RESUMO
Pompe disease is a debilitating medical condition caused by a functional deficiency of lysosomal acid alpha-glucosidase (GAA). In addition to muscle weakness, people living with Pompe disease experience motor coordination deficits including an instable gait and posture. We reasoned that an impaired muscle spindle function might contribute to these deficiencies and therefore analyzed proprioception as well as muscle spindle structure and function in 4- and 8-month-old Gaa-/- mice. Gait analyses showed a reduced inter-limb and inter-paw coordination in Gaa-/- mice. Electrophysiological analyses of single-unit muscle spindle proprioceptive afferents revealed an impaired sensitivity of the dynamic and static component of the stretch response. Finally, a progressive degeneration of the sensory neuron and of the intrafusal fibers was detectable in Gaa-/- mice. We observed an increased abundance and size of lysosomes, a fragmentation of the inner and outer connective tissue capsule and a buildup of autophagic vacuoles in muscle spindles from 8-month-old Gaa-/- mice, indicating lysosomal defects and an impaired autophagocytosis. These results demonstrate a structural and functional degeneration of muscle spindles and an altered motor coordination in Gaa-/- mice. Similar changes could contribute to the impaired motor coordination in patients living with Pompe disease.
Assuntos
Doença de Depósito de Glicogênio Tipo II , Doenças Musculares , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Fusos Musculares , Músculo Esquelético , Modelos Animais de Doenças , alfa-Glucosidases/genética , Glucana 1,4-alfa-GlucosidaseRESUMO
In the past, the peripheral sense organs responsible for generating human position sense were thought to be the slowly adapting receptors in joints. More recently, our views have changed and the principal position sensor is now believed to be the muscle spindle. Joint receptors have been relegated to the lesser role of acting as limit detectors when movements approach the anatomical limit of a joint. In a recent experiment concerned with position sense at the elbow joint, measured in a pointing task over a range of forearm angles, we have observed falls in position errors as the forearm was moved closer to the limit of extension. We considered the possibility that as the arm approached full extension, a population of joint receptors became engaged and that they were responsible for the changes in position errors. Muscle vibration selectively engages signals of muscle spindles. Vibration of elbow muscles undergoing stretch has been reported to lead to perception of elbow angles beyond the anatomical limit of the joint. The result suggests that spindles, by themselves, cannot signal the limit of joint movement. We hypothesise that over the portion of the elbow angle range where joint receptors become active, their signals are combined with those of spindles to produce a composite that contains joint limit information. As the arm is extended, the growing influence of the joint receptor signal is evidenced by the fall in position errors.
Assuntos
Articulação do Cotovelo , Propriocepção , Humanos , Propriocepção/fisiologia , Músculo Esquelético/fisiologia , Fusos Musculares/fisiologia , Movimento/fisiologia , Cotovelo/fisiologiaRESUMO
Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.
Assuntos
Fusos Musculares , Junção Neuromuscular , Camundongos , Animais , Fusos Musculares/metabolismo , Junção Neuromuscular/metabolismo , Células Receptoras Sensoriais , Proteínas Relacionadas a Receptor de LDL/metabolismo , Precursor de Proteína beta-Amiloide/metabolismoRESUMO
Across the human body, skeletal muscles have a broad range of biomechanical roles that employ complex proprioceptive control strategies to successfully execute a desired movement. This information is derived from peripherally located sensory apparatus, the muscle spindle and Golgi tendon organs. The abundance of these sensory organs, particularly muscle spindles, is known to differ considerably across individual muscles. Here we present a comprehensive data set of 119 muscles across the human body including architectural properties (muscle fibre length, mass, pennation angle and physiological cross-sectional area) and statistically test their relationships with absolute spindle number and relative spindle abundance (the residual value of the linear regression of the log-transformed spindle number and muscle mass). These data highlight a significant positive relationship between muscle spindle number and fibre length, emphasising the importance of fibre length as an input into the central nervous system. However, there appears to be no relationship between muscles architecturally optimised to function as displacement specialists and their provision of muscle spindles. Additionally, while there appears to be regional differences in muscle spindle abundance, independent of muscle mass and fibre length, our data provide no support for the hypothesis that muscle spindle abundance is related to anatomical specialisation.
