RESUMO
BACKGROUND: In pediatric cardiology, the fact that some new biomarkers have assay-specific normal values has to be considered for correct clinical decisions. The current study aimed to provide age-adjusted normative values for NT-proBNP and Galectin-3 using the Abbott immunoassay system from a prospective French pediatric cohort sera collection and to validate our data for NT-proBNP on a second retrospective cohort. METHODS: We analyzed 283 consecutive samples for NT-proBNP and 140 samples for Galectin-3 collected from apparently healthy children (0-18 years) with outpatient treatment at our institution (Hôpital Necker-Enfants malades, Paris, France) during 24 months. RESULTS: For NT-proBNP and Galectin-3, we establish four age partitions, respectively two (<2 years / >2 years) and establish upper reference values and their 90 % CI for each biomarker (Galectin-3 (ng/mL): 56 [44-70] / 26 [23-29]). We evaluated the diagnostic performance of our upper reference values of NT-proBNP on a retrospective cohort (n = 428) with positive predictive value of 0.92. CONCLUSIONS: Using Abbott immunoassay system, we report age-specific reference values for NT-proBNP and for the first time for Galectin-3 in a healthy French pediatric cohort. These data call for larger cohort studies to define more robustly percentiles and diagnostic performance for NT-proBNP.
Assuntos
Galectina 3 , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Humanos , Criança , Fragmentos de Peptídeos/sangue , Adolescente , Pré-Escolar , Lactente , França , Valores de Referência , Peptídeo Natriurético Encefálico/sangue , Feminino , Galectina 3/sangue , Estudos de Coortes , Masculino , Recém-Nascido , Imunoensaio/normas , Biomarcadores/sangue , Estudos Retrospectivos , Galectinas/sangueRESUMO
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a silicon photonic dipstick sensor accommodating two U-shaped Mach-Zehnder Interferometers (MZIs) was employed for the label-free detection of the adulteration of ewe, goat, and donkey milk with cow milk. One of the two MZIs of the chip was modified with bovine κ-casein, while the other was modified with bovine serum albumin to serve as a blank. All assay steps were performed by immersion of the chip side where the MZIs are positioned into the reagent solutions, leading to a photonic dipstick immunosensor. Thus, the chip was first immersed in a mixture of milk with anti-bovine κ-casein antibody and then in a secondary antibody solution for signal enhancement. A limit of detection of 0.05% v/v cow milk in ewe, goat, or donkey milk was achieved in 12 min using a 50-times diluted sample. This fast, sensitive, and simple assay, without the need for sample pre-processing, microfluidics, or pumps, makes the developed sensor ideal for the detection of milk adulteration at the point of need.
Assuntos
Técnicas Biossensoriais , Caseínas , Equidae , Cabras , Leite , Animais , Leite/química , Leite/imunologia , Bovinos , Caseínas/análise , Caseínas/imunologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Ovinos , Imunoensaio/métodos , Contaminação de Alimentos/análise , FótonsRESUMO
Despite many luminescent advantages including outstanding absorption coefficient and high quantum yield, pyrene and its derivatives have been suffering from a dramatic aggregation-caused quenching (ACQ) effect. Although the dramatic ACQ effect of pyrene-based fluorophores has been restrained in pyrene-doped metal-organic frameworks (MOFs), the low loading of fluorescent (FL) units substantially impedes the improved luminescent behaviors. Herein, pyrene-based MOFs hydrogel was synthesized with a high loading of pyrene as the unique organic linker blocks instead of a dopant in MOFs. The gel matrix contributed to rigidifying the location of the FL emitters and achieving intensive FL emission and high luminescent stability and therefore efficiently overcoming the ACQ effect. Furthermore, the protonation of pyrene in the MOFs hydrogel remarkably decreased the luminescent intensity, which endowed the FL hydrogel with highly pH-responsive activity in the broad range (pH 4-10). Interestingly, glucose oxidase was immobilized into ZIF-8 as a highly efficient luminescent quencher, which contributed to catalyzing the form of gluconic acid and thus drastically quenching the FL signal of the MOFs hydrogel. Furthermore, the emitter-quencher pair of pyrene-based MOFs hydrogel and glucose oxidase was successfully employed to develop an ultrasensitive FL immunoassay platform for cardiac troponin I (as a model analyte). The limit of detection for cardiac troponin I was 5.2 pg/mL (3σ). The proof-of-principle study demonstrated the thrilling auxiliary effect of tailorable MOFs hydrogel on boosting the feasibility of aqueous insoluble FL chromophores for trace analysis.
