oxidation of humic acid and ammonia-nitrogen in water circulated flow condition, based on cooperative production of reactive oxidant species between photocatalysis and electrocatalysis. The results show that coupled photocatalytic and electrocatalytic oxidation is a promising approach for treatment of organic matter and inorganic ammonia nitrogen in landscape water.


Assuntos
Amônia , Poluentes Químicos da Água , Eletrodos , Substâncias Húmicas , Nitrogênio , Oxirredução , Titânio , Água
19.
J Hazard Mater ; 422: 126820, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418831

RESUMO

In this study, the effective removal of organoarsenic by the combined process of "chlorination + Fe(II)" was achieved. Chlorine could effectively degrade roxarsone (ROX) over pH from 5 to 10. The fitting results of acid-base protonation model proved that the degradation of ROX was mainly attributed to the reaction of HOCl and deprotonated ROX. The transformation of arsenic species conformed to the fitting results of two-channel kinetic model, in which 32.4% of ROX was oxidized to As(V) via electron transfer pathway (ii) and the rest was converted into monochloro-ROX via electrophilic substitution pathway (i). Humic acid inhibited the degradation of ROX due to the competitive consumption of chlorine and the restraint on the pathway ii. Subsequently, an enhanced removal of total arsenic achieved after chlorination, due to that the generating As(V) and monochloro-ROX were easier adsorbed compared with ROX, over 97.8% of total arsenic was removed by ferric (oxyhydr)oxides which in-situ formed from the oxidation of Fe(II). Additionally, toxicity studies indicated that the acute toxicity was significantly eliminated by adding Fe(II) after chlorination, likely due to the removal of As(V) and chlorinated products. Furthermore, organoarsenic was also effectively removed by the combined process of "chlorination + Fe(II)" in real water.


Assuntos
Arsênio , Roxarsona , Halogenação , Substâncias Húmicas , Cinética
20.
Sci Total Environ ; 805: 150198, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34537712

RESUMO

Dissolved organic matter (DOM) represents the most mobile and reactive pool of soil organic matter (SOM). Climate changes, such as global warming and altered precipitation exert considerable influences on the quality and quantity of soil DOM. However, rare reports have focused on the interactive effects of soil warming and increased precipitation. In the present study, we conducted a 90-day incubation experiment to investigate how the concentration, source and chemical composition of DOM from an Alfisol respond to the variations of temperatures (15, 30 and 45 °C) and moistures (40%, 60%, and 80% of saturated soil water content). Four DOM components were identified through fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC). Increased temperature alone aggravated the decomposition of plant-derived aromatic components (C2 and C4) but promoted the accumulation of microbial-derived aliphatic carbon (C1) and tryptophan-like component (C3). Increased fungi/bacteria ratio with warming was responsible for the decomposition of plant-derived components. Warming-induced disassociation of Ca-bearing mineral to colloidal Ca facilitated the accrual of microbial-derived aliphatic DOM. Humidification alone and humidification + warming significantly increased the concentration of DOM and the percentage of plant-derived aromatic carbon (C2, C4), which was attributed to the release of Fe-bearing mineral-OC. Based on the above findings along with the results of two-way ANOVA and Variation partition analysis, we infer that moisture will play a dominant role in regulating the chemical composition of DOM in Alfisols under both warming and humidification which in turn impact global C cycling and the ultimate climate.


Assuntos
Solo , Qualidade da Água , Carbono , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...