Assuntos
Fusos Musculares , Músculo Esquelético , Humanos , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Mecanorreceptores/fisiologia , Propriocepção/fisiologia , Movimento/fisiologiaRESUMO
The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.
Assuntos
Multiômica , Fusos Musculares , Camundongos , Animais , Fusos Musculares/fisiologia , Proteômica , Músculo Esquelético/fisiologia , Propriocepção/fisiologiaRESUMO
We previously demonstrated that accurate regulation of isometric contraction (IC) of jaw-closing muscles to counteract the ramp load applied to the jaw in the jaw-opening direction is achieved through the calibration between the two sensations arising from muscle spindles (MSs) and periodontal mechanoreceptors (PMRs). However, it remains unclear whether this calibration mechanism accurately works at any jaw positions, i.e., any vertical dimensions of occlusion (VDO). In the present study, we examined the effects of altering VDO on the IC of the masseter muscles in complete dentulous and edentulous subjects. At a VDO higher than the original VDO (O-VDO), the root mean square (RMS) of masseter EMG activity increased more steeply with a load increase, resulting in an over-counteraction. The regression coefficient of the load-RMS relationship significantly increased as the VDO was increased, suggesting that the overestimation became more pronounced with the VDO increases. Consistently also in the edentulous subjects, at a higher VDO than the O-VDO, a steeper increase in the RMS emerged with a delay in response to the same ramp load whereas a similar steeper increase was seen surprisingly even at a lower VDO. Thus, the edentulous subjects displayed a delayed overestimation of the ramp load presumably due to less and slowly sensitive mucous membrane mechanoreceptor (MMR) in alveolar ridge compared with the PMR. Taken together, the accurate calibration between the two sensations arising from MSs and PMRs/MMRs can be done only at the O-VDO, suggesting that the O-VDO is the best calibration point for performing accurate IC.NEW & NOTEWORTHY Since 1934, the vertical dimension of occlusion (VDO) in edentulous individuals has been anatomically determined mostly by referring to the resting jaw position. However, such a static method is not always accurate. Considering the dynamic nature of clenching/mastication, it is desirable to determine VDO dynamically. We demonstrate that VDO can be accurately determined by measuring masseter EMG during the voluntary isometric contraction of jaw-closing muscles exerted against the ramp load in the jaw-opening direction.
Assuntos
Contração Isométrica , Músculo Masseter , Humanos , Músculo Masseter/fisiologia , Contração Isométrica/fisiologia , Dimensão Vertical , Eletromiografia , Fusos Musculares , Contração Muscular , Músculos da Mastigação/fisiologiaRESUMO
Animals move across a wide range of surface conditions in real-world environments to acquire resources and avoid predation. To effectively navigate a variety of surfaces, animals rely on several mechanisms including intrinsic mechanical responses, spinal-level central pattern generators, and neural commands that require sensory feedback. Muscle spindle Ia afferents play a critical role in providing sensory feedback and informing motor control strategies across legged vertebrate locomotion, which is apparent in cases where this sensory input is compromised. Here, we tested the hypothesis that spindle Ia afferents from hindlimb muscles are important for coordinating forelimb landing behavior in the cane toad. We performed bilateral sciatic nerve reinnervations to ablate the stretch reflex from distal hindlimb muscles while allowing for motor neuron recovery. We found that toads significantly delayed the onset and reduced the activation duration of their elbow extensor muscle following spindle Ia afferent ablation in the hindlimbs. However, reinnervated toads achieved similar elbow extension at touchdown to that of their pre-surgery state. Our results suggest that while toads likely tuned the activation timing of forelimb muscles in response to losing Ia afferent sensation from the hindlimbs they were likely able to employ compensatory strategies that allowed them to continue landing effectively with reduced sensory information during take-off. These findings indicate muscle spindle Ia afferents may contribute to tuning complex movements involving multiple limbs.