Assuntos
Hidrogéis , Estruturas Metalorgânicas , Pirenos , Troponina I , Pirenos/química , Estruturas Metalorgânicas/química , Troponina I/análise , Troponina I/sangue , Concentração de Íons de Hidrogênio , Humanos , Hidrogéis/química , Imunoensaio/métodos , Corantes Fluorescentes/química , FluorescênciaRESUMO
Greatly improving the sensitivity and detection range of lateral flow immunoassays (LFAs) by at least 100 times without using additional instruments remains challenging. Herein, we develop a three-dimensional (3D) film-like nanozyme (GO-Pt30-AuPt5) by ordered assembly of one layer of 30 nm Pt nanoparticles (NPs) and one layer of small Au@Pt satellites (5 nm) onto a two-dimensional (2D) graphene oxide (GO) nanofilm, in which GO greatly increased the interface area and stability of the nanozyme whereas Pt and Au@Pt NPs synergistically enhanced colorimetric/catalytic activities. The grafting of outer Au@Pt satellites converted the 2D nanofilm into a 3D flexible nanozyme with numerous catalytic sites for enzymatic deposition signal amplification and binding sites for target capture. The introduction of GO-Pt30-AuPt5 into multiplex LFA achieved the ultrasensitive and simultaneous detection of two important respiratory viruses with sensitivity of 1 pg/mL level, which was about 100 times higher than that without signal enrichment and at least 20 and 1900 times higher than those of traditional enzyme-linked immunosorbent assay and AuNP-based LFA, respectively. The clinical utility of the proposed assay was validated through the diagnosis of 49 real clinical respiratory tract specimens. Our proposed LFA shows great potential for the ultrasensitive screening of pathogens in the field.
Assuntos
Ouro , Grafite , Nanopartículas Metálicas , Platina , Ouro/química , Nanopartículas Metálicas/química , Imunoensaio/métodos , Grafite/química , Platina/química , Humanos , Colorimetria/métodos , Tamanho da PartículaRESUMO
Layered transition metal dichalcogenides (TMDs), with an extensive surface area, intriguing tunable electrical and optical features, and a distinctive Van der Waals layered structure, yield outstanding sensing properties. Essentially, most TMDs originally existed in the crystallographic phase of a 2H trigonal prismatic structure, which is semiconducting in nature with poor electrocatalytic activity. In contrast, vanadium diselenide (VSe2) with its metastable metallic 1 T octahedral crystal structure has been proven to be an outstanding electrode material, embracing exceptional electrocatalytic behavior for various electrochemical (EC) applications. However, practically, VSe2 has hardly ever been explored in the field of biosensing technology. This study presents a novel EC biosensor based on the antibody of Salmonella Typhimurium (Anti-ST) immobilized on VSe2-supported Indium tin oxide (Anti-ST/VSe2/ITO) for quantitative and efficient Salmonella Typhimurium (ST) detection. The Anti-ST/VSe2/ITO bioelectrode displayed a linear relationship with ST concentration (1.3 × 10-107 CFU/ml) with a limit of detection (LOD) (0.096 CFU/ml) that is lower than previously reported ST biosensors and impressively high sensitivity (0.001996 µA.mL/CFU). Furthermore, the proposed electrode's electroanalytical activity was evaluated in spiked sugarcane juice, demonstrating distinguished applicability for specific ST detection in real samples.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Salmonella typhimurium , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/imunologia , Compostos de Selênio/química , Eletrodos , Limite de Detecção , Imunoensaio/métodosRESUMO
In response to the growing demand for biomolecular diagnostics, metasurface (MS) platforms based on high-Q resonators have demonstrated their capability to detect analytes with smart data processing and image analysis technologies. However, high-Q resonator meta-atom arrays are highly sensitive to the fabrication process and chemical surface functionalization. Thus, spectrum scanning systems are required to monitor the resonant wavelength changes at every step, from fabrication to practical sensing. In this study, we propose an innovative dielectric resonator-independent MS platform that enables spectrometer-less biomolecule detection using artificial intelligence (AI) at a visible wavelength. Functionalizing the focused vortex MS to capture gold nanoparticle (AuNP)-based sandwich immunoassays causes the resulting vortex beam profiles to be significantly affected by the localized surface plasmon resonance (LSPR) occurring between AuNPs and meta-atoms. The convolutional neural network algorithm was carefully trained to accurately classify the AuNP concentration-dependent focused vortex beam, facilitating the determination of the concentration of the targeted diagnostic biomolecule. Successful in situ identification of various biomolecule concentrations was achieved with over 99 % accuracy, indicating the potential of combining an LSPR-susceptible MS platform and AI for continuously tracking various chemical and biological compounds.