Assuntos
Extremidade Inferior , Fusos Musculares , Animais , Fusos Musculares/fisiologia , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Bufo marinus/fisiologiaRESUMO
Muscle spindles, one of the two main classes of proprioceptors together with Golgi tendon organs, are sensory structures that keep the central nervous system updated about the position and movement of body parts. Although they were discovered more than 150 years ago, their function during movement is not yet fully understood. Here, we summarize the morphology and known functions of muscle spindles, with a particular focus on locomotion. Although certain properties such as the sensitivity to dynamic and static muscle stretch are long known, recent advances in molecular biology have allowed the characterization of the molecular mechanisms for signal transduction in muscle spindles. Building upon classic literature showing that a lack of sensory feedback is deleterious to locomotion, we bring to the discussion more recent findings that support a pivotal role of muscle spindles in maintaining murine and human locomotor robustness, defined as the ability to cope with perturbations. Yet, more research is needed to expand the existing mechanistic understanding of how muscle spindles contribute to the production of robust, functional locomotion in real world settings. Future investigations should focus on combining different animal models to identify, in health and disease, those peripheral, spinal and brain proprioceptive structures involved in the fine tuning of motor control when locomotion happens in challenging conditions.
Assuntos
Mecanorreceptores , Fusos Musculares , Camundongos , Humanos , Animais , Fusos Musculares/fisiologia , Mecanorreceptores/fisiologia , Propriocepção/fisiologia , Locomoção/fisiologia , Coluna Vertebral , Músculo Esquelético/fisiologiaRESUMO
Shortage of labor and increased work of young people are causing problems in terms of care and welfare of a growing proportion of elderly people. This is a looming social problem because people of advanced ages are increasing. Necessary in the fields of care and welfare, pneumatic artificial muscles in actuators of robots are being examined. Pneumatic artificial muscles have a high output per unit of weight, and they are soft, similarly to human muscles. However, in previous research of robots using pneumatic artificial muscles, rigid sensors were often installed at joints and other locations due to the robots' structures. Therefore, we developed a smart actuator that integrates a bending sensor that functions as a human muscle spindle; it can be externally attached to the pneumatic artificial muscle. This paper reports a smart artificial muscle actuator that can sense contraction, which can be applied to developed self-monitoring and robot posture control.
Assuntos
Fusos Musculares , Robótica , Humanos , Idoso , Adolescente , Músculo Esquelético/fisiologia , Desenho de EquipamentoRESUMO
Heteronymous excitatory feedback from muscle spindles and inhibitory feedback from Golgi tendon organs and recurrent inhibitory circuits can influence motor coordination. The functional role of inhibitory feedback is difficult to determine, because nerve stimulation, the primary method used in humans, cannot evoke inhibition without first activating the largest diameter muscle spindle axons. Here, we tested the hypothesis that quadriceps muscle stimulation could be used to examine heteronymous inhibition more selectively when compared to femoral nerve stimulation by comparing the effects of nerve and muscle stimulation onto ongoing soleus EMG held at 20% of maximal effort. Motor threshold and two higher femoral nerve and quadriceps stimulus intensities matched by twitch evoked torque magnitudes were examined. We found that significantly fewer participants exhibited excitation during quadriceps muscle stimulation when compared to nerve stimulation (14-29% vs. 64-71% of participants across stimulation intensities) and the magnitude of heteronymous excitation from muscle stimulation, when present, was much reduced compared to nerve stimulation. Muscle and nerve stimulation resulted in heteronymous inhibition that significantly increased with increasing stimulation evoked torque magnitudes. This study provides novel evidence that muscle stimulation may be used to more selectively examine inhibitory heteronymous feedback between muscles in the human lower limb when compared to nerve stimulation.
Assuntos
Nervo Femoral , Músculo Quadríceps , Estimulação Elétrica , Nervo Femoral/fisiologia , Reflexo H/fisiologia , Humanos , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologiaRESUMO
Muscle spindles are encapsulated sensory organs found in most of our muscles. Prevalent models of sensorimotor control assume the role of spindles is to reliably encode limb posture and movement. Here, I argue that the traditional view of spindles is outdated. Spindle organs can be tuned by spinal γ motor neurons that receive top-down and peripheral input, including from cutaneous afferents. A new model is presented, viewing γ motor activity as an intermediate coordinate transformation that allows multimodal information to converge on spindles, creating flexible coordinate representations at the level of the peripheral nervous system. That is, I propose that spindles play a unique overarching role in the nervous system: that of a peripheral signal-processing device that flexibly facilitates sensorimotor performance, according to task characteristics. This role is compatible with previous findings and supported by recent studies with naturalistically active humans. Such studies have so far shown that spindle tuning enables the independent preparatory control of reflex muscle stiffness, the selective extraction of information during implicit motor adaptation, and for segmental stretch reflexes to operate in joint space. Incorporation of advanced signal-processing at the periphery may well prove a critical step in the evolution of sensorimotor control theories.