Assuntos
Inteligência Artificial , Ouro , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Humanos , Imunoensaio/métodos , Redes Neurais de Computação , Técnicas Biossensoriais/métodosRESUMO
The oriented design of reticular materials as emitters can significantly enhance the sensitivity of electrochemiluminescence (ECL) sensing analysis for disease markers. However, due to the structural fragility of hydrogen bonds, relational research on hydrogen-bonded organic frameworks (HOFs) has not been thoroughly conducted. Additionally, the modulation of luminescence behavior through HOFs has been rarely reported. In view of this, hydrogen-bonded biohybrid organic frameworks (HBOFs) were synthesized and recruited for ECL immunoassay applications. HBOFs was easily prepared using 6,6',6â³,6â´-(pyrene-1,3,6,8-tetrayl)tetrakis(2-naphthoic acid) as linkers via bovine serum albumin (BSA) activated hydrogen-bonded cross-linking. The material exhibited good fluorescence emission characteristics. And the highly ordered topological structure and molecular motion limitation mediated by BSA overcome aggregation-caused quenching and generate strong aggregation induced emission, expressing hydrogen-bond interaction enhanced ECL (HIE-ECL) activity with the participation of tri-n-propylamine. Furthermore, a sandwich immunosensor was constructed employing cobalt-based metal-phenolic network (CMPN) coated ferrocene nanoparticles (FNPs) as quenchers (CMPN@FNPs). Signal closure can be achieved by annihilating the excited state through electron transfer from both CMPN and FNPs. Using a universal disease marker, carcinoembryonic antigen, as the analysis model, the signal-off sensor obtained a detection limit of 0.47 pg/mL within the detection range of 1 pg/mL - 50 ng/mL. The synthesis and application of highly stable HBOFs triggered by proteins provide a reference for the development of new reticular ECL signal labels, and electron transfer model provides flexible solutions for more sensitive sensing analysis.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ligação de Hidrogênio , Medições Luminescentes , Soroalbumina Bovina , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Humanos , Soroalbumina Bovina/química , Animais , Estruturas Metalorgânicas/química , Limite de Detecção , Bovinos , Metalocenos/química , Compostos Ferrosos/química , Anticorpos Imobilizados/química , Biomarcadores/análise , Cobalto/químicaRESUMO
An in-situ nanozyme signal tag combined with a DNA-mediated universal antibody-oriented strategy was proposed to establish a high-performance immunosensing platform for Alzheimer's disease (AD)-related biomarker detection. Briefly, a Zr-based metal-organic framework (MOF) with peroxidase (POD)-like activity was synthesized to encapsulating the electroactive molecule methylene blue (MB), and subsequently modified with a layer of gold nanoparticles on its surface. This led to the creation of double POD-like activity nanozymes surrounding the MB molecule to form a nanozyme signal tag. A large number of hydroxyl radicals were generated by the nanozyme signal tag with the help of H2O2, which catalyzed MB molecules in situ to achieve efficient signal amplification. Subsequently, a DNA-aptamer-mediated universal antibody-oriented strategy was proposed to enhance the binding efficiency for the antigen (target). Meanwhile, a poly adenine was incorporated at the end of the aptamer, facilitating binding to the gold electrode and providing anti-fouling properties due to the hydrophilicity of the phosphate group. Under optimal conditions, this platform was successfully employed for highly sensitive detection of AD-associated tau protein and BACE1, achieving limits of detection with concentrations of 3.34 fg/mL and 1.67 fg/mL, respectively. It is worth mentioning that in the tau immunosensing mode, 20 clinical samples from volunteers of varying ages were analyzed, revealing significantly higher tau expression levels in the blood samples of elderly volunteers compared to young volunteers. This suggests that the developed strategy holds great promise for early AD diagnosis.