Assuntos
Neurônios Motores gama , Fusos Musculares , Adaptação Fisiológica , Humanos , Neurônios Motores gama/fisiologia , Movimento , Fusos Musculares/fisiologia , ReflexoRESUMO
Sensory afferent fibers are an important component of motor nerves and compose the majority of axons in many nerves traditionally thought of as "pure" motor nerves. These sensory afferent fibers innervate special sensory end organs in muscle, including muscle spindles that respond to changes in muscle length and Golgi tendons that detect muscle tension. Both play a major role in proprioception, sensorimotor extremity control feedback, and force regulation. After peripheral nerve injury, there is histological and electrophysiological evidence that sensory afferents can reinnervate muscle, including muscle that was not the nerve's original target. Reinnervation can occur after different nerve injury and muscle models, including muscle graft, crush, and transection injuries, and occurs in a nonspecific manner, allowing for cross-innervation to occur. Evidence of cross-innervation includes the following: muscle spindle and Golgi tendon afferent-receptor mismatch, vagal sensory fiber reinnervation of muscle, and cutaneous afferent reinnervation of muscle spindle or Golgi tendons. There are several notable clinical applications of sensory reinnervation and cross-reinnervation of muscle, including restoration of optimal motor control after peripheral nerve repair, flap sensation, sensory protection of denervated muscle, neuroma treatment and prevention, and facilitation of prosthetic sensorimotor control. This review focuses on sensory nerve regeneration and reinnervation in muscle, and the clinical applications of this phenomena. Understanding the physiology and limitations of sensory nerve regeneration and reinnervation in muscle may ultimately facilitate improvement of its clinical applications.
Assuntos
Traumatismos dos Nervos Periféricos , Vias Aferentes , Humanos , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Regeneração Nervosa/fisiologia , Neurônios Aferentes/fisiologiaRESUMO
Proprioceptive feedback from skeletal muscle is an integral element of motor control, yet the precise physiological roles of muscle spindle (MS) and Golgi tendon organ (GTO) sensory receptors have remained difficult to disentangle due to technical limitations. New insights into the molecular basis of MS and GTO afferent subtypes offers genetic opportunities to further our understanding of the distinct functional features of these proprioceptor classes, while at the same time revealing additional layers of complexity in the regulation of coordinated motor output.
Assuntos
Mecanorreceptores , Fusos Musculares , Mecanorreceptores/fisiologia , Biologia Molecular , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Células Receptoras Sensoriais/fisiologiaRESUMO
Muscle spindle abundance is highly variable within and across species, but we currently lack any clear picture of the mechanistic causes or consequences of this variation. Previous use of spindle abundance as a correlate for muscle function implies a mechanical underpinning to this variation, but these ideas have not been tested. Herein, we use integrated medical imaging and subject-specific musculoskeletal models to investigate the relationship between spindle abundance, muscle architecture and in vivo muscle behaviour in the human locomotor system. These analyses indicate that muscle spindle number is tightly correlated with muscle fascicle length, absolute fascicle length change, velocity of fibre lengthening and active muscle forces during walking. Novel correlations between functional indices and spindle abundance are also recovered, where muscles with a high abundance predominantly function as springs, compared to those with a lower abundance mostly functioning as brakes during walking. These data demonstrate that muscle fibre length, lengthening velocity and fibre force are key physiological signals to the central nervous system and its modulation of locomotion, and that muscle spindle abundance may be tightly correlated to how a muscle generates work. These insights may be combined with neuromechanics and robotic studies of motor control to help further tease apart the functional drivers of muscle spindle composition.
Assuntos
Fusos Musculares , Músculo Esquelético , Humanos , Locomoção , Fibras Musculares Esqueléticas/fisiologia , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologiaRESUMO
PURPOSE: Proprioceptive deficits are common in low back pain. The multifidus muscle undergoes substantial structural change after back injury, but whether muscle spindles are affected is unclear. This study investigated whether muscle spindles of the multifidus muscle are changed by intervertebral disc (IVD) degeneration in a large animal model. METHODS: IVD degeneration was induced by partial thickness annulus fibrosus lesion to the L3-4 IVD in nine sheep. Multifidus muscle tissue at L4 was harvested at six months after lesion, and from six age-/sex-matched naïve control animals. Muscle spindles were identified in Van Gieson's-stained sections by morphology. The number, location and cross-sectional area (CSA) of spindles, the number, type and CSA of intrafusal fibers, and thickness of the spindle capsule were measured. Immunofluorescence assays examined Collagen I and III expression. RESULTS: Multifidus muscle spindles were located centrally in the muscle and generally near connective tissue. There were no differences in the number or location of muscle spindles after IVD degeneration and only changes in the CSA of nuclear chain fibers. The thickness of connective tissue surrounding the muscle spindle was increased as was the expression of Collagen I and III. CONCLUSION: Changes to the connective tissue and collagen expression of the muscle spindle capsule are likely to impact their mechanical properties. Changes in capsule stiffness may impact the transmission of length change to muscle spindles and thus transduction of sensory information. This change in muscle spindle structure may explain some of the proprioceptive deficits identified with low back pain.
Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Animais , Colágeno , Colágeno Tipo I/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Dor Lombar/patologia , Fusos Musculares/metabolismo , Fusos Musculares/patologia , Músculos Paraespinais/patologia , OvinosRESUMO
The muscle spindle (MS) provides essential sensory information for motor control and proprioception. The Group Ia and II MS afferents are low threshold slowly-adapting mechanoreceptors and report both static muscle length and dynamic muscle movement information. The exact molecular mechanism by which MS afferents transduce muscle movement into action potentials is incompletely understood. This short review will discuss recent evidence suggesting that PIEZO2 is an essential mechanically sensitive ion channel in MS afferents and that vesicle-released glutamate contributes to maintaining afferent excitability during the static phase of stretch. Other mechanically gated ion channels, voltage-gated sodium channels, other ion channels, regulatory proteins, and interactions with the intrafusal fibers are also important for MS afferent mechanosensation. Future studies are needed to fully understand mechanosensation in the MS and whether different complements of molecular mediators contribute to the different response properties of Group Ia and II afferents.
Assuntos
Mecanorreceptores , Fusos Musculares , Potenciais de Ação/fisiologia , Canais Iônicos , Mecanorreceptores/fisiologia , Fusos Musculares/fisiologia , Neurônios Aferentes/fisiologia , PropriocepçãoRESUMO
INTRODUCTION/AIMS: The muscle relaxant methocarbamol and the antimyotonic drug mexiletine are widely used for the treatment of muscle spasms, myotonia, and pain syndromes. To determine whether these drugs affect muscle spindle function, we studied their effect on the resting discharge and on stretch-induced action potential frequencies of proprioceptive afferent neurons. METHODS: Single unit action potential frequencies of proprioceptive afferents from muscle spindles in the murine extensor digitorum longus muscle of adult C57BL/6J mice were recorded under resting conditions and during ramp-and-hold stretches. Maximal tetanic force of the same muscle after direct stimulation was determined. High-resolution confocal microscopy analysis was performed to determine the distribution of Nav 1.4 channels, a potential target for both drugs. RESULTS: Methocarbamol and mexiletine inhibited the muscle spindle resting discharge in a dose-dependent manner with IC50 values around 300 µM and 6 µM, respectively. With increasing concentrations of both drugs, the response to stretch was also affected, with the static sensitivity first followed by the dynamic sensitivity. At high concentrations, both drugs completely blocked muscle spindle afferent output. Both drugs also reversibly reduced the specific force of the extensor digitorum longus muscle after tetanic stimulation. Finally, we present evidence for the presence and specific localization of the voltage-gated sodium channel Nav 1.4 in intrafusal fibers. DISCUSSION: In this study we demonstrate that both muscle relaxants affect muscle spindle function, suggesting impaired proprioception as a potential side effect of both drugs. Moreover, our results provide additional evidence of a peripheral activity of methocarbamol and mexiletine.