Assuntos
Doença de Alzheimer , Aptâmeros de Nucleotídeos , Biomarcadores , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Proteínas tau , Técnicas Biossensoriais/métodos , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Técnicas Eletroquímicas/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Biomarcadores/sangue , Nanopartículas Metálicas/química , Proteínas tau/sangue , Estruturas Metalorgânicas/química , Imunoensaio/métodos , Limite de Detecção , Secretases da Proteína Precursora do Amiloide , Azul de Metileno/química , Ácido Aspártico Endopeptidases/sangue , Peróxido de Hidrogênio/química , CatáliseRESUMO
Background: Adalimumab induces the production of anti-drug antibodies (ADA) that may lead to reduced drug concentration and loss-of-response, posing significant clinical challenges. However, traditional immunoassays have limitations in terms of sensitivity and drug-tolerance, hindering the insights of ADA response. Methods: Herein, we developed an integrated immunoassay platform combining the electrochemiluminescence immunoassay with immunomagnetic separation strategy. A longitudinal cohort study involving 49 patients with ankylosing spondylitis was carried out to analyze the dynamic profiles of ADA and to investigate the impact of ADA on adalimumab pharmacokinetics using a population pharmacokinetic model. Additionally, cross-sectional data from 12 patients were collected to validate the correlation between ADA levels and disease relapse. Results: The ADA assay demonstrated high sensitivity (0.4 ng/mL) and drug-tolerance (100 µg/mL), while the neutralizing antibodies (NAB) assay showed a sensitivity of 100 ng/mL and drug-tolerance of 20 µg/mL. Analysis of the longitudinal cohort revealed that a majority of patients (44/49, 90%) developed persistent ADA within the first 24 weeks of treatment. ADA levels tended to plateau over time after an initial increase during the early immune response phase. Further, nearly all of the tested patients (26/27, 96%) were classified as NAB positive, with a strong correlation between ADA levels and neutralization capacity (R2 = 0.83, P < 0.001). Population pharmacokinetic modeling revealed a significant positive association between model-estimated individual clearance and observed ADA levels. Higher ADA levels were associated with adalimumab clearance and disease relapse in a cross-sectional cohort, suggesting a promising ADA threshold of 10 for potential clinical application. Moreover, the IgG class was the primary contributor to ADA against adalimumab and the apparent affinity exhibited an increasing trend over time, indicating a T-cell dependent mechanism for ADA elicitation by adalimumab. Conclusion: In summary, this integrated immunoassay platform shows promise for in-depth analysis of ADA against biologics, offering fresh insights into immunogenicity and its clinical implications.
Assuntos
Adalimumab , Espondilite Anquilosante , Adalimumab/imunologia , Adalimumab/farmacocinética , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Espondilite Anquilosante/tratamento farmacológico , Espondilite Anquilosante/imunologia , Estudos Longitudinais , Estudos Transversais , Imunoensaio/métodos , Tolerância a Medicamentos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Antirreumáticos/imunologia , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapêuticoRESUMO
Background. The COVID-19 pandemic demonstrated a need for robust SARS-CoV-2 test evaluation infrastructure to underpin biosecurity and protect the population during a pandemic health emergency.Gap statement. The first generation of rapid antigen tests was less accurate than molecular methods due to their inherent sensitivity and specificity shortfalls, compounded by the consequences of self-testing. This created a need for more accurate point-of-care SARS-CoV-2 detection methods.Aim. Here we present the lessons-learned during the COVID-19 emergency response in Western Australia including the detailed set-up, evaluation and operation of rapid antigen test in a state-run drive-through sample collection service during the COVID-19 pandemic after the strict border shutdown ended.Methods. We report a conformity assessment of a novel, second-generation rapid antigen test (Virulizer) comprising a technician-operated rapid lateral flow immunoassay with fluorescence-based detection.Results. The Virulizer rapid antigen test demonstrated up to 100% sensitivity (95% CI: 61.0-100%), 91.94% specificity (95% CI: 82.5-96.5%) and 92.65% accuracy when compared to a commercial PCR assay method. Wide confidence intervals in our series reflect the limits of small sample size. Nevertheless, the Virulizer assay performance was well-suited to point-of-care screening for SARS-CoV-2 in a drive-through clinic setting.Conclusion. The adaptive evaluation process necessary under changing pandemic conditions enabled assessment of a simple sample collection and point-of-care testing process, and showed how this system could be rapidly deployed for SARS-CoV-2 testing, including to regional and remote settings.