Assuntos
Metocarbamol , Fusos Musculares , Animais , Mexiletina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologiaRESUMO
In needle electromyography, there are two spontaneous waveforms, miniature end plate potentials and "end plate spikes", appearing usually together. Miniature end plate potentials are local, non-propagating postsynaptic waves, caused by spontaneous exocytosis of acetylcholine in the neuromuscular junction. The prevailing hypothesis states that "end plate spikes" are propagated postsynaptic action potentials of muscle fibers, caused by presynaptic irritation of the motor nerve or nerve terminal. Using several small concentric needle electrodes in parallel with the muscle fibers, most "end plate spikes" are strictly local or propagating for 2-4 mm. At the end plate zone, there are miniature end plate potentials without "end plate spikes". Local "end plate spikes" are junctional potentials of intrafusal gamma neuromuscular junctions of the nuclear bag fibers, and propagated "end plate spikes" are potentials of nuclear chain muscle fibers of muscle spindles. Miniature end plate potentials without "end plate spikes" at the end plate zone derive from alpha neuromuscular junctions. These findings contrast with the prevailing hypothesis. The history of observations and different hypotheses of the origin of end plate spikes are described.
Assuntos
Placa Motora , Fusos Musculares , Potenciais de Ação , Eletromiografia , Placa Motora/fisiologia , Fusos Musculares/fisiologia , Junção Neuromuscular/fisiologiaRESUMO
Recent spinal cord literature abounds with descriptions of genetic preprogramming and the molecular control of circuit formation. In this paper, we explore to what extent circuit formation based on learning rather than preprogramming could explain the selective formation of the monosynaptic projections between muscle spindle primary afferents and homonymous motoneurons. We adjusted the initially randomized gains in the neural network according to a Hebbian plasticity rule while exercising the model system with spontaneous muscle activity patterns similar to those observed during early fetal development. Normal connectivity patterns developed only when we modeled ß motoneurons, which are known to innervate both intrafusal and extrafusal muscle fibers in vertebrate muscles but were not considered in previous literature regarding selective formation of these synapses in animals with paralyzed muscles. It was also helpful to correctly model the greatly reduced contractility of extrafusal muscle fibers during early development. Stronger and more coordinated muscle activity patterns such as observed later during neonatal locomotion impaired projection selectivity. These findings imply a generic functionality of a musculoskeletal system to imprint important aspects of its mechanical dynamics onto a neural network, without specific preprogramming other than setting a critical period for the formation and maturation of this general pattern of connectivity. Such functionality would facilitate the successful evolution of new species with altered musculoskeletal anatomy, and it may help to explain patterns of connectivity and associated reflexes that appear during abnormal development.NEW & NOTEWORTHY A novel model of self-organization of early spinal circuitry based on a biologically realistic plant, sensors, and neuronal plasticity in conjunction with empirical observations of fetal development. Without explicit need for guiding genetic rules, connection matrices emerge that support functional self-organization of the mature pattern of Ia to motoneuron connectivity in the spinal circuitry.
Assuntos
Neurônios Motores , Medula Espinal , Animais , Locomoção/fisiologia , Neurônios Motores/fisiologia , Fusos Musculares , Medula Espinal/fisiologia , SinapsesRESUMO
Muscle spindle afferent feedback is modulated during different phases of locomotor tasks in a way that facilitates task goals. However, only a few studies have studied H-reflex modulation during landing. This study aimed to characterize soleus (SOL) H-reflex modulation during the flight and early landing period of drop landings. Since landing presumably involves a massive increase in spindle afferent firing due to rapid SOL muscle stretching, we hypothesized H-reflex size would decrease near landing reflecting neural modulation to prevent excessive motoneuron excitation. The soleus H-reflex was recorded during drop landings from a 30 cm height in nine healthy adults. Electromyography (SOL, tibialis anterior (TA), medial gastrocnemius, and vastus lateralis), ankle and knee joint motion and ground reaction force were recorded during landings. Tibial nerve stimulation was timed to elicit H-reflexes during the flight and early ground contact period (five 30 ms Bins from 90 ms before to 60 ms after landing). The H-reflexes recorded after landing (0-30 and 30-60 ms) were significantly smaller (21-36% less) than that recorded during the flight periods (90-0 ms before ground contact; P ≤ 0.004). The decrease in H-reflex size not occurring until after ground contact indicates a time-critical modulation of reflex gain during the last 30 ms of flight (i.e., time of tibial nerve stimulation). H-reflex size reduction after ground contact supports a probable neural strategy to prevent excessive reflex-mediated muscle activation and thereby facilitates appropriate musculotendon and joint stiffness.