Assuntos
COVID-19 , Testes Imediatos , SARS-CoV-2 , Sensibilidade e Especificidade , Humanos , COVID-19/diagnóstico , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Imunoensaio/métodos , Austrália Ocidental/epidemiologia , Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , Teste para COVID-19/métodos , Fluorescência , Sistemas Automatizados de Assistência Junto ao LeitoRESUMO
In kidney transplant recipients, urine CXCL9 and CXCL10 (uCXCL9/10) chemokines have reached a sufficiently high level of evidence to be recommended by the European Society of Organ Transplantation for the monitoring of immune quiescence. To assess the risk of acute rejection (AR), the advantage of uCXCL9/10 is their cost-effectiveness and their high diagnostic performance. Here, we evaluated the feasibility of a next-generation immunoassay for quantifying uCXCL9/10 levels. It demonstrated high efficiency with minimal workflow and a 90-min time to result. Preanalytical studies indicated stability of uCXCL9/10 levels and analytical studies confirmed excellent linearity and precision. In a cohort of 1048 samples collected at biopsy, the results correlated significantly with ELISA quantification and were integrated into a previously validated 8-parameter urine chemokine model. The next generation immunoassay achieved an accuracy of 0.84 for AR diagnosis. This study validates this technology as a robust, locally available and unexpensive platform and marks a significant step towards the widespread implementation of uCXCL9/10, for immune quiescence monitoring. Therefore, we developed an open-access web application using uCXCL9/10 to calculate AR risk and improve clinical decision-making to perform biopsy, ushering in a new era in kidney transplantation, where personalized, data-driven care becomes the norm.
Assuntos
Quimiocina CXCL10 , Quimiocina CXCL9 , Rejeição de Enxerto , Transplante de Rim , Transplante de Rim/efeitos adversos , Quimiocina CXCL10/urina , Humanos , Quimiocina CXCL9/urina , Rejeição de Enxerto/urina , Rejeição de Enxerto/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores/urina , Adulto , Idoso , Imunoensaio/métodosRESUMO
BACKGROUND: Diabetic retinopathy (DR), a chronic and progressive microvascular complication of diabetes mellitus, substantially threatens vision and is a leading cause of blindness among working-age individuals worldwide. Traditional diagnostic methods, such as ophthalmoscopy and fluorescein angiography are nonquantitative, invasive, and time consuming. Analysis of protein biomarkers in tear fluid offers noninvasive insights into ocular and systemic health, aiding in early DR detection. This study introduces a surface acoustic wave (SAW) microchip that rapidly enhances fluorescence in bead-based immunoassays for the sensitive and noninvasive DR detection from human tear samples. RESULTS: The device facilitated particle mixing for immunoassay formation and particle concentration in the droplet, resulting in an enhanced immunofluorescence signal. This detachable SAW microchip allows the disposal of the cover glass after every use, thereby improving the reusability of the interdigital transducer and minimizing potential cross-contamination. A preliminary clinical test was conducted on a cohort of 10 volunteers, including DR patients and healthy individuals. The results demonstrated strong agreement with ELISA studies, validating the high accuracy rate of the SAW microchip. SIGNIFICANCE: This comprehensive study offers significant insights into the potential application of a novel SAW microchip for the early detection of DR in individuals with diabetes. By utilizing protein biomarkers found in tear fluid, the device facilitates noninvasive, rapid, and sensitive detection, potentially revolutionizing DR diagnostics and improving patient outcomes through timely intervention and management of this vision-threatening condition.
Assuntos
Retinopatia Diabética , Lágrimas , Humanos , Lágrimas/química , Retinopatia Diabética/diagnóstico , Imunoensaio/métodos , Som , Técnicas Biossensoriais/instrumentação , Biomarcadores/análise , Propriedades de SuperfícieRESUMO
BACKGROUND: Excessive use of veterinary drugs causes severely environmental pollution and agricultural pollution, and poses great threat to human health. A simple method for the rapid, highly sensitive, and on-site monitoring of veterinary drug residues in complex samples remains lacking. RESULTS: In this study, we propose a catalytically enhanced colorimetric lateral ï¬ow immunoassay (LFA) based on a novel core-satellite-structured magnetic nanozyme (Fe-Au@Pt) that can simultaneously and quantitatively detect three common veterinary drugs, namely, gentamicin (GM), streptomycin (STR), and clenbuterol (CLE), within a short testing time (<30 min). The Fe-Au@Pt nanozyme was simply prepared through the self-assembly of numerous Au@Pt nanoparticles on a large Fe3O4 core via electrostatic adhesion, which exhibited the advantages of high peroxidase-like activity, strong magnetic responsiveness, and multiple catalytic sites. Under the dual-signal amplification effect of magnetic enrichment and catalytic enhancement, the proposed nanozyme-LFA allowed the multiplex detection of STR, CLE, and GM with detection limits of 10.1, 6.3, and 1.1 pg/mL, respectively. SIGNIFICANCE: The developed Fe-Au@Pt-LFA achieves direct, simultaneous, and accurate detection of three target drugs in food samples (honey, milk, and pork). The proposed assay shows great potential for application in the real-time monitoring of small-molecule pollutants in complex environment.
Assuntos
Colorimetria , Resíduos de Drogas , Ouro , Colorimetria/métodos , Imunoensaio/métodos , Ouro/química , Resíduos de Drogas/análise , Limite de Detecção , Animais , Platina/química , Nanopartículas de Magnetita/química , Leite/química , Nanopartículas Metálicas/química , Contaminação de Alimentos/análiseRESUMO
Based on the peroxidase activity of Cu-hemin metal-organic framework (Cu-hemin MOF) nanozyme, a colorimetric enzyme-linked immunosensor was developed for the detection of furazolidone (FZD). Cu-hemin MOF is a bimetallic nanozyme that exhibited a stronger catalytic effect compared with single-metal organic framework nanoenzymes. Cu-hemin-MOF catalyzes hydrogen peroxide (H2O2) to produce hydroxyl radicals (â¢OH), which oxidizes the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB). The absorbance change is at 650 nm. The content of AOZ in animal food can be quickly and accurately determined by changes in absorbance. The linear range of the colorimetric biosensor for detecting FZD was 0.01 ~ 62.52 ng/mL, and the limit of detection was as low as 0.01 ng/mL. The recovery of spikes samples was in the range 94.2-108.0 % and reproducibility was less than 4.8%. In addition, the cross-reaction rate was less than 0.1% when detecting other metabolites except AOZ, indicating that the sensor has good applicability and specificity. This study not only provides a better understanding of the relationship between the dispersion of nanoenzymes and enzyme-like activity but also offers a general method for detecting antibiotics using the nanoenzyme colorimetric method.
Assuntos
Colorimetria , Cobre , Furazolidona , Ferro , Limite de Detecção , Estruturas Metalorgânicas , Colorimetria/métodos , Cobre/química , Furazolidona/análise , Furazolidona/química , Estruturas Metalorgânicas/química , Ferro/química , Benzidinas/química , Peróxido de Hidrogênio/química , Animais , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , CatáliseRESUMO
Introduction: Tularemia, caused by the bacterium Francisella tularensis, poses health risks to humans and can spread through a variety of routes. It has also been classified as a Tier 1 Select agent by the CDC, highlighting its potential as a bioterrorism agent. Moreover, it is difficult to diagnose in a timely fashion, owing to the non-specific nature of tularemia infections. Rapid, sensitive, and accurate detection methods are required to reduce mortality rates. We aimed to develop antibodies directed against the outer membrane protein A of F. tularensis (FopA) for rapid and accurate diagnosis of tularemia. Methods: We used a baculovirus insect cell expression vector system to produce the FopA antigen and generate anti-FopA antibodies through immunization of BALB/c mice. We then employed hybridoma and phage display technologies to screen for antibodies that could recognize unique epitopes on FopA. Result: Two monoclonal antibodies, 6B12 and 3C1, identified through phage display screening specifically bound to recombinant FopA in a dose-dependent manner. The binding affinity of the anti-FopA 6B12 and 3C1 antibodies was observed to have an equilibrium dissociation constant of 1.76 × 10-10 M and 1.32 × 10-9 M, respectively. These antibodies were used to develop a sandwich ELISA system for the diagnosis of tularemia. This assay was found to be highly specific and sensitive, with detection limits ranging from 0.062 ng/mL in PBS to 0.064 ng/mL in skim milk matrices. Discussion: Our findings demonstrate the feasibility of a novel diagnostic approach for detecting F. tularensis based on targeting FopA, as opposed to existing tests that target the bacterial lipopolysaccharide.
Assuntos
Anticorpos Antibacterianos , Anticorpos Monoclonais , Proteínas da Membrana Bacteriana Externa , Francisella tularensis , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Tularemia , Tularemia/diagnóstico , Animais , Francisella tularensis/imunologia , Francisella tularensis/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Anticorpos Monoclonais/imunologia , Camundongos , Imunoensaio/métodos , Sensibilidade e Especificidade , Feminino , Técnicas de Visualização da Superfície Celular , Epitopos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Hibridomas , Baculoviridae/genéticaRESUMO
BACKGROUND: Aquaporin-1 (AQP1) protein plays a crucial role in intracellular and extracellular water homeostasis and fluid transport in organs and tissues associated with diverse life activities and is extremely abundant in the kidney. Accurate detection of AQP1 in urine can be applied as screening of early-stage disease. Application of magnetic preconcentration and probe-based signal amplification strategy coupling to inductively coupled plasma mass spectrometry (ICP-MS) is a more accurate, sensitive and specific detection method for AQP1 in complex biological samples compared to conventional methods. RESULTS: We described an element-labelling strategy based on magnetic preconcentration and probe-based immunoassay coupling to ICP-MS detection. The magnetic beads (MBs) modified with epoxy groups were capable of enriching AQP1 proteins and separating them from complex matrices. The probe constructed by conjugating anti-AQP1 antibody molecules on the surface of gold nanoparticles could specifically recognize AQP1 proteins attached on MBs and be analyzed by ICP-MS. The concentration of AQP1 protein could be precisely quantified and amplified by 14,000 times through the corresponding signal of Au atoms. This assay for AQP1 protein quantification achieved a detection limit down to 0.023 ng mL-1, a broad linear calibration curve between 0.3 ng mL-1 and 30 ng mL-1, as well as outstanding specificity. SIGNIFICANCE: The proposed method was successfully applied to detect AQP1 protein in human urine samples, showing the potential for its applications concerning accurate AQP1 quantification. It can also screen a wide range of proteins provided the antibodies specific to these target proteins are available.
Assuntos
Aquaporina 1 , Espectrometria de Massas , Aquaporina 1/química , Aquaporina 1/urina , Aquaporina 1/metabolismo , Humanos , Imunoensaio/métodos , Espectrometria de Massas/métodos , Limite de Detecção , Ouro/química , Nanopartículas Metálicas/químicaRESUMO
A new method of reducing the amount of reagent and sample for determination of thrombomodulin (TM) was developed based on competitive immunoreaction using a portable glucometer (PGM). Two types of nanocomposites, TM protein-modified magnetic nanoparticles (MNPs-TM) and TM antibody-/glucose oxidase-modified gold nanoparticles (Ab-GNPs-GOx), were prepared. Their binding product, MNPs-TM-Ab-GNPs-GOx, in the microvolumetric solution was used to catalyze the oxidation of glucose, leading to a decline of the glucose content. The TM-involved competitive immunoreaction had a negative effect on the generation of MNPs-/GNPs-based nanocomposites and inhibited the catalytic oxidation of glucose. The glucose content difference in the microvolumetric solution, which was revealed by a PGM, was in proportion to the logarithm of the TM concentration from 25 ng mL-1 to 2.5 µg mL-1. The limit of detection was 5.7 ng mL-1. Microvolumetric solution and a PGM were used in the measurement, which overcame some deficiencies of classical methods in chemo/biosensing, for example, special instrument, complicated measurement procedure, and high cost.
Assuntos
Glucose Oxidase , Ouro , Limite de Detecção , Trombomodulina , Ouro/química , Humanos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/instrumentação , Imunoensaio/métodos , Nanopartículas de Magnetita/química , Nanocompostos/químicaRESUMO
BACKGROUND: Rapid galactomannan tests, such as the sõna Aspergillus GM Lateral Flow Assay (GM-LFA) and the Aspergillus Galactomannan Ag VIRCLIA® Monotest (GM-Monotest), which are suitable for the analysis of single samples, have the potential to accelerate diagnosis of invasive aspergillosis (IA). OBJECTIVES: To compare the performance of the GM-Monotest and the GM-LFA for the diagnosis of IA. PATIENTS/METHODS: Two patient cohorts were analysed: adults who had received an allogeneic haematopoietic stem-cell transplant (alloHSCT-cohort) and patients with proven/probable IA from a 5-year period (cross-sectional IA-cohort). In the alloHSCT-cohort, weekly serum samples were tested, whereas in the cross-sectional IA-cohort sera and bronchoalveolar lavage fluids were analysed. The diagnostic performance was calculated using two definitions for positivity: (1) a single positive GM result and (2) at least two positive GM results from consecutive samples. IA classification followed EORTC/MSG 2019. RESULTS: The alloHSCT-cohort included 101 patients. Four had proven/probable IA, 26 possible IA and 71 no IA. The specificity for one positive serum and two consecutively positive sera was 88.7% and 100% (GM-Monotest) and 85.9% and 98.6% (GM-LFA). Comparison of ROC curves in the alloHSCT-cohort showed no significant difference. The cross-sectional IA-cohort included 59 patients with proven/probable IA. The sensitivity for one positive sample and two consecutively positive samples was 83.1% and 55.1% (GM-Monotest) and 86.4% and 71.4% (GM-LFA). CONCLUSIONS: Both assays showed comparable diagnostic performance with a higher sensitivity for the GM-LFA if two consecutive positive samples were required for positivity. However, due to poor reproducibility, positive GM-LFA results should always be confirmed.
Assuntos
Aspergillus , Galactose , Mananas , Sensibilidade e Especificidade , Humanos , Mananas/sangue , Mananas/análise , Galactose/análogos & derivados , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Transversais , Adulto , Idoso , Aspergillus/isolamento & purificação , Aspergillus/imunologia , Aspergilose Pulmonar Invasiva/diagnóstico , Antígenos de Fungos/sangue , Antígenos de Fungos/análise , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/química , Imunoensaio/métodos , Transplante de Células-Tronco Hematopoéticas , Aspergilose/diagnóstico , Aspergilose/microbiologia , Estudos de Coortes , Adulto JovemRESUMO
Nonylphenols (NPs) are confirmed endocrine disruptors that are banned in many countries due to correlations with human cancers. NPs pollution in surfactant oilfield chemicals (OFCs) has become an important environmental safety issue. It is significant to establish a simple, accurate and low-cost method for detection of NPs in OFCs. In this research, computer-aided molecular design technology was utilized to design NPs haptens. High affinity monoclonal antibodies against NPs were obtained using a matrix effect-enhanced screening method, with an IC50 value of 183.01 ng/mL. A colloidal gold immunochromatography assay (ICA) for detection of NPs enabled rapid on-site detection of large volumes of OFCs. Under optimal conditions, the limit of detection was 0.72-1.82 mg/kg, with a detection range of 4.49-191.28 mg/kg. The recovery was 84 %-104 %, with coefficients of variation < 13 %. As confirmed by high-performance liquid chromatography of natural positive OFCs samples, the proposed colloidal gold ICA demonstrated accuracy and reliability, with potential for fast and economical on field test.
Assuntos
Fenóis , Tensoativos , Fenóis/análise , Tensoativos/química , Imunoensaio/métodos , Monitoramento Ambiental/métodos , Disruptores Endócrinos/análise , Campos de Petróleo e GásRESUMO
Within the past decade, single domain antibodies (sdAbs) have been recognized as unique affinity binding reagents that can be tailored for performance in a variety of immunoassay formats. Luminex MagPlex color-coded magnetic microspheres provide a high-throughput platform that enables multiplexed immunoassays. We developed a MagPlex bead-based assay for the detection of SARS-CoV-2, using sdAbs against SARS-CoV-2 nucleocapsid (N) protein in which we engineered the sdAb capture reagents to orient them on the beads. The oriented sdAbs provided an increase in sensitivity over randomly oriented sdAbs for samples of N diluted in buffer, which also translated into better detection of SARS-CoV-2 in clinical samples. We assessed the specificity of the assay by examining seasonal coronavirus clinical samples. In summary, we provide a proof-of-concept that a bead-based assay using sdAbs to detect SARS-CoV-2 is feasible and future research combining it with other sdAb-coated beads that can detect other viruses may provide a useful diagnostic tool.